
DELTA-LD:

A Change Detection Approach for Linked Datasets

Anuj Singh, Rob Brennan and Declan O’Sullivan

ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin, Ireland

{singh.anuj, rob.brennan, declan.osullivan}@adaptcentre.ie

Abstract. This paper presents DELTA-LD, an approach that detects and

classifies the changes between two versions of a linked dataset. It contributes to

the state-of-art: firstly, by proposing a classification to distinctly identify the

resources that have had both their IRIs and representation changed and the

resources that have had only their IRI changed; secondly by automatically

selecting the appropriate resource properties to identify the same resources in

different versions of a linked dataset with different IRIs and similar

representation. The paper also presents the DELTA-LD change model to

represent the detected changes. This model captures the information of both

changed resources and triples in linked datasets during its evolution, bridging

the gap between resource-centric and triple-centric views of changes. As a

result, a single change detection mechanism can support several diverse use

cases like interlink maintenance and replica synchronization. The paper, in

addition, describes an experiment conducted to examine the accuracy of

DELTA-LD in detecting the changes between the person snapshots of DBpedia.

The result indicates that the accuracy of DELTA-LD outperforms the state-of-

art approaches by up to 4%, in terms of F-measure. It is demonstrated that the

proposed classification of changes helped to identify up to 1529 additional

updated resources as compared to the existing classification of resource level

changes. By means of a case study, we also demonstrate the automatic repair of

broken interlinks using the changes detected by DELTA-LD and represented in

DELTA-LD change model, showing how 100% of the broken interlinks were

repaired between DBpedia person snapshot 3.7 and Freebase.

Keywords: Change detection, link maintenance, dataset dynamics, linked data

1 INTRODUCTION

Many linked datasets are highly dynamic in nature [1]. For an application consuming

a dynamic linked dataset, the dynamic nature of the dataset may result in issues for

the application such as broken interlinks or outdated data [1].

These issues are typically encapsulated in the research community using the term

“dataset dynamics”. Dataset dynamics investigates the approaches that detect changes

in linked datasets during their evolution, and the vocabularies to represent the

detected changes [2]. The aim is to build: (i) vocabularies to represent the change

information, (ii) mechanisms for change detection, and (iii) change propagation

methods [2]. Change detection in linked datasets has proven to be important for

supporting diverse use cases like interlink maintenance and synchronization of dataset

versions, replicas, and interconnected datasets [1], [5]. However, existing change

detection mechanisms have certain limitations in our opinion (see below).

These limitations have motivated our research in dataset dynamics: (a) Change

classification limitation – The existing change classification denotes the resources

that have had their IRI changed as “moved” or “renamed” resources. These resources

can lead to structurally broken interlinks1, which can be repaired by redirecting the

old IRI to the new IRI. However, a subset of these “moved” resources may have

changes in both their IRI and representation. Structural repair of broken interlinks

related to these resources will make them potential candidates for semantically broken

interlinks (an interlink is semantically broken when the meaning of the representation

of target differs from the intended meaning of the source [3]). This is because iterative

updates in a resource of linked dataset (case for many linked dataset [13]) may lead to

the semantic drift in the original representation of the resource [14]. Hence, it is

important to identify the resources with both changed IRI and representation as a

separate class of changes; (b) Properties selection limitation – The existing

approaches either use pre-defined properties or all the object properties (graph

structure) of a resource to identify the resources that have changed their IRIs and

possibly their representation (structure and/or values) too. Selection of pre-defined

properties requires additional effort (pre-change detection) which can be saved by

using the graph structure. But the disambiguation of resources using the graph

structure alone could be challenging [12]. The accuracy of algorithms which rely on

the graph structure can be improved by incorporating the data properties of resources

in the matching process; (c) Change model2 limitation – The state-of-art has several

change models that represent either changed resources or changed triples in a linked

dataset. These change models do not allow to identify a changed resource along with

its changed triples. The existence of this gap prevents a single change detection

mechanism from supporting diverse use cases like interlink maintenance and replica

synchronization is addressed in change models like Roussakis et al. [5]. These change

models are generally designed by using multiple semantic layers of changes for e.g.

simple changes (adds semantic to each added/ deleted triple); complex changes (add

further sematic to simple changes by grouping multiple simple changes). Such change

models represent changes in more human understandable manner. However to

automatically support use case like interlink maintenance, these models can further be

simplified to incorporate one semantic layer of changes, i.e. the resource-level

changes, as demonstrated by Popitsch et al. [1].

The specific research question under evaluation in this paper is to what extent we

can detect, classify, and model the changes between two versions of a linked dataset?

The contribution of this paper is as follows: Firstly, it proposes DELTA-LD, a

novel change detection and classification approach for linked datasets. DELTA-LD

addresses the limitations (a) and (b) described above. Secondly, it proposes the

DELTA-LD change model to represent detected changes, addressing limitation (c).

1An interlink is structurally broken, if either source or target are no longer dereferenceable.
2The generic model that represent detected changes and can be materialized in any schema.

Thirdly, it evaluates the accuracy of DELTA-LD using real world data and compares

the approach to state-of-art change detection approaches.

The paper is organized as follows: Section 2 discusses how the aforementioned

limitations exist in state of the art approaches. Section 3 describes the proposed

DELTA-LD change model. Section 4 describes the proposed DELTA-LD approach.

Section 5 presents an evaluation of DELTA-LD in terms of accuracy achieved.

Section 6 discusses a case study that was performed to repair structurally broken

interlinks using the change information generated by DELTA-LD and represented in

DELTA-LD change model. Conclusions are drawn in Section 7.

2 RELATED WORK

This paper aims to address the use case of broken interlinks maintenance and replica

synchronization of a linked dataset by identifying the changes between two versions

of the dataset. Thus, the change detection approaches that support these use cases and

their limitations are discussed in this section. For better clarity, first the types of

change information required for each use case are explained, then the change

detection approaches that support these use cases are discussed.

UC 1a - Semantic link maintenance – detection of semantically broken interlinks

require identifying the updated resources3. UC 1b - Structural link maintenance –

detection of structurally broken interlinks require to identifying the renamed4 or

deleted5 resources. UC 1a and 1b need the information about the changed resources

thus, resource level change information is required to support these use cases. UC 2 -

Replica synchronization – to synchronize a replica of a linked dataset, it is important

to identify the added and deleted triples in the dataset. Thus, triple level change

information is required to support this use case.

Approaches [1], [5], [6], and [15] identify resource level change information. The

approach [6] detects the renamed resources to identify and repair structurally broken

interlinks. However, this approach partially detects structurally broken interlinks, as

the approach does not attempt to identify deleted resources. A SPARQL based change

detection approach [5] for linked datasets was proposed to capture human

understandable changes. For this, the approach first identifies simple changes by

adding semantics to triple level changes, and to add further semantics, the approach

groups multiple simple changes into complex changes. The approach can support UC

2 using simple changes. Since, no heuristic based matching is involved in the

approach, it would be difficult to identify the resources that have had both their IRIs

and representation changed at the same time, thus, the approach supports UC 1a and

1b partially. Another approach [15] targets to capture human understandable changes.

The approach detects 132 types of change and can support UC 1a, 1b, and 2. UC 2

can be supported by using basic changes (triple-level changes). For use case 1a,

changes like Retype_Individual_To_Individual (change in rdf:type of an instance) can

be used to identify updated resources in linked dataset. To support UC 1b, the

3 Resources that have had their representation changed during the changes in Linked Datasets
4 Resources that have had their IRI changed during the changes in Linked Datasets.
5 Resources that have been removed from the dataset during the changes in Linked Datasets.

approach detects renamed resources by calculating the similarity between the

neighborhood (graph nodes of the observed resources) of two resources with different

IRIs in different versions. However, sometimes the renamed resources may also get

updated at the same time. So, with this classification, the resources that have had both

their IRIs and representation changed cannot be differentiated from the resources that

have had only their IRIs changed (see change classification limitation in the

Introduction). The approach [1] supports UC 1a and 1b and classifies the resource

level changes as follows: create (addition of a new resource in linked dataset); remove

(same as deleted resource); update (described above); move (same as rename).

Analogous to the classification by approach [15], the distinction between the

resources that have had both their IRIs and representation changed, and the resources

that have had only their IRIs changed, will be difficult with the classification by

approach [1]. This is because former and latter are denoted by just single type of

change, i.e. “move” type of change.

Out of all approaches discussed above, only [1], [6], and [15] can identify moved/

renamed resources. However, [1] requires pre-determined properties, while [6] and

[15] rely on the graph structure of resources to detect moved resources. This

limitation of property selection is referred to in the Introduction as limitation (b).

[7] proposes a triple level change detection approach for RDF datasets. Another

approach [9], also identifies triple level changes in RDF datasets by considering the

existence of blank nodes in RDF datasets. The approaches in [7] and [9] identify the

triple level changes, thus, are suitable to support UC 2.

In this section so far, we identified that the state-of-art approaches detect changes

at two levels, triple and resource, with the different levels supporting different use

cases. To the best of our knowledge, few existing approaches detect and represent

change information at both resource and triple levels. However, we believe that these

representations can further be simplified in the context of use cases like 1a, 1b, and 2.

Out of the approaches discussed above, only [1], [5], and [7] proposed models to

represent changes in linked datasets. The change model by approach [5] has two

semantic layers of change (explained above): simple changes; complex changes. For

UC 1a, 1b, and 2, this model can further be simplified and modeled by just one

semantic layer of change (resource level changes), which is sufficient to identify a

resource level change with its corresponding triples. The single semantic layer change

model is already used by [1] for use case 1b, where the changed triples are associated

with their corresponding changed resources. However, [1] did not include the changed

triples separately as added and deleted triples, which projects the gap between

resource level and triple level changes. This is discussed in change model limitation

in the Introduction. The ontology proposed by approach [7] bridges the gap between

resource and triple-centric view of changes by reification of triples. In reification, a

“type” is added to each added and deleted triple, which includes resource level change

information. However, this will generate redundant information for the resource level

changes as a resource constitutes multiple triples. For UC 1a and 1b, where resource-

level changes are required, using such change model would require further operations

over generated delta to overcome the redundant resource level change information.

This section has illustrated that the limitations mentioned in the introduction exist

in the state-of-art approaches. We argue in this paper that in order to address these

limitations we need to: (a) separate by means of classification, resources that only

change their IRIs and resources that both change their IRIs and representation; (b) a

change detection mechanism that does not require pre-determined properties for the

identification of moved resources; (c) an improved yet simplified change model that

bridges the gap between resource and triple centric view of changes.

3 DELTA-LD CHANGE MODEL

We propose the DELTA-LD Change Model to address limitation (c) presented in the

Introduction. The DELTA-LD change model is based on the Layered Change Log

model [10] that models change in ontology at two levels of granularity: first level

models the information of atomic level change operations; second level models the

objective of the atomic changes. A similar model can be applied to represent the

changes in linked datasets, which will bridge the gap between the resource and triple

level changes using just one semantic layer of changes (resource level changes).

Analogous to [10], we model the deleted and added triples as atomic operations at the

first level, while at the second level the objective of deleting or adding a triple is

modeled as the creation, removal, update, movement, or renewal of a resource. Fig. 1

describes DELTA-LD change model. This is a generic model that can be

realized/materialised in ontologies, XML schema, or any other type of vocabulary.

Fig. 1. DELTA-LD change model

In Fig. 1, the “base version” and the “updated version” entities are the older and

newer version of a linked dataset used for change detection; the “change type” entity

represents the type of resource level changes i.e. create, remove, update, move,

renew; “SOC in base” and “SOC in updated” entities represent subject of change

(resource IRI) in base and updated version respectively; finally, “removed triples” and

“added triples” entities are used to represent information of deleted and added triples

respectively. Using such a change model, one can identify the resource level changes

in linked datasets along with their corresponding added and deleted triples.

4 DELTA-LD APPROACH

DELTA-LD is an approach that detects changes between two versions of a linked

dataset. The main objective of DELTA-LD is to address the limitations (a) and (b)

presented in the Introduction. To address limitation (a), DELTA-LD proposes a sub-

classification for move/ rename type of changes. The proposed sub-classification has

following types of changes: Move: change only in the IRI of an existing resource;

Renew: change in the IRI as well as in the representation of an existing resource.

Apart from these two types of change, DELTA-LD also detects create, remove, and

update type of changes, which are explained in section 2. To address limitation (b),

DELTA-LD first identifies all the potential moved and renewed resources by

comparing all the features (section 4.2) of removed resources with the features of

created resources. Then to filter out the incorrect moved or renewed resources,

DELTA-LD determines critical features (section 4.3) automatically. In the context of

DELTA-LD, a feature is critical, if its value remains same for most (configurable) of

the moved and renewed resources in both versions of a linked dataset.

To implement DELTA-LD initially, we used a triple store and a database. The

Triple store is used to upload the dumps of older and newer versions of a linked

dataset, and the database is used to store the features (derived from properties and

objects) of the resources to facilitate the identification of moved and renewed

resources. The approach contains four major activities (see Fig. 2). First is the

Ingestion activity (section 4.1) – it uploads both the older and newer versions of a

linked dataset in a triple store. Second is the Feature extraction activity (section 4.2)

– this extracts the properties and objects of newly added and deleted resources

identified by comparing older and newer version. Third is the Change detection and

classification activity (section 4.3) – it uses the extracted properties and objects of

newly added and deleted resources to identify the updated, moved and renewed

resources. Fourth is the Transformation activity (section 4.4) – it transforms the

identified change information into RDF according to the DELTA-LD change model.

The following sub-sections describe each of these activities in more detail.

Fig. 2. Overview of the major activities in the DELTA-LD approach

4.1 INGESTION ACTIVITY

Requirements: The aim of this activity is to upload the RDF dataset dumps in a triple

store, in a way that the different dumps can be distinctly identified in the triple store.

Implementation: We have implemented an ingestion component which uploads

RDF dataset dumps for both older and newer version in a triple store, in two distinct

graphs. We have used the sem:rdf-load() function of the semantic API of the

MarkLogic platform6 to upload the dumps in the MarkLogic triple store7.

4.2 FEATURE EXTRACTION ACTIVITY

Requirements: The aim of this activity is to generate features for each newly added

and deleted resources in the uploaded datasets using their properties and objects. The

6 https://www.marklogic.com/
7 https://www.marklogic.com/product/marklogic-database-overview/

generated features are used for detection of the same resources having different IRIs

and similar representation (but not the same) in different versions of a linked dataset.

Implementation: To address the requirement, we implemented a feature extraction

component. A resource could correspond to multiple triples. These triples contain

various properties and objects that define a resource. To identify the same resources

having different IRIs and similar representation (but not the same) in older and newer

version of a linked dataset, the properties and objects of newly added resources are

compared with the properties and objects of the deleted resources. SPARQL queries

described in Listing 1 are used to identify the newly added and deleted resources

between the older and newer version of the dataset.

Listing 1. SPARQL queries to identify added (a) and deleted resources(b)

(a)

SELECT DISTINCT ?S

WHERE { GRAPH <$NEWER-VERSION>

 {?S ?P ?O }

 FILTER NOT EXISTS

 { GRAPH <$OLDER-GRAPH>

 {?S ?P ?O}

 }}

(b)

SELECT DISTINCT ?S

WHERE { GRAPH <$OLDER-VERSION>

 {?S ?P ?O }

 FILTER NOT EXISTS

 { GRAPH <$NEWER-GRAPH>

 {?S ?P ?O}

 }}

The updated resources are also identified as both added and deleted resources by

checking the IRI of identified added resources (by query (a)) in older version and the

IRI of identified deleted resources (by query (b)) in newer version of the dataset.

To identify the same resources having different IRIs in older and newer versions of

a linked dataset, we need to consider that it is not necessary that the properties and

objects corresponding to the same resource with different IRIs in older and newer

versions remain same. Due to the evolution of the dataset, new properties might be

added; existing properties might be deleted; object value could be modified. In such

scenarios, a similarity between two resources need to be calculated.

To facilitate the similarity calculation, all the properties and objects of the newly

added and deleted resources are used to create Feature XMLs (fig 3). While creating

Feature XMLs, the component also allows to use additional information8 about the

resources, which is present outside the older and newer versions uploaded during the

ingestion activity (Section 4.1).

Fig. 3. Features XML for a resource

A Feature XML represents a resource. The root element is arbitrarily named as

“allFeatures” and it contains an attribute (“res”) to link the Feature XML with original

resource by keeping the IRI of the resource as the value of “res” attribute. The child

element of the root element has two parts: feature (name of element), i.e. one of the

property name of a resource; feature value (value of element), i.e. transformed object

value, which is denoted by “key”. The keys are created to cope with the potential

errors generally made by humans at data entry stage [8]. The keys are formed

8 This additional information could be categories, provenance, archival mementos, etc.

differently for different types of object values: URIs (object properties that contain no

numeric character): The algorithm uses the last token (tokenize with ‘/’) of URI path

as the key; text (data properties that contains no numeric character): To create the

key for each word in the text, the algorithm takes all distinct vowels, first and last

character, and the primary key of double metaphone9 encoding of the word, this

combination has been used to improve the accuracy of the algorithm while calculating

the similarity of two resources [11]. For instance, the key for “Hamid” will be

“aihhmtd”, where “ai” are distinct vowels, “h” is the first character, “hmt” is the

primary key of the double metaphone encoding, and “d” is the last character of the

word. Numbers/ string with digits: the algorithm uses the exact value of the objects as

key. Both parts of a feature are utilized at later stage by DELTA-LD to identify

critical features (section 4.3). The component stores the Features XMLs of newly

added and deleted resources in “new” and “delete” collections 10 of MarkLogic

database 11 respectively. We used a database for storing Feature XML as in

MarkLogic, a separate installation is not needed for database because both triple store

and database in MarkLogic are physically same but conceptually different.

XQuery (language to query XML data) is the language to access the data stored in

MarkLogic database, thus, we chose to keep the information of features in XML

format. One can choose a different format and storage mechanism to store features.

For e.g. features can also be stored in a triple format in a triple store.

4.3 CHANGE DETECTION AND CLASSIFICATION ACTIVITY

Requirement: We need an activity to: (a) classify updated resources; (b) identify

resources that have had only their IRIs changed and classify them as move (c) identify

resources that have had both their IRIs and representation changed at the same time

and classify them as renew.

Implementation: The state-of-art approaches compare specific properties and

corresponding objects of a resource in the older and newer versions to detect the

resources that have different IRIs in these versions (move and renew types of change).

The selection of these properties is determined by their coverage12, which implies that

the property name alone is used as a criterion for its selection. This is irrespective of

the object values of the properties which may have changed by the evolution of the

dataset. However, the DELTA-LD approach differs from these techniques in

detecting the move and renew type of changes as it relies on critical features to

produce more accurate results. The selection process of critical features uses both the

feature name (property name) and feature value/ key (derived from object value).

To fulfill requirement (a), the component identifies resource IRIs that have

Features XML in both new and delete collection. Triples corresponding to these IRIs

are extracted and compared to identify the added and deleted triples. The information

of these resource IRIs, along with their added and deleted triples is stored in “update”

9 http://www.b-eye-network.com/view/1596
10 https://docs.marklogic.com/guide/search-dev/collections
11 https://www.marklogic.com/
12 Coverage of a property is the number of resources with triples containing that property.

collection. Finally, the older XML (Feature XML in delete collection) and the newer

XML (Feature XML in new collection) are deleted.

For requirement (b), the component identifies the moved resources by matching the

remaining older XMLs with the remaining newer XMLs. A pair of older and newer

XML is decided as a match, when both XMLs share similar features. The component

incorporates three configuration parameters to facilitate matching: accept threshold:

a match having confidence13 equal or above this threshold is selected as an authentic

match; audit threshold: a match having confidence above this threshold and lower

than the accept threshold goes to the audit routine, which decides the authenticity of

the match; critical feature threshold: If the rate of a feature and its value being same

in the matches (confidence > accept threshold) is greater than the critical feature

threshold, then the feature is identified as critical. The component identifies the

critical features by comparing each feature (with value) of the older and newer XMLs

of the matches having confidence greater than the accept threshold. Subsequently, to

decide the authenticity of the matches having confidence between accept and audit

threshold, the audit routine ensures that the critical features and their values must be

same in the matched older and newer XMLs. For e.g., assume “name” is identified as

a critical feature, then audit routine checks whether a match (accept threshold >

confidence > audit threshold) has same values for feature “name” in both older and

newer XML. If same value is not found in both XMLs then audit routine discards the

match, else it is selected as an authentic match. The component then stores the

resource IRIs of the matched older and newer XMLs as moved resources in “move”

collection. Finally, the matched XMLs get deleted from the delete and new collection.

The resources related to the remaining Features XMLs in delete and new collection

are classified as the deleted and created resources respectively. Fig. 4 provides a brief

description of all the steps performed by this component to address requirement (b).

Fig. 4. Requirement (b) - identification and classification of moved resources

For requirement (c), the component extracts properties and objects of the detected

moved resources from older and newer version of the dataset, and compares them.

The component shifts the information of all the moved resources from “move” to

“renew” collection, for which there is any added/ deleted property or updated object.

4.4 TRANSFORMATION ACTIVTY

Requirement: The aim of this activity is to represent the information of the classified

changes in RDF according to the DELTA-LD change model.

13 The confidence is calculated by the following formula: ((no of features matched between the

older and newer XML) / (no. of features in the older XML)) * 100

Implementation: The component sequentially accesses and transforms the

information in each new, delete, update, move, and renew collection to RDF

according to the ontology (available online14), which has been created based on the

DELTA-LD change model. Finally, the transformed information is stored in distinct

graphs in the triple store according to the collection name.

5 EVALUATION – Accuracy of DELTA-LD implementation

The purpose of this experiment was to determine the accuracy of initial DELTA-LD

implementation and compare it with existing approaches [1] and [6]. To the best of

our knowledge, [1] and [6] use similar change metrics as DELTA-LD and used the

same experimental datasets to perform their experiment, leading to their selection for

comparison. The hypothesis of the experiment was that the accuracy of DELTA-LD

would be better than [1] and [6] in terms of F-measure.

Datasets15: The experiment has been conducted on two different sets of input.

Each set of input contains two versions of a linked dataset, additional information

datasets, and a gold standard to determine the accuracy of DELTA-LD.

First set: For change detection, we used the enriched DBpedia person snapshots

3.2 and 3.3 (20,284 and 29,498 resources) provided by [1]. For the resources in

snapshots 3.2 and 3.3, we have used the additional information present in the article

category dataset 3.2 and 3.3 respectively. The article category dataset of DBpedia

groups the resources of same category, using SKOS and Dublin core vocabularies.

These datasets are chosen for additional information due to following reasons: i) to

demonstrate that DELTA-LD is easily extensible to include additional information; ii)

[6] also included the article category dataset to identify moved resources, which gives

us an opportunity to discuss the impact of critical features on the results. The gold

standard used to determine the accuracy of DELTA-LD was provided by [1] and

contains 179 move type of changes. On analyzing our results, we found 1 moved

resource16, that is not covered by the gold standard. Hence, we increased the move

type of changes in the gold standard to 180. Also, 5666 resources were excluded by

[1] for detecting changes and are mentioned as “unknown-created” and “unknown-

removed” in the gold standard. For same baseline, we too omitted these resources.

Second set: We executed DELTA-LD with DBpedia person snapshot 3.6 and 3.7

(296,595 and 790,703 resources). These datasets are much bigger than the datasets in

the first set. Again, for the additional information, the corresponding article category

datasets were used. To the best of our knowledge, a gold standard for the changes

between these versions is not available as yet. Thus, to determine the accuracy of

DELTA-LD, we created a gold standard for the resources that changed their IRIs or

both IRIs and representation, using the following three steps: Step 1, We used

DBpedia redirect dataset version 3.7 and extracted the redirects in which the source

14 https://github.com/anujsinghdm/DELTA-LD/blob/master/schema.owl
15 Links for the respective datasets mentioned in this section are stated in a file available online

(https://github.com/anujsinghdm/DELTA-LD/blob/master/DSLinks.txt)
16Older: http://dbpedia.org/resource/Kim_Jin-Kyu; newer: http://dbpedia.org/resource/Kim_Jin-

Kyu_%28football_player%29

http://dbpedia.org/resource/Kim_Jin-Kyu
http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29
http://dbpedia.org/resource/Kim_Jin-Kyu_%28football_player%29

IRI is present in person snapshot 3.6 and target IRI is present in the person snapshot

3.7. We identified 3390 redirects this way. These redirects can be treated as the

resources that changed their IRIs. Step 2, During the analysis of our results, we found

some move and renew type of changes in the DBpedia disambiguation dataset version

3.7 where some of the IRIs of person snapshot 3.6 are linked with one or more

different IRIs of the person snapshot 3.7. However, there is only one link between

older resource IRI and newer resource IRI which denotes that both older and newer

resource are same, but just that the older resource has been moved to a different IRI.

We filtered out 585 links this way. Step 3, We manually verified move and renew

types of changes in our results that are not present in the gold standard prepared in

Step 1 and 2; and found 296 instances correctly detected by DELTA-LD.

Experimental method: We conducted the experiment on a machine having 7th

generation i7 processor with 16 GB RAM in two stages. First stage – DELTA-LD

was executed with the datasets of the first input set. For this, we uploaded the person

snapshot 3.2 and 3.3 and their corresponding additional information in MarkLogic

triple store in four distinct graphs. We created the features of the resources in the

person snapshots using the feature extraction component (Section 3.2). Subsequently,

change detection mechanism was invoked using the following three configuration

parameters: accept threshold – 80%; audit threshold – 40%; critical feature threshold

– 98%. Accept and audit thresholds were selected according to [1]. For critical feature

threshold, it was intuitive to keep the maximum value, but a room of 2% was given

for exceptions. This resulted in classified changes between person snapshots. To

determine the accuracy of DELTA-LD, the results were first compared with the gold

standard, and extra changes detected by DELTA-LD were manually verified. Second

stage – the same steps from the first stage were executed on the second set of input.

Table 1: Detected changes for first and second set and their stats

Type of stats Create Remove Update Move Renew

Number of changes for first input set 3819 239 4161 124 46

% of total changes in first set 45.5% 2.8% 49.6% 1.47% 0.54%

% of changed resources in first set 12.9% 1.17% 20.5% 0.61% 0.22%

Number of changes for second input set 499590 5482 50380 2723 1529

% of total changes in second set 89.2% 0.97% 9.0% 0.48% 0.27%

% of changed resources in second set 63.1% 1.84% 16.98% 0.91% 0.51%

Results: Table 1 describes the classification of changes detected by DELTA-LD

for both first and second input set. For first set, we identified 3819 resources that were

newly added in snapshot 3.3 and 239 resources in snapshot 3.2 that were not included

in snapshot 3.3. We also identified that the representation of 4161 resources has been

changed from snapshot 3.2 to 3.3. Additionally, 124 resources had different IRIs in

snapshot 3.2 than in snapshot 3.3. Furthermore, we detected 46 renewed resources

that are special type of resources for which both the IRI and representation have

changed from snapshot 3.2 to 3.3. These resources were detected by the sub-

classification of move/ rename type of changes in the existing classifications.

Similarly, we detected and classified changes for second set, the number of which is

much greater than the changes detected for first set because the second set is much

wider than first set. For second set, we identified 1529 renewed resources.

As shown in table 1, for first set of input, the majority of changes belong to create

and update type of changes, i.e. 45.5% and 49.6% respectively. However, the share of

create increases in the second set by 43.75%, which can also be confirmed by a big

difference in the resources present in person snapshots 3.6 and 3.7. On the other hand,

the share of update decreases in the second set by 40.6%. Remove type of change

captures a lower percentage of the total changes for first set, i.e. 2.84%, which further

decreases by 1.87% for second set. However, the total resources (1.84%) that were

removed from person snapshot 3.6 (older version in second input set) is still greater

than the total removed resources (1.17%) from person snapshot 3.2 (older version in

first input set). The percentage shares for move and renew type of changes for first

input set are 1.47% and 0.54% respectively. The percentage shares for move and

renew changes decreases by 1% and 0.27% respectively for second input set. The

results suggest that rate of adding new resources in DBpedia dataset increases from

version 3.3 to version 3.7. The rate of updating resources in DBpedia reduces from

version 3.3 to 3.7, as 20.5% resources of person snapshot 3.2 were updated in person

snapshot 3.3, while only 16.9% resources in person snapshot 3.6 were updated in

snapshot 3.7. Though the moved and renewed resources are low in percentage, the

results show that this number tend to increase with evolution of DBpedia dataset.

The state-of-art emphasizes on determining the accuracy of a change detection

approach using the resources that have had their IRIs changed. These constitute the

move and renew type of changes detected by DELTA-LD. Since, the gold standard

does not have these changes separately, but as move type of changes, we combined

the DELTA-LD results for move and renew types of changes as move type of changes.

Table 2 describes the accuracy of DELTA-LD in detecting move type of changes. For

the first set of input, the precision of DELTA-LD is 1, as DELTA-LD ensures that the

critical features are same in the low confidence matches. The approach was not able

to detect 10 moved resources. Out of the 10, 5 moved resources were rejected by the

audit routine as the matched older and newer Features XMLs did not have the same

critical features. The other 5 had one-to-many matches, i.e. one older Features XML

was matched with more than one newer Features XML and hence discarded. The

calculated F-measure for the first input set is 0.9714.

The precision reduced for second input set due to two types of incorrectly detected

move type of changes, move with higher confidence; move with lower confidence (<

50). Majority (~50%) of incorrect move belong to the latter. Move with such low

confidence were not found for first input set. This implies, to increase the audit

threshold from 40% to 50% by which the precision can be increased by ~2% with

slight decrease in recall by ~0.1%. For incorrect move with higher confidence, the

matched older and newer Features XMLs share a high percentage of same features,

including critical features. The recall for second input set is greater than the recall for

first due to the presence of wider information about the resources in second input set,

which led to more one-to-one matches between older and newer Features XML.

Table 2. Accuracy of DELTA-LD in detecting moved resources

Input set Move (gold standard) Move (DELTA-LD) Precision Recall F-measure

First 180 170 1 0.9444 0.9714

Second 4271 4252 0.9597 0.9555 0.9576

The approaches [1] and [6] published their detected changes for the snapshots of

first input set, which we used to compare the accuracy of DELTA-LD with these

approaches (Table 3). The approach [1] used various configuration properties to

identify the moved resources; with a maximum recorded precision (1.0), recall

(~0.91), and F-measure (~0.95) using the foaf:name property. The approach [6]

identified moved resources with a precision ~0.87, recall ~0.99 and F-measure ~0.93.

A probable reason for low precision but good recall can be the use of object properties

(graph structure of resources) only to identify moved resources. DELTA-LD uses the

same object properties through additional information to create features, but achieves

much better precision by selecting critical features out of all the features.

Table 3: Accuracy of Popitsch et al., Pourzaferani et al., and DELTA-LD

Accuracy Popitsch et al. Pourzaferani et al. DELTA-LD

Precision 1 0.87 1

Recall 0.91 0.99 0.9444

F-Measure 0.95 0.93 0.9714

By comparing our results of first input set with the results of approaches [1] and

[6], it has been identified that DELTA-LD outperforms [1] by ~2% and [6] by ~4% in

terms of F-measure. Hence, it can be argued that the results support our hypothesis -

that the accuracy of DELTA-LD would be better than [1] and [6] in terms of F-

measure. We were not able to compare the results of the second input set with any

other approach, as to the best of our knowledge, only [6] has published the results of

their detected moved resources between DBpedia person snapshot 3.6 and 3.7.

However, the gold standard used by [6] has a different count than the gold standard

used by us. [6] neither contains information about how precisely they created their

gold standard nor have they published their gold standard as yet. This prevents us

from comparing the results of second input set at this time.

To support the evaluation of the change detection approaches in future, the gold

standard prepared by us for the moved and renewed resources between DBpedia

person snapshot 3.6 and 3.7 is available online17.

6 CASE STUDY: Repair of broken interlinks of DBpedia

The changes detected by DELTA-LD and modeled by DELTA-LD change model can

be used to automatically repair structurally broken interlinks. To demonstrate this, we

repaired and validated the structurally broken interlinks in source DBpedia person

snapshot 3.7 to target Freebase. The steps for the case study are outlined in Fig. 5.

Fig. 5. Sequence of steps to repair and validate the broken interlinks

Step 1, the interlink dataset 18 with links from source to target is uploaded to

MarkLogic triple store in a distinct graph. Step 2, before repair the interlinks, we

identified 704 structurally broken interlinks between source and target using a

separate approach, namely SUMMR validation template [4]. Step 3, we consumed the

changes detected by DELTA-LD for second input set to identify the broken interlinks

17 https://github.com/anujsinghdm/DELTA-LD/blob/master/GS.xml
18 http://oldwiki.dbpedia.org/Downloads37#linkstofreebase

using SPARQL templates (available online19) developed for the case study. The same

number of broken interlinks as step 2 were identified. However, in step 3, we were

also able to identify the reason for broken interlinks, specifically 656, 17, 31 interlinks

were broken due to the removed, moved, and renewed resources respectively. Step 4,

the identified broken interlinks were repaired using SPARQL templates (available

online20) developed in the case study. To repair, the templates only delete the broken

interlinks of removed resources. For broken interlinks of moved and renewed

resources, the template first deletes the broken interlinks, then adds a new interlink

using the IRI of the newer resource. The template deleted 656 broken interlinks of the

removed resources. Out of 17 broken interlinks of moved resources, the template

identified that 12 repaired interlinks (interlinks using the IRI of the newer resources)

were already present in the interlink dataset. So, the template deleted all 17 broken

interlinks, but added only 5 new interlinks in the interlink dataset. For 31 broken

interlinks of renewed resources, all the repaired interlinks were already present in the

interlink dataset. Hence, 31 broken interlinks were deleted but no new interlink was

added. Step 5, after repair we have again used the SUMMR template to identify

broken interlinks, which identified 0 broken interlink this time.

In future, we intend to demonstrate the use of DELTA-LD (approach and change

model) for other use cases mentioned in the related work.

7 CONCLUSION

The paper presents DELTA-LD approach to detect and classify the changes between

two versions of a linked dataset along with DELTA-LD change model for modeling

the detected changes. The research question in this paper was to what extent we can

detect, classify, and model the changes between two versions of a linked dataset?

To answer the research question, we executed DELTA-LD on DBpedia person

snapshots 3.2 and 3.3 (20,284 and 29,498 resources), and DBpedia person snapshots

3.6 and 3.7 (296,595 and 790,703 resources). The approach detected created,

removed, updated, moved, and renewed resources, which are (3819, 239, 4161, 124,

46) and (499590, 5482, 50380, 2723, 1529) for former and latter set of snapshots

respectively. The results support the hypothesis, as DELTA-LD outperforms the state-

of-art approaches [1] and [6] by ~2 - 4 % in terms of F-measure. Representing renew

as a separate class of change identified up to 1529 additional resources that changed

their representation. We also presented DELTA-LD change model that allows to view

a changed resource along with its added/ deleted triples at the same time. Finally, we

presented a case study to repair structurally broken interlinks from DBpedia person

snapshot 3.7 to Freebase, using the changes detected between DBpedia person

snapshot 3.6 and 3.7; 704 structurally broken interlinks were repaired and validated.

Acknowledgments. This research has received funding from the ADAPT Centre for

Digital Content Technology, funded under the SFI Research Centres Programme

(Grant 13/RC/2106) and co-funded by the European Regional Development Fund.

19 https://github.com/anujsinghdm/DELTA-LD/tree/master/IBI
20 https://github.com/anujsinghdm/DELTA-LD/tree/master/RBI

References

1. Popitsch, N. and Haslhofer, B., 2011. DSNotify–a solution for event detection and

link maintenance in dynamic datasets. Web Semantics: Science, Services and Agents

on the World Wide Web, 9(3), pp.266-283.

2. Umbrich, J., Villazón-Terrazas, B. and Hausenblas, M., 2010. Dataset dynamics

compendium: A comparative study.

3. Kovilakath, V.P. and Kumar, S.D., 2012, August. Semantic broken link detection

using structured tagging scheme. In Proceedings of the International Conference on

Advances in Computing, Communications and Informatics (pp. 16-20). ACM.

4. Meehan, A., Kontokostas, D., Freudenberg, M., Brennan, R. and O’Sullivan, D.,

2016, October. Validating Interlinks Between Linked Data Datasets with the

SUMMR Methodology. In OTM Confederated International Conferences" On the

Move to Meaningful Internet Systems" (pp. 654-672). Springer, Cham.

5. Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G. and Stavrakas, Y., 2015,

October. A flexible framework for understanding the dynamics of evolving RDF

datasets. In International Semantic Web Conference (pp. 495-512). Springer, Cham.

6. Pourzaferani, M. and Nematbakhsh, M.A., 2013. Repairing broken RDF links in the

web of data. International Journal of Web Engineering and Technology, 8(4), pp.395-

411

7. Pernelle, N., Saïs, F., Mercier, D. and Thuraisamy, S., 2016. RDF data evolution:

efficient detection and semantic representation of changes. Semantic Systems-

SEMANTiCS2016, pp.4-pages.

8. Ward, D.J., Blackwell, A.F. and MacKay, D.J., 2000, November. Dasher—a data

entry interface using continuous gestures and language models. In Proceedings of the

13th annual ACM symposium on User interface software and technology (pp. 129-

137). ACM.

9. Lee, T., Im, D.H. and Won, J., 2016. Similarity-based Change Detection for RDF in

MapReduce. Procedia Computer Science, 91, pp.789-797.

10. Javed, M., Abgaz, Y.M. and Pahl, C., 2014. Layered change log model: bridging

between ontology change representation and pattern mining. International Journal of

Metadata, Semantics and Ontologies, 9(3), pp.184-192.

11. Patrick, J., Sabbagh, M., Jain, S. and Zheng, H., 2010. Spelling correction in clinical

notes with emphasis on first suggestion accuracy. In Proceedings of 2nd Workshop

on Building and Evaluating Resources for Biomedical Text Mining

(BioTxtM2010) (pp. 1-8).

12. Zheng, Z., Si, X., Li, F., Chang, E.Y. and Zhu, X., 2012, December. Entity

disambiguation with freebase. In Proceedings of the The 2012 IEEE/WIC/ACM

International Joint Conferences on Web Intelligence and Intelligent Agent

Technology-Volume 01 (pp. 82-89). IEEE Computer Society.

13. Gerber, D. and Ngomo, A.C.N., 2011. Bootstrapping the linked data web. In 1st

Workshop on Web Scale Knowledge Extraction@ ISWC (Vol. 2011).

14. Li, Z., He, Y., Gu, B., Liu, A. and Zhou, X., 2017. Diagnosing and Minimizing

Semantic Drift in Iterative Bootstrapping Extraction. IEEE Transactions on

Knowledge and Data Engineering.

15. Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. and Christophides, V.,

2013. High-level change detection in RDF (S) KBs. ACM Transactions on Database

Systems (TODS), 38(1), p.1.

