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Trois-Rivières, Canada
Julien.de.carufel@uqtr.ca

Alain Goupil
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Abstract

Induced subtrees of a graph G are induced subgraphs of G that are
trees. Fully leafed induced subtrees of G have the maximal number of
leaves among all induced subtrees of G. In this extended abstract we
are investigating the enumeration of a particular class of fully leafed
induced subtrees that we call non saturated. After an overview of this
recent subject, we proceed to the enumeration of fixed non saturated
polyhexes and polyiamonds.

1 Introduction

We recently presented a new family of combinatorial and graph theoretic structures called fully leafed induced
subtrees of a simple graph G of size n which are induced subtrees of a graph G with a maximal number of
leaves [BCGS17]. Fully leafed induced subtrees are realized as polyforms in two-dimensional regular lattices and
polycubes in the three dimensional cubic lattice so that tree-like polyforms of size n are fully leafed when they
contain the maximum number of leaves among all tree-like polyforms of size n. Recursive and exact expressions
were given in [BCGS17, BCGLNV18] for the number of leaves in a number of particular cases which include
graphs and polyforms.

We also showed in [BCGLNV18] that the problem of deciding if there exists an induced subtree with i vertices
and ` leaves in a simple graph G of size n is NP-complete in general. We define the map LG : N → N by the
condition that LG(n) is the maximal number of leaves among all induced subtrees of G of size n. We call this
map the leaf function of G. We have computed the values of the map LG for some classical graphs and we have
described in [BCGLNV18] a branch-and-bound algorithm that computes the function LG for any simple graph
G. In [BCGLNV18], we consider the problem of deciding wether a given sequence (`0, `1, . . . , `n) of natural
numbers is the leaf sequence (LG(n))n of some graph G. We call this problem the leaf realization problem. In
the particular case where G is a caterpillar, a bijection [BCGLNV18] was exhibited between the set of discrete
derivatives of the leaf sequences (LG(i))3≤i≤|G| and the set of prefix normal words introduced in [FL11] and

investigated in [BFLRS14, BFLRS17].
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We discuss the concept of saturated and non saturated polyforms and polycubes [BCGS17] in Sections 4
and 5 where we exhibit three bijections. The first bijection relates the set Tsqu(k) of tree-like polyominoes of
size k and the set STsqu(4k + 1) of saturated tree-like polyominoes of size 4k + 1. The second bijection maps
the set SThex(n) of saturated polyhexes of size n to the set STtri(n) of saturated polyiamonds of size n. The
third bijection is between the set STcub(41k + 28) of saturated tree-like polycubes of size 41k + 28 and the set
4Ti(3k + 2) of 4-trees that are polycubes of size 3k + 2 recently introduced [BCG18].

In this extended abstract, we are interested with the enumeration of fixed fully leafed tree-like polyhexes and
polyiamonds. These families of polyforms are induced subtrees of infinite regular lattices λ and their leaf function
is denoted by Lλ(n).

It was already shown in [BCGS17] that saturated tree-like polyhexes and polyiamonds are easy to enumerate.
They both are caterpillars with a linear shape and there is in fact a bijective correspondance between these two
sets. The description of non saturated tree-like polyhexes and polyiamonds is more intricate and we now focus
on their enumeration.

2 Polyforms, Polycubes and Graphs

Let G = (V,E) be a simple graph, u ∈ V and U ⊆ V . For any subset U ⊆ V , the subgraph induced by U is the
graph G[U ] = (U,E∩P2(U)), where P2(U) is the set of 2-elements subsets of V . The square lattice is the infinite
simple graph G2 = (Z2, A4), where A4 is the 4-adjacency relation defined by A4 = {(p, p′) ∈ Z2 | dist(p, p′) = 1}
and dist is the Euclidean distance of R2. For any p ∈ Z2, the set c(p) = {p′ ∈ R2 | dist∞(p, p′) ≤ 1/2}, where
dist∞ is the uniform distance of R2, is called the square cell centered in p. The function c is naturally extended
to subsets of Z2 and subgraphs of G2. For any finite subset U ⊆ Z2, we say that G2[U ] is a grounded polyomino
if it is connected. The set of all grounded polyominoes is denoted by GP. Given two grounded polyominoes
P = G2[U ] and P ′ = G2[U ′], we write P ≡t P ′ (resp. P ≡i P ′) if there exists a translation T : Z2 → Z2 (resp.
an isometry I on Z2) such that U ′ = T (U) (resp. U ′ = I(U)). A fixed polyomino (resp. free polyomino) is then
an element of GP/ ≡t (resp. GP/ ≡i). Clearly, any connected induced subgraph of G2 corresponds to exactly
one connected set of square cells via the function c. Consequently, from now on, polyominoes will be considered
as simple graphs rather than sets of edge-connected square cells.

All definitions of cell, grounded polyomino, fixed polyomino and free polyomino in the above paragraph are
extended to the hexagonal lattice with the 6-adjacency relation, the triangular lattice with the 3-adjacency relation
and the cubic lattice with the 6-adjacency relation. Grounded polyforms and polycubes are thus connected
subgraphs of regular grids and the terminology of graph theory becomes available. Let T = (V,E) be any finite
simple non empty tree. A vertex u ∈ V is a leaf of T when degT (u) = 1 and is an inner vertex otherwise. For
any d ∈ N, the number of vertices of degree d is denoted by nd(T ) and n(T ) = |V | is the number of vertices of
T which is also called the size of T .

A (grounded, fixed or free) tree-like polyform (resp. polycube) is therefore a (grounded, fixed or free) polyform
(resp. polycube) whose associated graph is a tree. We now introduce rooted grounded tree-like polyforms and
polycubes.

Definition 2.1. A rooted grounded tree-like polyform or polycube in a lattice λ is a triple R = (T, r, #»u ) such
that
(i) T = (V,E) is a grounded tree-like polyform or polycube of size at least 2;

(ii) r ∈ V , called the root of R, is a cell of T ;
(iii) #»u ∈ λ, called the direction of R, is a unit vector such that r + #»u is a cell of T adjacent to r.
When r + #»u is a leaf of T , we say that R is non-final. Otherwise R is called final.

If R = (T, r, #»u ) is a rooted, grounded, non-final tree-like polyform or polycube, a unit vector #»v ∈ λ is called
a free direction of R whenever r − #»v is a leaf of T . We now introduce the operation called the graft union of
tree-like polyforms and polycubes.

Definition 2.2 (Graft union). Let R = (T, r, #»u ) and R′ = (T ′, r′,
#»

u′) be rooted grounded non-final tree-like

polyforms or polycubes in the lattice λ such that
#»

u′ is a free direction of R. The graft union of R and R′,
whenever it exists, is the rooted grounded tree-like polyform or polycube

R / R′ = (Z3[V ∪ τ(V ′)], r, #»u ),

where V , V ′ are the respective sets of vertices of T , T ′ and τ is the translation with respect to the vector
#  »

r′r−
#»

u′.

The graft union is naturally extended to fixed and free tree-like polyforms and polycubes.
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3 Fully leafed polyforms and polycubes

The leaf function Lλ(n), giving the maximal number of leaves in an induced subtree of size n, ihas been established
for all planar regular grids λ i.e. for polyominoes, polyhexes and polyiamonds and also for polycubes.

Theorem 3.1 ([BCGS17]). Let Lsqu, Lhex and Ltri denote respectively the leaf functions of polyominoes, poly-
hexes and polyiamonds. Then we have

Lsqu(n) =


2, if n = 2;

n− 1, if n = 3, 4, 5;

`squ(n− 4) + 2, if n ≥ 6.

(1)

Lhex(n) = Ltri(n) =

{
2, if n = 2, 3;

`hex(n− 2) + 1, if n ≥ 4.
(2)

=
⌊n

2

⌋
+ 1

and the asymptotic growth of Lλ is given by Lλ(n) ∼ n/2 for the three families λ of tree-l9ke polyforms.

The proof that these expressions are exact is based on (i) the construction of families of polyforms that satisfy
Equations (1) and (2); (ii) the elimination of all possible branches that would belong to a tree-like polyform of
minimal size with more leafs than Lλ(n).

In the case of three dimensional polycubes, the leaf function is more intricate.

Theorem 3.2 ([BCGS17]). Let Lcub be the leaf-function on the cubic lattice. Then

Lcub(n) =


fcub(n) + 1, if n = 6, 7, 13, 19, 25;

fcub(n), if 2 ≤ n ≤ 40 and n 6= 6, 7, 13, 19, 25;

fcub(n− 41) + 28, if 41 ≤ n ≤ 81;

`cub(n− 41) + 28, if n ≥ 82.

(3)

where fcub(n) =


b(2n+ 2)/3c, if 0 ≤ n ≤ 11;

b(2n+ 3)/3c, if 12 ≤ n ≤ 27;

b(2n+ 4)/3c, if 28 ≤ n ≤ 40.

The proof of this fact uses the same argument than in the two dimensional case but the set of possible branches
in a tree-like polycube of size n that would have more leaves than Lcub(n) is larger and it must be established
with a computer program that exhausts all possibilities. The asymptotic growth of Lcub is still linear but it
satisfies the surprising ratio Lcub(n) ∼ 28n/41.

4 Saturated polyforms and polycubes

Let Lλ denote any of the four leaf functions described in (1), (2) and (3). Since Lλ(n) satisfies a linear recurrence,
it is immediate that there exists two parallel linear functions Lλ, Lλ and a positive integer n0 such that

Lλ(n) ≤ Lλ(n) ≤ Lλ(n), for n ≥ n0,

if we add the constraint that there must exist infinitely many positive integers n > 0 for which Lλ(n) = Lλ(n)
and Lλ(n) = Lλ(n), then the functions Lλ(n) and Lλ(n) become unique. Saturated tree-like polyforms and

polycubes are defined as those tree-like polyforms and polycubes T for which n1(T ) ≥ L(n(T )).
Sets of saturated tree-like polyforms and polycubes possess structural properties that allow their bijective

reduction to simpler polyforms and polycubes. These bijections are, to our actual knowledge, lattice dependent
and are useful in the enumeration of saturated tree-like polyforms. We describe these bijections in the following
paragraphs.

The upper bounding linear function of saturated polyominoes is Lsqu(n) = (n + 3)/2. For integers k ≥ 1,
saturated tree-like polyominoes T have size n(T ) = 4k + 1 and n1(T ) = 2k + 2 leaves. It is not difficult to show
that saturated tree-like polyominoes are the iterated graft union of copies of a unique tile of size 5 made of one
cell of degree 4 and four leaves that we call a cross because of its shape (see Figure 2).

118



(a) T

↔

(b) I(T )

↔

(c) φsqu(T )

Figure 1: The bijection φsqu for tree-like polyominoes

=

Figure 2: Saturated tree-like polyomino as graft union of crosses

Theorem 4.1 (Cross operator, [BCGS17]). There exists a bijection φsqu from the set Tsqu(k) of tree-like poly-
ominoes of size k and the set STsqu(4k + 1) of saturated tree-like polyominoes of size 4k + 1:

Tsqu(k)
φsqu−−−→ STsqu(4k + 1).

The bijection φsqu is illustrated in Figure 1 and it informs us that the complexity of counting saturated tree-
like polyominoes of size 4k + 1 is identical to the complexity of the enumeration of tree-like polyominoes of size
k.

Theorem 4.2 (Geometric shape of saturated polyhexes and polyiamonds, [BCGS17]). Each saturated polyhex
(resp. polyiamond) is the successive graft union of crosses in the hexagonal (resp. triangular) lattice.

Proof. This result is immediate from the facts that graft union preserves degree distribution, that saturated
polyhexes and polyiamonds have cells of degree 3 and 1 and that a cross is the only elementary polyform which
contains a cell of degree 3. See Figures 3 and 4 for an illustration.

Proposition 4.3 ([BCG18]). There exists a bijection from, respectively, free and fixed saturated tree-like polyi-
amonds to free and fixed saturated polyhexes.

Proof. (sketch). The correspondance is established by simply truncating the triangles to form hexagons, as
shown in Figure 5.

5 Non saturated polyhexes and polyiamonds

The description of nonsaturated polyforms is more intricate than the saturated case because there is more
freedom in the choice of the position of “extra cells“. At the moment, we are only able to enumerate polyhexes
and polyiamonds. We leave the enumeration of fully leafed non saturated tree-like polyominoes and polycubes
as open problems.

=

Figure 3: A saturated tree-like polyiamond as graft union of crosses
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=

Figure 4: Saturated tree-like polyhexes as graft union of crosses

Figure 5: Bijection from satured polyiamonds to saturated polyhexes.

k 0 1 2 3 4 5 6 7 8 k ≥ 9
flhext(2k + 3) 9 18 45 102 180 246 327 426 516 36 + 78(k − 2)

Proposition 5.1. For k ≥ 0, the number flhext(2k + 3) of fixed, fully leafed polyhex trees of odd size 2k + 3 is
given by the following expressions

Proof. The proof is the result of a case study where special structures appear until the size n(T ) = 19 is reached.
We know already that fully leafed polyhexes of odd size n = 2k+ 3 contain k cells of degree three and one cell of
degree two, denoted x. These polyhexes are not saturated. As shown in Figure 6, the cell x partitions the k cells
of degree three of a fixed fully leafed polyhex T in two disjoint connected sets T1, T2 of respective sizes j ≥ 0
and k − j ≥ 0. Both sets have one cell adjacent to x and both sets are, with one exception, forming a path. We
denote by Ct(j) the set of all paths of cells of degree 3 of length j. Furthermore we denote by Ct(j)Ct(k − j)
the set of fixed fully leafed polyhexes T which are the concatenation T = T1xT2 with T1 ∈ Ct(j), T2 ∈ Ct(k− j)
and we denote by ct(j)ct(k − j) the cardinality of Ct(j)Ct(k − j). Clearly we have

flhext(2k + 3) =

bk/2c∑
j=0

ct(j)ct(k − j)

In order to obtain flhext(2k + 3), we evaluate each term ct(j)ct(k − j) and provide a general expression when
it exists.

First, we look at the case Ct(0)Ct(k) shown in Figure 6(a). For all k ≥ 5, there are 60 fixed polyhexes T
where x is adjacent to a leaf of T2 ∈ Ct(k) (Figure 6 (a)(i)) and 6k polyhexes where x is adjacent to an inner
cell of T2 ∈ Ct(k) (Figure 6 (a)(ii)). These cover all cases in the set Ct(0)Ct(k) and we have ct(0)ct(k) = 60 + 6k
for k ≥ 5.

In the case Ct(1)Ct(k − 1), there are 48 fixed polyhexes where a leaf of T2 ∈ Ct(k − 1) is adjacent to x (Figure
6(b)(iii)) and 6(k − 3) polyhexes where an inner cell of T2 ∈ Ct(k − 1) is adjacent to x and k ≥ 6 (Figure
6(b)(iv)). In the case Ct(2)Ct(k − 2), k ≥ 7, there are 72 fixed polyhexes where either a leaf of T2 ∈ Ct(k − 2)
or a cell y ∈ T2 next to a leaf is adjacent to x (Figure 6(c)(v) and (vi)). In the set Ct(3)Ct(k − 3), k ≥ 8, a
case study shows that there are ct(3)ct(k − 3) = 132 polyhexes (Figure 6(d)(vii-x)). When 4 = j < k − j, there
are 180 fixed polyhexes (Figure 6(e) and (d)(xi)). This count includes a particular polyhex T1 ∈ Ct(4), shown
in Figure 6(d)(xi), that is not a path. When 5 ≤ j ≤ k − j, special configurations disappear and there are 66
polyhexes where 5 ≤ j = k− j and 132 polyhexes with 5 ≤ j < k− j. Summing all the previous cases for k ≥ 9,
we obtain

b(k−1)/2c∑
j=0

ct(j)ct(k − j) = [60 + 6k] + [48 + 6(k − 3)] + [72] + [132]

+ [180] + [132] +

b(k−1)/2c∑
j=5

132

 + 66χ(k is even)

= 36 + 78(k − 2), k ≥ 9.

(b) For k < 9, the values ct(j)ct(k − j) are different from the general cases described above for a number of
reasons that forbid their inclusion in a general setting. There is no space here for this analysis.
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(i) (ii) (iii) (iv) (v) (vi)

(a) ct(0)ct(k) = 60 + 6k
k ≥ 5

(b) ct(1)ct(k − 1) = 30 + 6k
k ≥ 6

(c) ct(2)ct(k − 2) = 72
k ≥ 7

(vii) (viii) (ix) (x)

(d) ct(3)ct(k − 3) = 132
k ≥ 8

(xi)

(e) ct(4)ct(k − 4) = 180

k ≥ 9

(f) ct(j)ct(j) = 66

j ≥ 5

(g) ct(j)ct(k − j) = 132

5 ≤ j < k − j

Figure 6: Non saturated fully leafed tree-like polyhexes

We now proceed to the enumeration of non-saturated tree-like polyiamonds.

Proposition 5.2. For k ≥ 0, the number fltrit(2k+ 3) of fixed, fully leafed polyiamonds trees of odd size 2k+ 3
is given by the following expressions:

k 0 1 2 3 4 5 6 7 8 k ≥ 9
fltrit(2k + 3) 6 12 30 60 90 108 132 168 198 24k − 12

Table 1: Number of non saturated polyiamonds of size 2k + 3

Proof. First notice that these polyiamonds have exactly one cell of degree 2 denoted x. We enumerate polyia-
monds by exhibiting a set P of seven basic polyiamonds, each made of an inner set of cells of degree 3, to be
adjacent to x. These 7 polyamonds types are shown in Figure 7. Three of these polyiamonds have a variable size
and they appear in Figure 7 (E), (F ), (G). The black thicker segment appearing in each polyiamond of Figure
7 marks the cell of the polyiamond that is to be adjacent to the cell x of degree 2.

We claim that every fully leafed non saturated tree-like polyiamond is obtained by choosing a pair of structures
and by positioning them adjacent to x. In order to avoid duplication of cases, we assume that structures F and
G contain respectively at least three and four cells of degree three.

For instance, the pair {D,F} generates 12 fixed polyiamonds of size 2k+ 3 for any k ≥ 7, one of which, of size
n(T ) = 19, is illustrated in Figure 8. The enumeration of these non saturated polyamonds is done by finding the
number of fixed polyiamonds that are obtained with every pair {X,Y }. These values are presented in Table 2.
The numbers fltrit(2k + 3) of non saturated polyiamonds presented in Table 1 are obtained from Table 2.

The enumeration of polyhexes and polyiamonds presented in Propositions 5.1 and 5.2 have been indepen-
dently verified with computer programs that iteratively enumerate non saturated tree-like polyforms of size n by
repeatedly grafting cells of degree three to a cell of degree two [deC18]. We know from the degree distribution
of the inner cells of non saturated polyiamonds that all fully leafed tree-like polyhexes and polyiamonds can be
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k = 0

(A)

k = 1

(B)

k = 3

(C)

k = 4

(D)

. .
.

k ≥ 2

(E)

. . .

k ≥ 3

(F)

. . .

k ≥ 4

(G)

Figure 7: The set P of polyiamonds in non saturated fully leafed tree-like polyiamonds

Figure 8: A fully leafed polyiamond of size 2k + 3, k ≥ 7.

(A) (B) (C) (D) (E) (F) (G)

(A)
6

k = 0
12

k = 1
12

k = 3
12

k = 4
24

k ≥ 2
12

k ≥ 3
12

k ≥ 4

(B)
6

k = 2 0
12

k = 5
12

k ≥ 3
12

k ≥ 4 0
(C) 0 0 0 0 0

(D)
6

k = 8
12

k ≥ 6
12

k ≥ 7 0

(E)
6(k − 3)
k ≥ 4

12(k − 4)
k ≥ 5 0

(F)
6(k − 5)
k ≥ 6 0

(G) 0

Table 2: Number of polyiamonds obtained from pairs in the set P

obtained this way. Indeed, since non saturated polyiamonds have one cell x of degree two and k cells of degree
three, all these polyiamonds can be obtained by the graft of cells of degree three one at a time.

6 Concluding remarks

The next step in the enumeration of fully leafed polyforms and polycubes is the enumeration of non saturated
polyominoes and polycubes and also of saturated polycubes. In the context of enumeration of families of poly-
forms and polycubes, we have shown that bijections can be used to give an evaluation of the complexity of
the problems. For instance, we know that the enumeration of saturated polyominoes of size 4k + 1 is precisely
equivalent to the enumeration of tree-like polyominoes of size k. It would certainly be interesting to have a
similar result for the enumeration of saturated tree-like polycubes.
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[BCG18] A. Blondin Massé, J. de Carufel and A. Goupil. Saturated fully leafed tree-like polyforms and polycubes.
At https://arxiv.org/abs/1803.09181, 2018.
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leafed induced subtrees. At https://arxiv.org/abs/1709.09808, 2018.

122
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