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This study describes the physics of conduction heat transfer from nano-sized spherical particles and in-
terpolation techniques used to calculate heat transfer in the transition regime.  The accuracy of these 
techniques is evaluated by comparing their results with those obtained by direct Monte Carlo simulation. 
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Introduction 
An accurate model of conduction heat transfer 

from a small sphere immersed in a gas and an 
understanding of the underlying physics are essen-
tial when analyzing data from time-resolved laser-
induced incandescence experiments. This work 
summarizes recent reviews [1, 2] of this problem. 

The governing physics is specified by the 
Knudsen number, Kn = λMFP/a.  If Kn is very large, 
heat transfer occurs in the free-molecular regime.  
In this regime molecules travel between the parti-
cle and the equilibrium gas without colliding, and 
the heat transfer rate is given by 

 
(1) 

 
where αT is the thermal accommodation coeffi-
cient, c  is a characteristic molecular speed, and γ* 
is the temperature-averaged adiabatic gas con-
stant. The heat transfer rate increases with in-
creasing molecular number density and is thus 
proportional to Pg and Kn-1.   

If Kn is very small heat transfer occurs in the 
continuum regime, 

(2) 
where ck  is the temperature-averaged thermal 
conductivity. In this regime qc is independent of 
pressure and Kn since increasing Pg increases the 
molecular number density but decreases the dis-
tance between intermolecular collisions. 

If Kn is neither small nor large conduction oc-
curs in the transition regime.  The physics of this 
regime is dominated by a collisionless layer sur-
rounding the particle that causes a temperature 
jump at the gas-surface interface. Since the Boltz-
mann equation is analytically intractable in this 
regime, heat transfer is instead estimated using 
schemes that interpolate between qFMR and qc. 

Transition-Regime Interpolation Schemes 
Transition-regime interpolation schemes are 

categorized as being either simple-interpolative, 
diffusion-approximation, or boundary-sphere 
methods. The most popular simple-interpolative 
technique is by McCoy and Cha [3], who defined 
an overall collision frequency as the sum of inter-
molecular and molecule-wall collision frequencies.  
Substituting this into the Chapman-Enskog ap-
proximation for kc results in  

 
(3) 

where G is a geometry-specific parameter.   

Diffusion-approximation (DA) techniques esti-
mate qtrans using Eq. (2) but adjust TP to account for 
the temperature-jump specified by the slip parame-
ter ξ.  After rearranging, it can be shown that  

(4) 
 

where ξ is given by Loyalka [4].  

Boundary-sphere (BS) methods work by find-
ing the unknown temperature at the interface of the 
collisionless layer and the continuum gas, Tδ, by 
solving qFMR(Tp, Tδ) = qc(Tδ, Tg). Although this is 
traditionally done analytically, a numerical tech-
nique [2] has recently been proposed that ac-
counts for temperature-dependent gas properties. 

Figure 1 shows solutions obtained using the in-
terpolation schemes and by direct Monte Carlo 
simulation. Note that temperature-dependent gas 
properties must be considered when analyzing LII 
data, and the Loyalka DA model only applies to 
monatomic gases.  The BS method of [2] is the 
most accurate scheme for analyzing LII data.   

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

Fig. 1: Transition-Regime Interpolation Schemes 
and DSMC Results. 
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