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This study reviews techniques for recovering aerosol particle size distributions from time-resolved laser-
induced incandescence data in the context of solving a mathematically ill-posed inverse problem.   
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Introduction 
Time-resolved LII has recently evolved into a 

tool for evaluating particle size distributions in 
aerosols.  Since larger particles cool slower than 
smaller particles the size distribution can be recov-
ered from the observed monochromatic incandes-
cence or effective temperature decays. 

This involves solving a mathematically ill-
posed inverse problem, which is complicated by 
the fact that ill-posed problems may not have a 
solution, have multiple solutions, or have a solution 
that is sensitive to perturbations to the problem.  
Although solution existence is guaranteed in this 
case, uniqueness and stability are not, which is of 
particular concern in LII experiments since physical 
parameters are not known with a high-degree of 
certainty and experimental data often contains 
substantial shot-noise. Because of these difficul-
ties, special explicit and implicit techniques must 
be used to solve ill-posed inverse problems. 

Explicit Methods 
Explicit methods solve the mathematically ill-

posed governing equations directly. In this prob-
lem, the monochromatic incandescence at any 
instant, Jλ(t), is governed by a Volterra integral 
equation of the first-kind, 
 

(1) 
 
where Cλ is a constant, f(dp) is the unknown parti-
cle size distribution, and Kλ(t, dp) is the radiation 
emitted by particles of diameter dp at time t and 
wavelength λ.  Explicit methods transform ill-posed 
integral equations into ill-conditioned matrix equa-
tions, Ax = b, which are then solved using regu-
larization methods. Roth and Filippov [1] used 
iterative regularization to solve Eq. (1) for f(dp).  

Implicit Methods 
Implicit methods work on the well-posed for-

ward problem, which in this case is to determine 
the Jλ(t) or the effective temperature, Te(t) that 
corresponds to a particular f(dp). Different size 
distributions are then substituted into the governing 
equations until the modeled Jλ(t) or Te(t) matches 
the experimentally-observed values. This is most 
efficiently done by casting the problem as a least-
squares minimization problem,  

 
  (2) 

where x specifies f(dp) (which is usually log-
normal) and fexp and fmod(x) contain experimentally-
observed and modeled data, respectively. F(x) is 
then minimized using nonlinear programming; the 
minimizer x* specifies the particle size distribution 
that best describes the experimentally-observed 
results. This approach has been used [2-5] to find 
f(dp) using Jλ(t) or Te(t). Liu et al. [5] transform this 
problem into an easier-to-solve univariate minimi-
zation problem. 

Although implicit methods work on the well-
posed forward problem, the ill-posedness of the 
inverse problem is manifested in the topography of 
F(x), shown in Fig. 1. The valley surrounding x* 
corresponds to particle size distributions that 
nearly produce the experimentally-observed data. 
Diamonds show solutions found using data conta-
minated with shot noise. Accordingly, care must be 
taken to select a method that is insensitive to un-
certainties in the parameters and experimental 
error. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1: Plot of F(x), showing solutions obtained using 
perturbed incandescence data. 
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