
ECA2LD: From Entity-Component-Attribute
runtimes to Linked Data applications

Torsten Spieldenner1,2, René Schubotz1, and Michael Guldner1

1 German Research Center for Artificial Intelligence (DFKI)
2 Saarbrücken Graduate School of Computer Science

firstname.lastname@dfki.de

Abstract. Large-scale IoT applications, like Smart Cities, are ever-
changing pieces of software. Same holds for Smart Factories in Industry
4.0, where assembly lines are composed of cyber-physical systems that
autonomously observe production cycles and have to quickly adapt to
changes in production requirements. Software built for such IoT envi-
ronments needs a thorough design to be adaptable to the changes in the
underlying systems. The Entity-Component-Attribute (ECA) pattern is
well-suited for the design of changeable and maintainable software arti-
facts. However, the nature of large-scale IoT applications does not only
enforces changeable, but also interoperable design of software compo-
nents. For this, W3C working groups propose to use the Web as an
IoT convergence platform. To unleash its full potential and to help to
tackle pressing cross-domain interoperability issues, this emerging Web
of Things is expected to evolve into a Semantic Web of Things which will
heavily rely on Linked Data principles. While the generation of Linked
Data from data storage layers has undergone thorough research, the
Linked Data compliant exposure of dynamic run-time environments is
to this day incomplete. Towards this end, we formalize the ECA design
pattern and present an generic and auto-generatable mapping from ECA
runtimes to a structure compliant with the W3C Linked Data Platform.
This structural mapping may be declaratively augmented by domain-
specific semantics, and lifts a software design pattern highly suitable for
large-scale IoT applications to Semantic Web of Things.

Keywords: Entity-Component-Attribute model; Linked Data; Resource
Description Framework (RDF); Interoperability

1 Introduction

The continual change that software undergoes during its lifetime is generally
called evolution, and the degree to which it is easy or hard to change existing
software is often called changeability [17, 14]. Especially in perdurable and large
scale Internet of Things (IoT) platforms, software design with the intention to
optimize changeability is imperative [27]. Towards this end, the architectural pat-
tern of Entity-Component-Attribute (ECA) based software design is particularly
well-suited [26]. Focusing on the principle of “composition over inheritance”, the



2

role of an entity is no longer determined by class inheritance or attribution hi-
erarchy, but dynamically determined by the set of attached components. This
significantly improves changeability of entities and reuse of components.

ECA patterns have been successfully applied in the design of changeable IoT
platforms and applications [19], however, the enablement of seamless cross-
domain interoperability between independently developed IoT applications and
platforms, one of the central challenges facing IoT [18], is not directly addressed
by this design paradigm.

In this respect, the W3C Web of Things Working Group3 proposes to use the
Web as an IoT convergence platform. The group develops initial standards for
this Web of Things (WoT) [2] by defining a Web-based abstraction layer for IoT
platforms, protocols, data models and communication patterns. To unleash its
full potential, the emerging WoT is expected to evolve into a Semantic Web of
Things.

The Semantic Web of Things (SWoT) [21] will heavily rely on Linked Data
principles [11] to semantically describe IoT entities in terms of their actions,
properties, events and metadata [22] independent of the underlying IoT tech-
nology stacks. For large-scale scenarios and environments, the development of
IoT platforms and applications on the SWoT will require software tooling that
enables

1. (semi-) automated mappings from IoT application data layouts to RDF
2. declarative augmentation of Linked Data with application-specific semantics
3. exposition of dynamic IoT runtime data as Linked Data

While there are numerous works investigating (semi-) automated mappings
from heterogeneous data structures and serializations to the RDF data model [6,
3, 16, 8, 15], little research has been conducted on the dynamic mapping of run-
time environments [20, 12] to RDF. In particular, we are not aware of any works
on how to leverage ECA-driven software applications on the Semantic WoT.

Contributions. This paper makes the following contributions. We formalize the
notation of an ECA system, and detail on the automated structural mapping
between ECA runtimes and the W3C Linked Data Platform4. Next, we explain
how domain experts can declaratively augment these generated structural map-
pings with domain-specific semantics. Finally, we outline how a Linked Data
client may materialize these application-specific RDF triples either locally or by
delegation to a suitable Linked Data Service.

Structure. In the remainder of the paper, we first discuss current research in
mapping approaches from non-RDF sources to RDF data. We then present a

3 https://www.w3.org/WoT/WG/
4 https://www.w3.org/TR/ldp/



3

formalization of the Entity-Component-Attribute model as basis for changeable
software in Section 3. In Section 4, we briefly outline the W3C Linked Data
Platform standard, and present our automated mapping for structural interop-
erability between ECA data and the Linked Data Platform in Section 5. Section
6 outlines a declarative augmentation of the automated structural mapping with
semantics from domain-specific vocabularies. We conclude with summary in Sec-
tion 7.

2 Related Work

The available literature investigating (semi-) automated data mappings from var-
ious data structures and serializations into the RDF data model is vast. However,
little research has been conducted on the dynamic mapping of runtime environ-
ments [20, 12] to RDF. In what follows, we briefly survey the related literature.

RDBMS. Numerous work investigates how to translate between RDF datagraphs
and relational databases. The W3C specifies a Direct Mapping5 (DM) from re-
lational database structures directly to RDF. R2RML6 is a similar approach
that enables customization of the mapping. Automatic procedures have been
proposed to create the R2RML mapping, which yields RDF graphs similar to
the results of Direct Mapping [8]. Bizer et al. [6] present D2RQ, an approach
that translates semantic queries into native queries against non-RDF databases
and maps the result to RDF.

OOP. Focusing on business logic rather than data storage layers, other work
also investigated mappings between RDF data sources, and object-oriented pro-
gramming (OOP) languages. Bartolos et al. [4] discuss mappings between object-
oriented classes, and present a possibility to automatically create a class model
from ontologies. The resulting class model then operates as access to the under-
lying RDF data. ActiveRDF by Oren et al. [20] provides an object-oriented API
for scripting languages to operate on RDF datasets. However, they found that
concepts of object-oriented programming are at times to strict to allow for an
automated mapping. Limiting concepts are for example class inheritance rules,
encapsulation, or class attribution. Hillairet et al. [12] show how to match the
at this time widely used Eclipse Modeling Framework (EMF) with RDF data
sources. Approaches that operate directly on OOP concepts struggle with OOP
concepts like class inheritance, encapsulation.

Semi-structured Data. A third class of RDF mapping approaches uses as source
semi-structured data, such as XML files, or comma separated values (CSV).
Apache Any237, offered as library, Web service, or command line tool, translates
a variety of source formats, such as CSV and YAML, to RDF representations

5 https://www.w3.org/TR/rdb-direct-mapping/
6 https://www.w3.org/TR/r2rml/
7 https://any23.apache.org/



4

in Turtle, Notation 3, and others. Dimou et al. [9] present RML, an extension
to the R2RML W3C standard, to map between heterogeneous semi-structured
data and RDF. Gupta et al. [10] provide Karma, a semi-automatic RDF extrac-
tion framework not only from relational database, but also from sources given
as CSV, XML, or JSON.

Despite its wide application in different domains, and work that investigates how
application design profits from semantic information inherent to ECA-based soft-
ware, there exists to our knowledge no particular analysis about how to leverage
Entity-Component-Attribute driven applications to Linked Data.

3 Changeability by Entity-Component-Attribute designs

In the following, we will give an outline of requirements we see for the design
of changeable large-scale software projects. We give a formal definition of the
established Entity-Component-Attribute model and discuss how it is suitable to
fulfill the requirements towards changeable software.

3.1 Changeable software requirements

We derive requirements towards changeable software from the notion of aspect-
oriented software design as presented by Kiczales et. al [13]. For this, it is nec-
essary to avoid cross-cutting concerns in the code. As main pitfalls that break
changeability of software, aspect-oriented design distinguishes:

Code scattering: Code that implements a concept or logic is distributed over
several modules or classes. As a result, adding, changing, or removing logic from
an application requires to change several modules at once. Code scattering is
avoided by modeling software and its data in distinct modules for every task.

Code tangling: While code that implements a certain feature may be en-
tirely contained in its own module, dependencies between modules can still break
changeability of software. This happens for example if code of one module refers
to, or makes calls to, code in another module. If one module changes its interface
to which other modules make calls, all other modules need to be changed as well.
A way to avoid code tangling is a data-centralistic approach by which separate
software modules operate on a shared data layer, without direct calls between
the modules.

3.2 Entity-Attribute Models

Above requirements are met by Entity-Attribute based software design. The
understanding of Entity-Attribute models varies in literature. In the following,
we summarise available variants and formalize the notation of Entity-Attribute
models.



5

Fig. 1. Entity-Component-Attribute model based on the example of a component that
defines a ”Location”.

Common for all variations is the notion of an entity as an empty data con-
tainer which is closer specified by a set of typed attributes that carry the actual
values. The IoT Context Broker by Moltchanov et. al [19] keeps to the levels of
entities and attributes.

The systems RealXtend [1, 7] and FiVES [25] include the notion of compo-
nents (Entity-Component-Attribute pattern, ECA; see also Fig. 1). Components
can be considered as prototypes of attribute sets that belong to the same con-
cept. When a component is attached to an entity instance, a new instance of
the component and the respective attribute set is created from this prototype.
RealXtend and FiVES share this design with game engines like Unity3D8 and
Unreal Engine9.

RealXtend equips components with application logic that is directly con-
tained as code in the component implementation. Same holds for game engines.

The work by Wiebusch et al. [26] as well as the FiVES server system con-
sider the Entity-Component-Attribute model as data model only. Logic is imple-
mented in independent systems (referred to as plugins in FiVES), with a careful
design of how external logic accesses the data.

We adapt the understanding of components as by Wiebusch, and FiVES,
with logic implemented separately to avoid the tight coupling between compo-
nents and their specific implementation as in RealXtend or game engines. We
derive from this the following formal definition of the ECA architectural pattern.

8 http://www.unity3d.com
9 http://www.unrealengine.com



6

Fig. 2. High-level structure of the Linked Data Platform10

Let e denote an entity instance, and PC denote the set of all component proto-
types. Then we define the following sets:

E is the set of all entity instances. An entity instance is defined as e = (ne,Ce),
with ne ∈ Σ+ being the unique identifier for e over alphabet Σ, and Ce being
the set of component instances attached to e.

Ce is the set of all component instances attached to an entity instance e. A
component instance is defined as c = (nc, pc,Ac,e), with nc ∈ Σ+ being the
unique identifier for c, pc ∈ PC being the prototype that c is an instance of,
and Ac,e being the set of all attribute instances attached to c.

Ac,e the set of all attribute instances attached to a component instance c. An
attribute instance is defined as a = (na, v, t), with na ∈ Σ+ being the
unique identifier for a, v denoting the attribute instance’s current value, and
t denoting the ECA runtime type of a.

The role of an entity within the application is by this entirely determined
by the set of attached components. Components are implemented and oper-
ate independent of each other. This avoids the issue of code scattering. The
composition-over-inheritance principle of the model also avoids code-tangling,
as it eliminates class inheritance and attribution hierarchies.

4 The Linked Data Platform

The W3C Linked Data Platform recommendation provides best practices for
read-write Linked Data applications on the Web. It describes how to model ap-
plications in terms of a minimal set of RDF resources (cf. Figure 2). Moreover
access patterns to these different resources are specified for Linked Data clients.

10 Image taken from https://www.w3.org/TR/ldp/#fig-ldpc-types



7

The basic element of LDP is a ldp:Resource. Every ldp:Resource must be
an HTTP endpoint with at least HTTP/1.1 protocol compatibility, and accept
at least HTTP GET requests, and others depending on the type of resource.
From the ldp:Resource are derived a number of resource types with the follow-
ing roles:

ldp:RDFSource exposes general RDF data. Upon a HTTP GET request, it MUST

return a full RDF graph in text/turtle format (or application/ld+json, if
requested). HTTP PUT or HTTP PATCH can be used to update triples in the graph
that is provided by the resource.

ldp:Container is a ldp:RDFSource that manages a set of LDP Resources and
provides information about access, modification, and filtering of the contained
elements.

ldp:BasicContainer is a ldp:Container that specifies linked documents in
the form of Containment Triples of the form (container-uri, ldp:contains,
document-uri). The ldp:BasicContainer does not require to specifically state
the semantic relationship between the container resource itself, and its contain-
ing elements.

The W3C LDP recommendation specifies more concepts. In the scope of this
paper, however, we will only make use of above concepts.

5 Structural Interoperability with ECA-based Systems

In the following, we detail on the automated structural mapping between ECA
runtime environments and W3C LDP compliant Linked Data servers. By re-
peated application of a set of mapping rules (cf. À to Ã), structural interoper-
ability [23] between ECA runtimes and LDP servers is established.

We assume the existence of functions ν : Σ+ → IRI and ρ : PC → IRI for
minting fresh IRIs from identifiers and component prototypes. Although several
guidelines exist for minting IRIs11, we do not make assumptions on ν or ρ.

À

(ne,Ce) ∈ E ∀(nc, pc,Ac,e) ∈ Ce

ν(ne) rdf:type ldp:BasicContainer .
ν(ne) dct:identifier “ne”ˆˆxsd:String .
ν(ne) ldp:hasMemberRelation dct:hasPart .
ν(ne) dct:hasPart ν(nc) .

À Each entity instance e = (ne,Ce) is mapped to a ldp:BasicContainer

with IRI ν(ne). This entity container maintains a membership triple (ν(ne),

11 https://www.w3.org/TR/cooluris/



8

dct:hasPart, ν(nc)) for each component instance (nc, pc,Ac,e) attached to e.

Á

(nc, pc,Ac,e) ∈ Ce ∀(na, v, t) ∈ Ac,e

ν(nc) rdf:type ldp:BasicContainer .
ν(nc) dct:identifier “nc”ˆˆxsd:String .
ν(nc) dct:isPartOf ν(ne) .
ν(nc) ldp:hasMemberRelation dct:hasPart .
ν(nc) dct:hasPart ν(na) .
ν(nc) rdfs:isDefinedBy ρ(pc) .

Á Each component instance c = (nc, pc,Ac,e) is mapped to a ldp:BasicContainer
with IRI ν(nc). This component container uses dct:isPartOf to indicate its
containing entity container ν(ne) and maintains a membership triple (ν(nc),
dct:hasPart, ν(na)) for each attribute instance (na, v, t) attached to c. In ad-
dition, we use rdfs:isDefinedBy to indicate an authoritative resource ρ(pc)
semantically defining the component container ν(nc). We detail on ρ(pc) in the
next section.

Â

(na, v, t) ∈ Ac,e

ν(na) rdf:type ldp:RDFResource .
ν(na) dct:identifier “na”ˆˆxsd:String .
ν(na) dct:isPartOf ν(nc) .
ν(na) rdf:value “µ(v)”ˆˆν(t) .

Â Each attribute instance (na, v, t) ∈ Ac,e is represented by a ldp:RDFResource

with IRI ν(na). This attribute resource uses dct:isPartOf to indicate its con-
taining component container ν(nc). The triple (ν(na), rdf:value, “µ(v)”ˆˆν(t))
encodes the attribute’s current value v and type t as a typed literal “v”ˆˆν(t)
(cf. Ã).

Ã Since the RDF datatype abstraction is compatible with XML Schema, we
rely on the data type support between an ECA runtime enviroment and XML
Schema Types for datatype conversion. Given an attribute (na, v, t) ∈ Ac,e, we
denote by ν(t) the datatype IRI of the RDF-compatible XSD type correspond-
ing to t. The lexical form µ(v) may be any lexical form, ie. a Unicode string
in Normal Form C, from ν(t)’s lexical space that represents the same value as
v. Extensions that handle domain-specific or user-defined datatypes beyond the
RDF-compatible XSD types are expected to behave as outlined here.



9

Fig. 3. Structural mapping and semantic augmentation of a “Location” component
(cf. Figure 1).

6 Augmenting Domain-specific Semantics

The ECA model induces an implicit semantic understanding of the underlying
data. The prototype of a component assigns to a component a specific concept
that is modeled by that component. For example, Figure 1 defines a component
prototype that describes a location in geo-coordinates.

Rules À to Ã provide a structural mapping from ECA runtime objects to
Web resources described using the LDP vocabulary. Our structural mapping is
generic and auto-generatable, but so far it does not express said application-
specific semantics that are contained in the ECA model.

A domain expert tasked with semantic augmentation thus requires support
for specifying expressive RDF mappings that enable fine-grained term correspon-
dences, literal transformations and structural graph transformations at dataset-
level. Ideally, these RDF mappings should be dereferencable and executable,
self-contained and interoperably represented as RDF triples. Natural candidates
for expressing and executing such RDF mappings are SPIN SPARQL12, RIF in
RDF13, the LDIF framework14 or the R2R framework15.

In the scope of this paper and without loss of generality, we describe and
publish such RDF mappings using the R2R Mapping Language [5]. Similar
to SPARQL CONSTRUCT queries, a r2r:Mapping (cf. Figure 3(b)) has a
r2r:sourcePattern, r2r:transformation and a r2r:targetPattern.

12 https://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/
13 https://www.w3.org/TR/rif-in-rdf/
14 http://ldif.wbsg.de/
15 http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/



10

The source pattern is matched against data generated from rules À to Ã (cf.
Figure 3(a)) and produces a set of variable bindings. Transformations define how
variable bindings are transformed before being inserted into the target pattern.
The target pattern is used to produce the triples resulting from the r2r:Mapping
(cf. Figure 3(c)).

Rule Á uses rdfs:isDefinedBy to indicate an authoritative resource ρ(pc) defin-
ing all instances of a component prototype pc ∈ PC. Hence, a domain expert
can publish her RDF mapping under ρ(pc) and make it discoverable for Linked
Data clients.

By retrieving a representation of ρ(pc), a Linked Data client will be instructed
on how to locally render additional application-specific RDF triples. Note that
execution of a RDF mapping may also be delegated to a suitable Linked Data
Service (LIDS) [24]. We suggest owl:sameAs (cf. Figure 3(a)) to indicate the
respective LIDS invocation IRI.

7 Conclusion

This paper presents a generic and auto-generatable structural mapping between
Entity-Component-Attribute (ECA) runtimes and the W3C Linked Data Plat-
form. First, we discuss the Entity-Component-Attribute model as suitable choice
for changeable software, followed by a formal definition of the ECA design pat-
tern. From this, a generic and auto-generatable structural mapping between ECA
runtimes and the W3C Linked Data Platform is provided. Building upon this
basic level of structural interoperability, we explain how domain experts may
declaratively specify and publish expressive RDF mappings in order to con-
vey the application-specific semantics of the respective ECA runtime objects.
By executing the published RDF mappings, a Linked Data client is instructed
on how to semantically interpret the dynamically exposed ECA runtime ob-
jects. A prototype implementation of the presented approach is available at
https://github.com/tospie/eca2ld.

Acknowledgment

The work presented in this paper received funding from the European Union’s
project FI-NEXT under grant agreement no. 732851, and by the Federal Ministry
of Education and Research of Germany in the project Hybr-iT under support
code 01IS16026A.

References

1. Toni Alatalo. An entity-component model for extensible virtual worlds. IEEE
Internet Computing, 15(5):30–37, 2011.



11

2. Dominique ard and Vlad Trifa. Towards the web of things: Web mashups for
embedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International
World Wide Web Conferences), Madrid, Spain, volume 15, 2009.

3. Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David
Aumueller. Triplify: light-weight linked data publication from relational databases.
In Proceedings of the 18th international conference on World wide web, pages 621–
630. ACM, 2009.

4. Peter Bartalos and Maria Bielikova. An approach to object-ontology mapping. In
IIT. SRC–Student Research Conference, pages 9–16, 2007.

5. Christian Bizer and Andreas Schultz. The R2R framework: Publishing and discov-
ering mappings on the Web. COLD, 665, 2010.

6. Christian Bizer and Andy Seaborne. D2RQ-treating non-RDF databases as virtual
RDF graphs. In Proceedings of the 3rd international semantic web conference
(ISWC2004), volume 2004. Proceedings of ISWC2004, 2004.

7. Toni Dahl, Timo Koskela, Seamus Hickey, and Jarkko Vatjus-Anttila. A Virtual
World Web Client utilizing an Entity-Component model. In NGMAST, pages
7–12. IEEE, 2013.

8. Luciano Frontino de Medeiros, Freddy Priyatna, and Oscar Corcho. Mirror: Au-
tomatic R2RML mapping generation from relational databases. In International
Conference on Web Engineering, pages 326–343. Springer, 2015.

9. Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. Rml: A generic language for integrated rdf mappings
of heterogeneous data. In LDOW, 2014.

10. Shubham Gupta, Pedro Szekely, Craig A Knoblock, Aman Goel, Mohsen
Taheriyan, and Maria Muslea. Karma: A system for mapping structured sources
into the semantic web. In Extended Semantic Web Conference, pages 430–434.
Springer, 2012.

11. Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data
space. Synthesis lectures on the semantic web: theory and technology, 1(1):1–136,
2011.

12. Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye, et al. Bridging EMF ap-
plications and RDF data sources. In Proceedings of the 4th International Workshop
on Semantic Web Enabled Software Engineering, SWESE, 2008.

13. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag, Berlin, Germany.

14. Herwig Mannaert, Jan Verelst, and Kris Ven. Towards evolvable software archi-
tectures based on systems theoretic stability. Software: Practice and Experience,
42(1):89–116, 2012.

15. Franck Michel, Löıc Djimenou, Catherine Faron-Zucker, and Johan Montagnat.
Translation of relational and non-relational databases into RDF with xR2RML.
In 11th International Confenrence on Web Information Systems and Technologies
(WEBIST’15), pages 443–454, 2015.

16. Franck Michel, Johan Montagnat, and Catherine Faron-Zucker. A survey of RDB
to RDF translation approaches and tools. PhD thesis, I3S, 2014.

17. Parastoo Mohagheghi and Reidar Conradi. An empirical study of software change:
origin, acceptance rate, and functionality vs. quality attributes. In Empirical Soft-
ware Engineering, 2004. ISESE’04. Proceedings. 2004 International Symposium
on, pages 7–16. IEEE, 2004.



12

18. Saraju P Mohanty, Uma Choppali, and Elias Kougianos. Everything you wanted to
know about smart cities: The internet of things is the backbone. IEEE Consumer
Electronics Magazine, 5(3):60–70, 2016.

19. Boris Moltchanov and Oscar Rodriguez Rocha. A context broker to enable future
IoT applications and services. In Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2014 6th International Congress on, pages 263–
268. IEEE, 2014.

20. Eyal Oren, Benjamin Heitmann, and Stefan Decker. ActiveRDF: Embedding Se-
mantic Web data into object-oriented languages. Web Semantics: Science, Services
and Agents on the World Wide Web, 6(3):191–202, 2008.

21. D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
A. Krller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and
R. Richardson. Spitfire: toward a semantic web of things. IEEE Communications
Magazine, 49(11):40–48, November 2011.

22. René Schubotz, Christian Vogelgesang, André Antakli, Dmitri Rubinstein, and
Torsten Spieldenner. Requirements and specifications for Robots, Linked Data and
all the REST. In Proceedings of 2nd Workshop on Linked Data in Robotics and
Industry 4.0. (LIDARI-2017), located at Semantics 2017, Amsterdam, Netherlands.
CEUR, 2017.

23. Amit P Sheth. Changing focus on interoperability in information systems: from
system, syntax, structure to semantics. In Interoperating geographic information
systems, pages 5–29. Springer, 1999.

24. Sebastian Speiser and Andreas Harth. Integrating linked data and services with
linked data services. In Proceedings of the 8th Extended Semantic Web Conference
on The Semantic Web: Research and Applications - Volume Part I, ESWC’11,
pages 170–184, Berlin, Heidelberg, 2011. Springer-Verlag.

25. Torsten Spieldenner, Michael Guldner, Sergiy Byelozyorov, and Philipp Slusallek.
FiVES: An aspect-oriented Virtual Environment Server. In Proceedings of the
2017 International Conference on Cyberworlds. International Conference on Cy-
berworlds (CyberWorlds-2017), September 20-22, Chester, United Kingdom. IEEE
Xplore, 2017.

26. Dennis Wiebusch and Marc Erich Latoschik. Decoupling the entity-component-
system pattern using semantic traits for reusable realtime interactive systems.
In Software Engineering and Architectures for Realtime Interactive Systems
(SEARIS), 2015 IEEE 8th Workshop on, pages 25–32. IEEE, 2015.

27. Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele
Zorzi. Internet of things for smart cities. IEEE Internet of Things journal, 1(1):22–
32, 2014.


