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Abstract. This paper presents DELTA-LD, an approach that detects and 

classifies the changes between two versions of a linked dataset. It contributes to 

the state-of-art: firstly, by proposing a classification to distinctly identify the 

resources that have had both their IRIs and representation changed and the 

resources that have had only their IRI changed; secondly by automatically 

selecting the appropriate resource properties to identify the same resources in 

different versions of a linked dataset with different IRIs and similar 

representation. The paper also presents the DELTA-LD change model to 

represent the detected changes. This model captures the information of both 

changed resources and triples in linked datasets during its evolution, bridging 

the gap between resource-centric and triple-centric views of changes. As a 

result, a single change detection mechanism can support several diverse use 

cases like interlink maintenance and replica synchronization. The paper, in 

addition, describes an experiment conducted to examine the accuracy of 

DELTA-LD in detecting the changes between the person snapshots of DBpedia. 

The result indicates that the accuracy of DELTA-LD outperforms the state-of-

art approaches by up to 4%, in terms of F-measure. It is demonstrated that the 

proposed classification of changes helped to identify up to 1529 additional 

updated resources as compared to the existing classification of resource level 

changes. By means of a case study, we also demonstrate the automatic repair of 

broken interlinks using the changes detected by DELTA-LD and represented in 

DELTA-LD change model, showing how 100% of the broken interlinks were 

repaired between DBpedia person snapshot 3.7 and Freebase. 

Keywords: Change detection, link maintenance, dataset dynamics, linked data 

1   INTRODUCTION 

Many linked datasets are highly dynamic in nature [1]. For an application consuming 

a dynamic linked dataset, the dynamic nature of the dataset may result in issues for 

the application such as broken interlinks or outdated data [1]. 

These issues are typically encapsulated in the research community using the term 

“dataset dynamics”. Dataset dynamics investigates the approaches that detect changes 

in linked datasets during their evolution, and the vocabularies to represent the 

detected changes [2]. The aim is to build: (i) vocabularies to represent the change 

information, (ii) mechanisms for change detection, and (iii) change propagation 



methods [2]. Change detection in linked datasets has proven to be important for 

supporting diverse use cases like interlink maintenance and synchronization of dataset 

versions, replicas, and interconnected datasets [1], [5]. However, existing change 

detection mechanisms have certain limitations in our opinion (see below). 

These limitations have motivated our research in dataset dynamics: (a) Change 

classification limitation – The existing change classification denotes the resources 

that have had their IRI changed as “moved” or “renamed” resources. These resources 

can lead to structurally broken interlinks1, which can be repaired by redirecting the 

old IRI to the new IRI. However, a subset of these “moved” resources may have 

changes in both their IRI and representation. Structural repair of broken interlinks 

related to these resources will make them potential candidates for semantically broken 

interlinks (an interlink is semantically broken when the meaning of the representation 

of target differs from the intended meaning of the source [3]). This is because iterative 

updates in a resource of linked dataset (case for many linked dataset [13]) may lead to 

the semantic drift in the original representation of the resource [14]. Hence, it is 

important to identify the resources with both changed IRI and representation as a 

separate class of changes; (b) Properties selection limitation – The existing 

approaches either use pre-defined properties or all the object properties (graph 

structure) of a resource to identify the resources that have changed their IRIs and 

possibly their representation (structure and/or values) too. Selection of pre-defined 

properties requires additional effort (pre-change detection) which can be saved by 

using the graph structure. But the disambiguation of resources using the graph 

structure alone could be challenging [12]. The accuracy of algorithms which rely on 

the graph structure can be improved by incorporating the data properties of resources 

in the matching process; (c) Change model2 limitation – The state-of-art has several 

change models that represent either changed resources or changed triples in a linked 

dataset. These change models do not allow to identify a changed resource along with 

its changed triples. The existence of this gap prevents a single change detection 

mechanism from supporting diverse use cases like interlink maintenance and replica 

synchronization is addressed in change models like Roussakis et al. [5]. These change 

models are generally designed by using multiple semantic layers of changes for e.g. 

simple changes (adds semantic to each added/ deleted triple); complex changes (add 

further sematic to simple changes by grouping multiple simple changes). Such change 

models represent changes in more human understandable manner. However to 

automatically support use case like interlink maintenance, these models can further be 

simplified to incorporate one semantic layer of changes, i.e. the resource-level 

changes, as demonstrated by Popitsch et al. [1]. 

The specific research question under evaluation in this paper is to what extent we 

can detect, classify, and model the changes between two versions of a linked dataset? 

The contribution of this paper is as follows: Firstly, it proposes DELTA-LD, a 

novel change detection and classification approach for linked datasets. DELTA-LD 

addresses the limitations (a) and (b) described above. Secondly, it proposes the 

DELTA-LD change model to represent detected changes, addressing limitation (c). 

                                                           
1An interlink is structurally broken, if either source or target are no longer dereferenceable. 
2The generic model that represent detected changes and can be materialized in any schema. 



Thirdly, it evaluates the accuracy of DELTA-LD using real world data and compares 

the approach to state-of-art change detection approaches. 

The paper is organized as follows: Section 2 discusses how the aforementioned 

limitations exist in state of the art approaches. Section 3 describes the proposed 

DELTA-LD change model. Section 4 describes the proposed DELTA-LD approach. 

Section 5 presents an evaluation of DELTA-LD in terms of accuracy achieved. 

Section 6 discusses a case study that was performed to repair structurally broken 

interlinks using the change information generated by DELTA-LD and represented in 

DELTA-LD change model. Conclusions are drawn in Section 7. 

2   RELATED WORK 

This paper aims to address the use case of broken interlinks maintenance and replica 

synchronization of a linked dataset by identifying the changes between two versions 

of the dataset. Thus, the change detection approaches that support these use cases and 

their limitations are discussed in this section. For better clarity, first the types of 

change information required for each use case are explained, then the change 

detection approaches that support these use cases are discussed. 

UC 1a - Semantic link maintenance – detection of semantically broken interlinks 

require identifying the updated resources3. UC 1b - Structural link maintenance – 

detection of structurally broken interlinks require to identifying the renamed4 or 

deleted5 resources. UC 1a and 1b need the information about the changed resources 

thus, resource level change information is required to support these use cases. UC 2 - 

Replica synchronization – to synchronize a replica of a linked dataset, it is important 

to identify the added and deleted triples in the dataset. Thus, triple level change 

information is required to support this use case. 

Approaches [1], [5], [6], and [15] identify resource level change information. The 

approach [6] detects the renamed resources to identify and repair structurally broken 

interlinks. However, this approach partially detects structurally broken interlinks, as 

the approach does not attempt to identify deleted resources. A SPARQL based change 

detection approach [5] for linked datasets was proposed to capture human 

understandable changes. For this, the approach first identifies simple changes by 

adding semantics to triple level changes, and to add further semantics, the approach 

groups multiple simple changes into complex changes. The approach can support UC 

2 using simple changes. Since, no heuristic based matching is involved in the 

approach, it would be difficult to identify the resources that have had both their IRIs 

and representation changed at the same time, thus, the approach supports UC 1a and 

1b partially. Another approach [15] targets to capture human understandable changes. 

The approach detects 132 types of change and can support UC 1a, 1b, and 2. UC 2 

can be supported by using basic changes (triple-level changes). For use case 1a, 

changes like Retype_Individual_To_Individual (change in rdf:type of an instance) can 

be used to identify updated resources in linked dataset. To support UC 1b, the 

                                                           
3 Resources that have had their representation changed during the changes in Linked Datasets 
4 Resources that have had their IRI changed during the changes in Linked Datasets. 
5 Resources that have been removed from the dataset during the changes in Linked Datasets. 



approach detects renamed resources by calculating the similarity between the 

neighborhood (graph nodes of the observed resources) of two resources with different 

IRIs in different versions. However, sometimes the renamed resources may also get 

updated at the same time. So, with this classification, the resources that have had both 

their IRIs and representation changed cannot be differentiated from the resources that 

have had only their IRIs changed (see change classification limitation in the 

Introduction). The approach [1] supports UC 1a and 1b and classifies the resource 

level changes as follows: create (addition of a new resource in linked dataset); remove 

(same as deleted resource); update (described above); move (same as rename). 

Analogous to the classification by approach [15], the distinction between the 

resources that have had both their IRIs and representation changed, and the resources 

that have had only their IRIs changed, will be difficult with the classification by 

approach [1]. This is because former and latter are denoted by just single type of 

change, i.e. “move” type of change. 

Out of all approaches discussed above, only [1], [6], and [15] can identify moved/ 

renamed resources. However, [1] requires pre-determined properties, while [6] and 

[15] rely on the graph structure of resources to detect moved resources. This 

limitation of property selection is referred to in the Introduction as limitation (b). 

[7] proposes a triple level change detection approach for RDF datasets. Another 

approach [9], also identifies triple level changes in RDF datasets by considering the 

existence of blank nodes in RDF datasets. The approaches in [7] and [9] identify the 

triple level changes, thus, are suitable to support UC 2. 

In this section so far, we identified that the state-of-art approaches detect changes 

at two levels, triple and resource, with the different levels supporting different use 

cases. To the best of our knowledge, few existing approaches detect and represent 

change information at both resource and triple levels. However, we believe that these 

representations can further be simplified in the context of use cases like 1a, 1b, and 2. 

Out of the approaches discussed above, only [1], [5], and [7] proposed models to 

represent changes in linked datasets. The change model by approach [5] has two 

semantic layers of change (explained above): simple changes; complex changes. For 

UC 1a, 1b, and 2, this model can further be simplified and modeled by just one 

semantic layer of change (resource level changes), which is sufficient to identify a 

resource level change with its corresponding triples. The single semantic layer change 

model is already used by [1] for use case 1b, where the changed triples are associated 

with their corresponding changed resources. However, [1] did not include the changed 

triples separately as added and deleted triples, which projects the gap between 

resource level and triple level changes. This is discussed in change model limitation 

in the Introduction. The ontology proposed by approach [7] bridges the gap between 

resource and triple-centric view of changes by reification of triples. In reification, a 

“type” is added to each added and deleted triple, which includes resource level change 

information. However, this will generate redundant information for the resource level 

changes as a resource constitutes multiple triples. For UC 1a and 1b, where resource-

level changes are required, using such change model would require further operations 

over generated delta to overcome the redundant resource level change information. 

This section has illustrated that the limitations mentioned in the introduction exist 

in the state-of-art approaches. We argue in this paper that in order to address these 

limitations we need to: (a) separate by means of classification, resources that only 



change their IRIs and resources that both change their IRIs and representation; (b) a 

change detection mechanism that does not require pre-determined properties for the 

identification of moved resources; (c) an improved yet simplified change model that 

bridges the gap between resource and triple centric view of changes. 

3   DELTA-LD CHANGE MODEL 

We propose the DELTA-LD Change Model to address limitation (c) presented in the 

Introduction. The DELTA-LD change model is based on the Layered Change Log 

model [10] that models change in ontology at two levels of granularity: first level 

models the information of atomic level change operations; second level models the 

objective of the atomic changes. A similar model can be applied to represent the 

changes in linked datasets, which will bridge the gap between the resource and triple 

level changes using just one semantic layer of changes (resource level changes). 

Analogous to [10], we model the deleted and added triples as atomic operations at the 

first level, while at the second level the objective of deleting or adding a triple is 

modeled as the creation, removal, update, movement, or renewal of a resource. Fig. 1 

describes DELTA-LD change model. This is a generic model that can be 

realized/materialised in ontologies, XML schema, or any other type of vocabulary. 

 

Fig. 1. DELTA-LD change model 

In Fig. 1, the “base version” and the “updated version” entities are the older and 

newer version of a linked dataset used for change detection; the “change type” entity 

represents the type of resource level changes i.e. create, remove, update, move, 

renew; “SOC in base” and “SOC in updated” entities represent subject of change 

(resource IRI) in base and updated version respectively; finally, “removed triples” and 

“added triples” entities are used to represent information of deleted and added triples 

respectively. Using such a change model, one can identify the resource level changes 

in linked datasets along with their corresponding added and deleted triples. 

4   DELTA-LD APPROACH 

DELTA-LD is an approach that detects changes between two versions of a linked 

dataset. The main objective of DELTA-LD is to address the limitations (a) and (b) 

presented in the Introduction. To address limitation (a), DELTA-LD proposes a sub-



classification for move/ rename type of changes. The proposed sub-classification has 

following types of changes: Move: change only in the IRI of an existing resource; 

Renew: change in the IRI as well as in the representation of an existing resource. 

Apart from these two types of change, DELTA-LD also detects create, remove, and 

update type of changes, which are explained in section 2. To address limitation (b), 

DELTA-LD first identifies all the potential moved and renewed resources by 

comparing all the features (section 4.2) of removed resources with the features of 

created resources. Then to filter out the incorrect moved or renewed resources, 

DELTA-LD determines critical features (section 4.3) automatically. In the context of 

DELTA-LD, a feature is critical, if its value remains same for most (configurable) of 

the moved and renewed resources in both versions of a linked dataset. 

To implement DELTA-LD initially, we used a triple store and a database. The 

Triple store is used to upload the dumps of older and newer versions of a linked 

dataset, and the database is used to store the features (derived from properties and 

objects) of the resources to facilitate the identification of moved and renewed 

resources. The approach contains four major activities (see Fig. 2). First is the 

Ingestion activity (section 4.1) – it uploads both the older and newer versions of a 

linked dataset in a triple store. Second is the Feature extraction activity (section 4.2) 

– this extracts the properties and objects of newly added and deleted resources 

identified by comparing older and newer version. Third is the Change detection and 

classification activity (section 4.3) – it uses the extracted properties and objects of 

newly added and deleted resources to identify the updated, moved and renewed 

resources. Fourth is the Transformation activity (section 4.4) – it transforms the 

identified change information into RDF according to the DELTA-LD change model. 

The following sub-sections describe each of these activities in more detail. 

 

Fig. 2. Overview of the major activities in the DELTA-LD approach 

4.1   INGESTION ACTIVITY 

Requirements: The aim of this activity is to upload the RDF dataset dumps in a triple 

store, in a way that the different dumps can be distinctly identified in the triple store. 

Implementation: We have implemented an ingestion component which uploads 

RDF dataset dumps for both older and newer version in a triple store, in two distinct 

graphs. We have used the sem:rdf-load() function of the semantic API of the 

MarkLogic platform6 to upload the dumps in the MarkLogic triple store7. 

4.2   FEATURE EXTRACTION ACTIVITY 

Requirements: The aim of this activity is to generate features for each newly added 

and deleted resources in the uploaded datasets using their properties and objects. The 

                                                           
6 https://www.marklogic.com/ 
7 https://www.marklogic.com/product/marklogic-database-overview/ 



generated features are used for detection of the same resources having different IRIs 

and similar representation (but not the same) in different versions of a linked dataset. 

Implementation: To address the requirement, we implemented a feature extraction 

component. A resource could correspond to multiple triples. These triples contain 

various properties and objects that define a resource. To identify the same resources 

having different IRIs and similar representation (but not the same) in older and newer 

version of a linked dataset, the properties and objects of newly added resources are 

compared with the properties and objects of the deleted resources. SPARQL queries 

described in Listing 1 are used to identify the newly added and deleted resources 

between the older and newer version of the dataset. 

Listing 1. SPARQL queries to identify added (a) and deleted resources(b) 

(a) 

SELECT DISTINCT ?S 

WHERE { GRAPH <$NEWER-VERSION> 

         {?S ?P ?O } 

          FILTER NOT EXISTS 

          { GRAPH <$OLDER-GRAPH> 

          {?S ?P ?O} 

       }} 

(b) 

SELECT DISTINCT ?S 

WHERE { GRAPH <$OLDER-VERSION> 

         {?S ?P ?O } 

          FILTER NOT EXISTS 

          { GRAPH <$NEWER-GRAPH> 

          {?S ?P ?O} 

       }} 

The updated resources are also identified as both added and deleted resources by 

checking the IRI of identified added resources (by query (a)) in older version and the 

IRI of identified deleted resources (by query (b)) in newer version of the dataset. 

To identify the same resources having different IRIs in older and newer versions of 

a linked dataset, we need to consider that it is not necessary that the properties and 

objects corresponding to the same resource with different IRIs in older and newer 

versions remain same. Due to the evolution of the dataset, new properties might be 

added; existing properties might be deleted; object value could be modified. In such 

scenarios, a similarity between two resources need to be calculated.  

To facilitate the similarity calculation, all the properties and objects of the newly 

added and deleted resources are used to create Feature XMLs (fig 3). While creating 

Feature XMLs, the component also allows to use additional information8 about the 

resources, which is present outside the older and newer versions uploaded during the 

ingestion activity (Section 4.1). 

  
Fig. 3. Features XML for a resource 

A Feature XML represents a resource. The root element is arbitrarily named as 

“allFeatures” and it contains an attribute (“res”) to link the Feature XML with original 

resource by keeping the IRI of the resource as the value of “res” attribute. The child 

element of the root element has two parts: feature (name of element), i.e. one of the 

property name of a resource; feature value (value of element), i.e. transformed object 

value, which is denoted by “key”. The keys are created to cope with the potential 

errors generally made by humans at data entry stage [8]. The keys are formed 

                                                           
8 This additional information could be categories, provenance, archival mementos, etc. 



differently for different types of object values: URIs (object properties that contain no 

numeric character): The algorithm uses the last token (tokenize with ‘/’) of URI path 

as the key; text (data properties that contains no numeric character): To create the 

key for each word in the text, the algorithm takes all distinct vowels, first and last 

character, and the primary key of double metaphone9 encoding of the word, this 

combination has been used to improve the accuracy of the algorithm while calculating 

the similarity of two resources [11]. For instance, the key for “Hamid” will be 

“aihhmtd”, where “ai” are distinct vowels, “h” is the first character, “hmt” is the 

primary key of the double metaphone encoding, and “d” is the last character of the 

word. Numbers/ string with digits: the algorithm uses the exact value of the objects as 

key. Both parts of a feature are utilized at later stage by DELTA-LD to identify 

critical features (section 4.3). The component stores the Features XMLs of newly 

added and deleted resources in “new” and “delete” collections 10 of MarkLogic 

database 11  respectively. We used a database for storing Feature XML as in 

MarkLogic, a separate installation is not needed for database because both triple store 

and database in MarkLogic are physically same but conceptually different. 

XQuery (language to query XML data) is the language to access the data stored in 

MarkLogic database, thus, we chose to keep the information of features in XML 

format. One can choose a different format and storage mechanism to store features. 

For e.g. features can also be stored in a triple format in a triple store. 

4.3   CHANGE DETECTION AND CLASSIFICATION ACTIVITY 

Requirement: We need an activity to: (a) classify updated resources; (b) identify 

resources that have had only their IRIs changed and classify them as move (c) identify 

resources that have had both their IRIs and representation changed at the same time 

and classify them as renew. 

Implementation: The state-of-art approaches compare specific properties and 

corresponding objects of a resource in the older and newer versions to detect the 

resources that have different IRIs in these versions (move and renew types of change). 

The selection of these properties is determined by their coverage12, which implies that 

the property name alone is used as a criterion for its selection. This is irrespective of 

the object values of the properties which may have changed by the evolution of the 

dataset. However, the DELTA-LD approach differs from these techniques in 

detecting the move and renew type of changes as it relies on critical features to 

produce more accurate results. The selection process of critical features uses both the 

feature name (property name) and feature value/ key (derived from object value). 

To fulfill requirement (a), the component identifies resource IRIs that have 

Features XML in both new and delete collection. Triples corresponding to these IRIs 

are extracted and compared to identify the added and deleted triples. The information 

of these resource IRIs, along with their added and deleted triples is stored in “update” 

                                                           
9 http://www.b-eye-network.com/view/1596 
10 https://docs.marklogic.com/guide/search-dev/collections 
11 https://www.marklogic.com/ 
12 Coverage of a property is the number of resources with triples containing that property. 



collection. Finally, the older XML (Feature XML in delete collection) and the newer 

XML (Feature XML in new collection) are deleted.  

For requirement (b), the component identifies the moved resources by matching the 

remaining older XMLs with the remaining newer XMLs. A pair of older and newer 

XML is decided as a match, when both XMLs share similar features. The component 

incorporates three configuration parameters to facilitate matching:  accept threshold: 

a match having confidence13 equal or above this threshold is selected as an authentic 

match; audit threshold: a match having confidence above this threshold and lower 

than the accept threshold goes to the audit routine, which decides the authenticity of 

the match; critical feature threshold: If the rate of a feature and its value being same 

in the matches (confidence > accept threshold) is greater than the critical feature 

threshold, then the feature is identified as critical. The component identifies the 

critical features by comparing each feature (with value) of the older and newer XMLs 

of the matches having confidence greater than the accept threshold. Subsequently, to 

decide the authenticity of the matches having confidence between accept and audit 

threshold, the audit routine ensures that the critical features and their values must be 

same in the matched older and newer XMLs. For e.g., assume “name” is identified as 

a critical feature, then audit routine checks whether a match (accept threshold > 

confidence > audit threshold) has same values for feature “name” in both older and 

newer XML. If same value is not found in both XMLs then audit routine discards the 

match, else it is selected as an authentic match. The component then stores the 

resource IRIs of the matched older and newer XMLs as moved resources in “move” 

collection. Finally, the matched XMLs get deleted from the delete and new collection. 

The resources related to the remaining Features XMLs in delete and new collection 

are classified as the deleted and created resources respectively. Fig. 4 provides a brief 

description of all the steps performed by this component to address requirement (b). 

  

Fig. 4. Requirement (b) - identification and classification of moved resources 

For requirement (c), the component extracts properties and objects of the detected 

moved resources from older and newer version of the dataset, and compares them. 

The component shifts the information of all the moved resources from “move” to 

“renew” collection, for which there is any added/ deleted property or updated object.  

4.4   TRANSFORMATION ACTIVTY 

Requirement: The aim of this activity is to represent the information of the classified 

changes in RDF according to the DELTA-LD change model. 

                                                           
13 The confidence is calculated by the following formula: ((no of features matched between the 

older and newer XML) / (no. of features in the older XML)) * 100 



Implementation: The component sequentially accesses and transforms the 

information in each new, delete, update, move, and renew collection to RDF 

according to the ontology (available online14), which has been created based on the 

DELTA-LD change model. Finally, the transformed information is stored in distinct 

graphs in the triple store according to the collection name.  

5   EVALUATION – Accuracy of DELTA-LD implementation 

The purpose of this experiment was to determine the accuracy of initial DELTA-LD 

implementation and compare it with existing approaches [1] and [6]. To the best of 

our knowledge, [1] and [6] use similar change metrics as DELTA-LD and used the 

same experimental datasets to perform their experiment, leading to their selection for 

comparison. The hypothesis of the experiment was that the accuracy of DELTA-LD 

would be better than [1] and [6] in terms of F-measure. 

Datasets15: The experiment has been conducted on two different sets of input. 

Each set of input contains two versions of a linked dataset, additional information 

datasets, and a gold standard to determine the accuracy of DELTA-LD. 

First set: For change detection, we used the enriched DBpedia person snapshots 

3.2 and 3.3 (20,284 and 29,498 resources) provided by [1]. For the resources in 

snapshots 3.2 and 3.3, we have used the additional information present in the article 

category dataset 3.2 and 3.3 respectively. The article category dataset of DBpedia 

groups the resources of same category, using SKOS and Dublin core vocabularies. 

These datasets are chosen for additional information due to following reasons: i) to 

demonstrate that DELTA-LD is easily extensible to include additional information; ii) 

[6] also included the article category dataset to identify moved resources, which gives 

us an opportunity to discuss the impact of critical features on the results. The gold 

standard used to determine the accuracy of DELTA-LD was provided by [1] and 

contains 179 move type of changes. On analyzing our results, we found 1 moved 

resource16, that is not covered by the gold standard. Hence, we increased the move 

type of changes in the gold standard to 180. Also, 5666 resources were excluded by 

[1] for detecting changes and are mentioned as “unknown-created” and “unknown-

removed” in the gold standard. For same baseline, we too omitted these resources. 

Second set: We executed DELTA-LD with DBpedia person snapshot 3.6 and 3.7 

(296,595 and 790,703 resources). These datasets are much bigger than the datasets in 

the first set. Again, for the additional information, the corresponding article category 

datasets were used. To the best of our knowledge, a gold standard for the changes 

between these versions is not available as yet. Thus, to determine the accuracy of 

DELTA-LD, we created a gold standard for the resources that changed their IRIs or 

both IRIs and representation, using the following three steps: Step 1, We used 

DBpedia redirect dataset version 3.7 and extracted the redirects in which the source 

                                                           
14 https://github.com/anujsinghdm/DELTA-LD/blob/master/schema.owl 
15 Links for the respective datasets mentioned in this section are stated in a file available online 

(https://github.com/anujsinghdm/DELTA-LD/blob/master/DSLinks.txt) 
16Older: http://dbpedia.org/resource/Kim_Jin-Kyu; newer: http://dbpedia.org/resource/Kim_Jin-

Kyu_%28football_player%29 

http://dbpedia.org/resource/Kim_Jin-Kyu
http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29
http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29


IRI is present in person snapshot 3.6 and target IRI is present in the person snapshot 

3.7. We identified 3390 redirects this way. These redirects can be treated as the 

resources that changed their IRIs. Step 2, During the analysis of our results, we found 

some move and renew type of changes in the DBpedia disambiguation dataset version 

3.7 where some of the IRIs of person snapshot 3.6 are linked with one or more 

different IRIs of the person snapshot 3.7. However, there is only one link between 

older resource IRI and newer resource IRI which denotes that both older and newer 

resource are same, but just that the older resource has been moved to a different IRI. 

We filtered out 585 links this way. Step 3, We manually verified move and renew 

types of changes in our results that are not present in the gold standard prepared in 

Step 1 and 2; and found 296 instances correctly detected by DELTA-LD. 

Experimental method: We conducted the experiment on a machine having 7th 

generation i7 processor with 16 GB RAM in two stages. First stage – DELTA-LD 

was executed with the datasets of the first input set. For this, we uploaded the person 

snapshot 3.2 and 3.3 and their corresponding additional information in MarkLogic 

triple store in four distinct graphs. We created the features of the resources in the 

person snapshots using the feature extraction component (Section 3.2). Subsequently, 

change detection mechanism was invoked using the following three configuration 

parameters: accept threshold – 80%; audit threshold – 40%; critical feature threshold 

– 98%. Accept and audit thresholds were selected according to [1]. For critical feature 

threshold, it was intuitive to keep the maximum value, but a room of 2% was given 

for exceptions. This resulted in classified changes between person snapshots. To 

determine the accuracy of DELTA-LD, the results were first compared with the gold 

standard, and extra changes detected by DELTA-LD were manually verified. Second 

stage – the same steps from the first stage were executed on the second set of input. 

Table 1: Detected changes for first and second set and their stats 

Type of stats Create Remove Update Move Renew 

Number of changes for first input set 3819 239 4161 124 46 

% of total changes in first set 45.5% 2.8% 49.6% 1.47% 0.54% 

% of changed resources in first set 12.9% 1.17% 20.5% 0.61% 0.22% 

Number of changes for second input set 499590 5482 50380 2723 1529 

% of total changes in second set 89.2% 0.97% 9.0% 0.48% 0.27% 

% of changed resources in second set 63.1% 1.84% 16.98% 0.91% 0.51% 

Results: Table 1 describes the classification of changes detected by DELTA-LD 

for both first and second input set. For first set, we identified 3819 resources that were 

newly added in snapshot 3.3 and 239 resources in snapshot 3.2 that were not included 

in snapshot 3.3. We also identified that the representation of 4161 resources has been 

changed from snapshot 3.2 to 3.3. Additionally, 124 resources had different IRIs in 

snapshot 3.2 than in snapshot 3.3. Furthermore, we detected 46 renewed resources 

that are special type of resources for which both the IRI and representation have 

changed from snapshot 3.2 to 3.3. These resources were detected by the sub-

classification of move/ rename type of changes in the existing classifications. 

Similarly, we detected and classified changes for second set, the number of which is 

much greater than the changes detected for first set because the second set is much 

wider than first set. For second set, we identified 1529 renewed resources. 

As shown in table 1, for first set of input, the majority of changes belong to create 

and update type of changes, i.e. 45.5% and 49.6% respectively. However, the share of 



create increases in the second set by 43.75%, which can also be confirmed by a big 

difference in the resources present in person snapshots 3.6 and 3.7. On the other hand, 

the share of update decreases in the second set by 40.6%. Remove type of change 

captures a lower percentage of the total changes for first set, i.e. 2.84%, which further 

decreases by 1.87% for second set. However, the total resources (1.84%) that were 

removed from person snapshot 3.6 (older version in second input set) is still greater 

than the total removed resources (1.17%) from person snapshot 3.2 (older version in 

first input set). The percentage shares for move and renew type of changes for first 

input set are 1.47% and 0.54% respectively. The percentage shares for move and 

renew changes decreases by 1% and 0.27% respectively for second input set. The 

results suggest that rate of adding new resources in DBpedia dataset increases from 

version 3.3 to version 3.7. The rate of updating resources in DBpedia reduces from 

version 3.3 to 3.7, as 20.5% resources of person snapshot 3.2 were updated in person 

snapshot 3.3, while only 16.9% resources in person snapshot 3.6 were updated in 

snapshot 3.7. Though the moved and renewed resources are low in percentage, the 

results show that this number tend to increase with evolution of DBpedia dataset. 

The state-of-art emphasizes on determining the accuracy of a change detection 

approach using the resources that have had their IRIs changed. These constitute the 

move and renew type of changes detected by DELTA-LD. Since, the gold standard 

does not have these changes separately, but as move type of changes, we combined 

the DELTA-LD results for move and renew types of changes as move type of changes. 

Table 2 describes the accuracy of DELTA-LD in detecting move type of changes. For 

the first set of input, the precision of DELTA-LD is 1, as DELTA-LD ensures that the 

critical features are same in the low confidence matches. The approach was not able 

to detect 10 moved resources. Out of the 10, 5 moved resources were rejected by the 

audit routine as the matched older and newer Features XMLs did not have the same 

critical features. The other 5 had one-to-many matches, i.e. one older Features XML 

was matched with more than one newer Features XML and hence discarded. The 

calculated F-measure for the first input set is 0.9714. 

The precision reduced for second input set due to two types of incorrectly detected 

move type of changes, move with higher confidence; move with lower confidence (< 

50). Majority (~50%) of incorrect move belong to the latter. Move with such low 

confidence were not found for first input set. This implies, to increase the audit 

threshold from 40% to 50% by which the precision can be increased by ~2% with 

slight decrease in recall by ~0.1%. For incorrect move with higher confidence, the 

matched older and newer Features XMLs share a high percentage of same features, 

including critical features. The recall for second input set is greater than the recall for 

first due to the presence of wider information about the resources in second input set, 

which led to more one-to-one matches between older and newer Features XML. 

Table 2. Accuracy of DELTA-LD in detecting moved resources 

Input set Move (gold standard) Move (DELTA-LD) Precision Recall F-measure 

First 180 170 1 0.9444 0.9714 

Second 4271 4252 0.9597 0.9555 0.9576 

The approaches [1] and [6] published their detected changes for the snapshots of 

first input set, which we used to compare the accuracy of DELTA-LD with these 

approaches (Table 3). The approach [1] used various configuration properties to 



identify the moved resources; with a maximum recorded precision (1.0), recall 

(~0.91), and F-measure (~0.95) using the foaf:name property. The approach [6] 

identified moved resources with a precision ~0.87, recall ~0.99 and F-measure ~0.93. 

A probable reason for low precision but good recall can be the use of object properties 

(graph structure of resources) only to identify moved resources. DELTA-LD uses the 

same object properties through additional information to create features, but achieves 

much better precision by selecting critical features out of all the features. 

Table 3: Accuracy of Popitsch et al., Pourzaferani et al., and DELTA-LD 

Accuracy Popitsch et al.  Pourzaferani et al. DELTA-LD 

Precision 1 0.87 1 

Recall 0.91 0.99 0.9444 

F-Measure 0.95 0.93 0.9714 

By comparing our results of first input set with the results of approaches [1] and 

[6], it has been identified that DELTA-LD outperforms [1] by ~2% and [6] by ~4% in 

terms of F-measure. Hence, it can be argued that the results support our hypothesis - 

that the accuracy of DELTA-LD would be better than [1] and [6] in terms of F-

measure. We were not able to compare the results of the second input set with any 

other approach, as to the best of our knowledge, only [6] has published the results of 

their detected moved resources between DBpedia person snapshot 3.6 and 3.7. 

However, the gold standard used by [6] has a different count than the gold standard 

used by us. [6] neither contains information about how precisely they created their 

gold standard nor have they published their gold standard as yet. This prevents us 

from comparing the results of second input set at this time. 

To support the evaluation of the change detection approaches in future, the gold 

standard prepared by us for the moved and renewed resources between DBpedia 

person snapshot 3.6 and 3.7 is available online17. 

6   CASE STUDY: Repair of broken interlinks of DBpedia 

The changes detected by DELTA-LD and modeled by DELTA-LD change model can 

be used to automatically repair structurally broken interlinks. To demonstrate this, we 

repaired and validated the structurally broken interlinks in source DBpedia person 

snapshot 3.7 to target Freebase. The steps for the case study are outlined in Fig. 5. 

 

Fig. 5. Sequence of steps to repair and validate the broken interlinks 

Step 1, the interlink dataset 18  with links from source to target is uploaded to 

MarkLogic triple store in a distinct graph. Step 2, before repair the interlinks, we 

identified 704 structurally broken interlinks between source and target using a 

separate approach, namely SUMMR validation template [4]. Step 3, we consumed the 

changes detected by DELTA-LD for second input set to identify the broken interlinks 

                                                           
17 https://github.com/anujsinghdm/DELTA-LD/blob/master/GS.xml 
18 http://oldwiki.dbpedia.org/Downloads37#linkstofreebase 



using SPARQL templates (available online19) developed for the case study. The same 

number of broken interlinks as step 2 were identified. However, in step 3, we were 

also able to identify the reason for broken interlinks, specifically 656, 17, 31 interlinks 

were broken due to the removed, moved, and renewed resources respectively. Step 4, 

the identified broken interlinks were repaired using SPARQL templates (available 

online20) developed in the case study. To repair, the templates only delete the broken 

interlinks of removed resources. For broken interlinks of moved and renewed 

resources, the template first deletes the broken interlinks, then adds a new interlink 

using the IRI of the newer resource. The template deleted 656 broken interlinks of the 

removed resources. Out of 17 broken interlinks of moved resources, the template 

identified that 12 repaired interlinks (interlinks using the IRI of the newer resources) 

were already present in the interlink dataset. So, the template deleted all 17 broken 

interlinks, but added only 5 new interlinks in the interlink dataset. For 31 broken 

interlinks of renewed resources, all the repaired interlinks were already present in the 

interlink dataset. Hence, 31 broken interlinks were deleted but no new interlink was 

added. Step 5, after repair we have again used the SUMMR template to identify 

broken interlinks, which identified 0 broken interlink this time. 

In future, we intend to demonstrate the use of DELTA-LD (approach and change 

model) for other use cases mentioned in the related work. 

7   CONCLUSION 

The paper presents DELTA-LD approach to detect and classify the changes between 

two versions of a linked dataset along with DELTA-LD change model for modeling 

the detected changes. The research question in this paper was to what extent we can 

detect, classify, and model the changes between two versions of a linked dataset? 

To answer the research question, we executed DELTA-LD on DBpedia person 

snapshots 3.2 and 3.3 (20,284 and 29,498 resources), and DBpedia person snapshots 

3.6 and 3.7 (296,595 and 790,703 resources). The approach detected created, 

removed, updated, moved, and renewed resources, which are (3819, 239, 4161, 124, 

46) and (499590, 5482, 50380, 2723, 1529) for former and latter set of snapshots 

respectively. The results support the hypothesis, as DELTA-LD outperforms the state-

of-art approaches [1] and [6] by ~2 - 4 % in terms of F-measure. Representing renew 

as a separate class of change identified up to 1529 additional resources that changed 

their representation. We also presented DELTA-LD change model that allows to view 

a changed resource along with its added/ deleted triples at the same time. Finally, we 

presented a case study to repair structurally broken interlinks from DBpedia person 

snapshot 3.7 to Freebase, using the changes detected between DBpedia person 

snapshot 3.6 and 3.7; 704 structurally broken interlinks were repaired and validated. 
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