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Abstract

At present, much attention is paid to the development of the Arctic
regions. Prediction of stability of various engineering structures in per-
mafrost propagation zones under the impact of various heat sources
on environment, which can be located both inside the ground and on
its surface, are in the top. Such heat sources are generated, for ex-
ample, in operation of northern oil and gas fields. In this case, the
correct setting of the boundary conditions on the surface of the soil
during computer simulation of thermal field propagation in the ground
plays an important role. The main attention is paid to the nonlin-
ear boundary condition on the ground surface and its role in thermal
field propagation in the near-surface layer of the soil. The results of
numerical calculations showing the possibility of numerical algorithms
adaptation to specific geographic coordinates with taking into account
soil properties at the location are presented.
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1 Introduction

The main characteristics of permafrost, which are usually taken into account in the construction of production
wells and various engineering structures under these conditions, are the type of distribution (continuous, inter-
mittent, island), the type of cryogenic structure (massive, layered, mesh), and the degree of iciness. The frozen
soils have different physicochemical properties, which can vary in all directions. In summer, due to positive
air temperatures and solar radiation, seasonal thawing of the upper layer of the soil takes place, in winter the
reverse freezing process is observed. It was noted that in the northern high latitudes the average air temperature
increased faster than the average global temperature, that affects on the state of permafrost. Permafrosts that
have a negative temperature below the seasonal thawing zone occupy about 25% of the globe and the study of
the dynamics of its boundaries is important for various structures constructing in these territories and is also
associated with the climate changes [1, 2, 3].

Note that more than 75% of all Russian buildings and structures in the permafrost zone are constructed
and operated on the base of principle of conservation of frozen soil foundation [4, 5]. Therefore the problem of
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reducing the intensity of thermal interaction in the “heat source – permafrost” zones is of particular importance
for solving problems of energy saving, environmental protection, safety, cost savings and improve the reliability
of various engineering structures [6, 7, 8, 9], flare systems including [10].

To solve the problem, a number of mathematical models are developed [11, 12] as well as the numerical
methods and codes [13, 14]. It was shown that the correct the boundary condition setting at the day surface is
an important factor affecting on the distribution of computed temperature fields in the near-surface layer of the
soil. The main attention is paid to the justification of the correctness of the boundary condition at the ground
surface.

2 Mathematical Model of Heat Distribution in Permafrost

Let T = T (t, x, y, z) be soil temperature at the point (x, y, z) at the time moment t. Simulation of unsteady
three-dimensional thermal fields, such as oil and gas fields (the well pads) located in the area of permafrost, is
required to take into account the different technological (figure 1a) and climatic (figure 1b) factors.
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Figure 1: Thermal flows, which form temperature fields in a soil (a); an example of average annual temperatures
(solid line) and solar radiation (dotted line) (b); temperatures in soil: measured (dashed line) and computed
(solid lines) (c).

The first group of factors is related with thermal insulation from possible devices [6]. The third group of
factors are solar radiation and seasonal changes in air temperature.

Let the modeling area in figure 1a is the box Ω = {(x, y, z) : −Lx ≤ x ≤ Lx,−Ly ≤ y ≤ Ly,−Lz ≤ z ≤ 0},
which is defined by positive numbers Lx, Ly, Lz. Simulation of processes of heat distribution is reduced to
solution of three-dimensional diffusivity equation with non-uniform coefficients including localized heat of phase
transition — an approach to solve the problem of Stefan type, without the explicit separation of the phase
transition in Ω [15]. The equation has the form

ρ
(
cν(T ) + kδ(T − T ∗)

)∂T
∂t

= ∇ (λ(T )∆T ), (1)

with initial condition

T (0, x, y, z) = T0(x, y, z). (2)
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Here ρ is density [kg/m3], T ∗ is temperature of phase transition [K],

cν(T ) =

{
c1(x, y, z), T < T ∗,
c2(x, y, z), T > T ∗,

is specific heat [J/kg K],

λ(T ) =

{
λ1(x, y, z), T < T ∗,
λ2(x, y, z), T > T ∗,

is thermal conductivity coefficient [W/m K ],

k = k(x, y, z) is specific heat of phase transition, δ is Dirac delta function.

2.1 Boundary Conditions

The main heat flow associated with climatic factors on the surface z = 0 is shown in figure 1a.
Let consider in detail the boundary condition obtaining on the surface of the ground, since a condition of

this type is rarely used in solving the problems under consideration. As the boundary condition on the surface
of the ground (the main zone of natural thermal fields generating), the equation of the balance of flows that
bring and take away energy is used, which takes into account the main climatic factors: the average monthly air
temperature and solar radiation power (mainly on the spring and summer months). Let Tair = Tair(t) denotes
the temperature in the surface layer of air, which varies from time to time in accordance with the annual cycle
of temperature. Let compose the heat balance on the surface of the soil z = 0. We’ve got:

q1 = αq is the part solar radiation to heat the ground;
q2 = b(Tair − T (t, x, y, 0)) is the heat exchange with air on the surface of the ground z = 0;
q3 = εσ(T 4(x, y, 0, t)− T 4

air) is emissivity of the heated soil surface;

q4 = −λ
∂T (x, y, 0, t)

∂z
is the heat transfer due to possible internal heat flow on the surface of the soil.

Here σ = 5, 67 · 10−8Wt/(m2K4) is Stefan–Boltzmann constant; b = b(t, x, y) is heat transfer coefficient;
ε = ε(t, x, y) is the coefficient of emissivity. The coefficients of heat transfer and emissivity depend on the
type and condition of the soil surface. Total solar radiation q(t) is the sum of direct solar radiation and diffuse
radiation. Soil is absorbed only part of the total radiation which equal to αq(t), where α = α(t, x, y) is the part
of energy that is formed to heat the soil, which in general depends on atmospheric conditions, angle of incidence
of solar radiation, i.e. latitude and time. The balance of flows on surface z = 0 has the following form:

q1 + q2 = q3 + q4

and determines the corresponding nonlinear boundary condition

αq + b(Tair − T (x, y, 0, t)) = εσ(T 4(x, y, 0, t)− T 4
air) + λ

∂T (x, y, 0, t)

∂z
. (3)

Nonlinear boundary conditions of fourth degree is often used for simulations of process where there is a heat
exchange as solar radiation or other type of heatet surfaces interaction, for example, in [16, 17].

Taking into account the absorbed and reflected solar energy in condition (3) is a complex problem, since there
are many undetermination in the parameters α and ε. Ideally, for a complete quantitative description of solar
radiation absorbed and reflected by soil surface in a specific geographical area, many factors have be taken into
account, which, as a rule, are not known. In particular, the specific parameter p is a part of long-wave radiation
reflected by atmosphere toward the Earth’s surface. If, generally, p = 0.84 for the Earth, then for a specific
geographic point on the earth’s surface this value will be very different from this value. In order to obtain more
accurate estimates of these parameters, it is necessary to take into account, with other things, the number of
sunny and rainy days during a year, as well as the other climatic parameters that are often probabilistic, and
their monthly averages are required.

Moreover, the value of ε parameter does not always accurately may be determined for a specific geographic
point. The value of this parameter can significantly affect on the boundary condition (3). The same arguments
are valid and for other parameters contained in boundary condition (3). Also, all these parameters change during
the time in accordance with the climate cycle (in our model such a change is considered). For example, it is
necessary to consider the layers of snow cover, the structure of the snow, the presence on the surface of a layer of
humus, vegetation, etc. The study of the influence of snow cover is available in many works (for example, [18]).
It was shown that the short-wave part of the solar radiation can penetrate into the snow layer deep enough,
changing in accordance with Bouguer–Lambert law. The depth depends on the density of the snow, the moisture,
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Figure 2: Thawing of uncoated soil (in the left) and with a riprap (in the rigth) in spring and summer. The
riprap consists of three layers: 0.3m of concrete slab, 2m of sand, 0.06m of foam. The soil moisture is 20%.

crystal structure and other factors. With the development of computer technology, it became possible to solve
such problems in a complete three-dimensional formulation. However, the researchers, in view of the complexity
of the problem in the three-dimensional case, are doomed to eliminate of many important conditions that have
a significant effect on the distribution of temperature fields in frozen ground.

Figure 3: Freezing of uncoated soil (in the left) and with a riprap (in the rigth) in autumn and winter. The
riprap consists of three layers: 0.3m of concrete slab, 2m of sand, 0.06m of foam. The soil moisture is 20%.

Thus, an important task is to determine the parameters in the nonlinear boundary condition (3). We will
assume that for a given geographic point we know the values represented in figure 1c. The initial temperature
distribution is usually determined by the data from an exploration well at the time moment t0 at the point
(x0, y0, 0) on the surface of the computational domain Ω. Let denote this initial temperature distribution in the
exploratory well by T (t0, x0, y0, z). For definiteness, we assume that t0 is the number of days since the beginning
of the year in which measurements are taken. Our next task is to refine (select) the parameters in the boundary
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condition (3) so that on the basis of the solution of the problem (1)–(3) we obtain the following relationships:

T (t0, x0, y0, z) ≈ T (t0 + 365j, x0, y0, z), j = 1, 2, . . . , J. (4)

That is the solution of problem (1)–(3) is periodically repeated (in accordance with the annual temperature
cycle) with a certain approximation of a given initial distribution T (t0, x0, y0, z). And the more precisely this
relation is satisfied during a longer time interval (for a larger value of J), the more accurately it is possible to
select the parameters in (3).

To determine the parameters in boundary condition (3), an iterative algorithm is developed that takes into
account the geographic coordinates of considered area, lithology of soil and other features of the selected location.
In figure 1c the calculated temperature distribution in the exploratory well is compared with the measured
temperature distribution at a given time point t0.

At the boundaries of the computational domain the boundary conditions are given

∂T

∂x

∣∣∣∣
x=±Lx

=
∂T

∂y

∣∣∣∣
y=±Ly

= 0,
∂T

∂z

∣∣∣∣
z=−Lz

= γ. (5)

In (5) γ is a positive number, corresponding to a geothermal flux value. As a rule γ is a small number and it
is possible to be set zero in calculations.

3 Methods of Solutions and Numerical Results

Numerical methods of solving problems are the most effective and universal method of research for models
considered in this paper. A large number of works is devoted to development of difference methods for solving
boundary value problems for the heat equation To solve (1)–(5) a finite–difference method is used.

Figure 4: Thawing of soil with a riprap in spring and summer. The riprap consists of two layers: 0.3m of concrete
slab, 0.7m of sand in the left, 0.3m of concrete slab, 1.7m of sand in the right. The soil moisture is 20%.

At present there are the following difference methods for solving Stefan type problems: the method of front
localization by the difference grid node, the method of front straightening, the method of smoothing coefficients
and schemas of through computation [15].

With using these ideas [15, 19], to solve problem (1)–(5) in three-dimensional box a finite difference method is
used with splitting by the spatial variables and taking into account the inner boundaries from different technical
systems. Solvability of the same difference problems approximating (1)–(5) is proved in [16, 17]. Let note that
this method was successfully used in solving geothermal problems [20, 21].

After the algorithm has adapted to a specific geographic location in one of the northern oil and gas fields, the
detailed numerical calculations were carried out, related not only to predict the permafrost thawing from the
producing wells, but also for the optimum choice of pad riprap.
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Figure 5: Freezing of soil with a riprap in autumn and winter. The riprap consists of two layers: 0.3m of concrete
slab, 0.7m of sand in the left, 0.3m of concrete slab, 1.7m of sand in the right. The soil moisture is 20%.

In the figures 2–5, the numbers indicate the month’s number, the curves show the temperature distribution
for the month with the z depth.

The temperature distribution in spring (curves 3, 4, 5) and summer (curves 6, 7, 8) in the soil without and
with a riprap are shown in figure 2.

The temperature distribution in autumn (curves 9, 10, 11) and winter (curves 12, 1, 2) in the soil without
and with a riprap are shown in figure 3.

Figures 4–5 show the temperature changes depending on the used riprap.

4 Conclusion

Thus, the developed mathematical model and software product allow to carry out detailed numerical calculations
on long-term forecasting of temperature field changes in the near-surface layer of soil. The simulations take into
account the most significant climatic and physical factors, which in general are difficult to be described in detail
and contain many undetermined parameters. The computations allow to choos the optimal version of ripraps
for the development of an oil and gas field with using available materials. On the other hand, the developed
approach adequately describes long-term dynamics of changes in the active layer (ALT), taking into account
various scenarios of climate change, which allows a long-term forecast related to changes in the permafrost
boundaries.
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