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Abstract

In this work, we introduce nearest neighbour q-random walks on the
integers and on the two-dimensional integer lattice with transition prob-
abilities q-varying by the number of steps, 0 < q < 1. These q-random
walks are defined as Markov chains discrete time stochastic processes.
Our main results characterize under which conditions the considered
q-random walks are transient or reccurent. Also, we define the relative
continuous time q-random walks stochastic processes. Moreover, we
present a q-Brownian motion as a continuous analogue of the q-random
walk stochastic process on the integers. The maxima and first hitting
time of this q-Brownian motion are studied. Furthermore, we produce
simulations in R of all the considered stochastic processes, indicating
first hitting times to the origin. As further study, we propose nearest
neighbour q-random walks on the three-dimensional integer lattice.

1 Introduction

Random walks on random graphs arise among others in several models in Network science, Neuroscience and
Statistical Mechanics [AF02, Bol01, FK16, New10].

A random walk of length k on a possibly infinite graph G with a root 0 is a stochastic process with random
variables X1, X2, . . . , Xk such that X1 = 0 and Xi+1, is a vertex chosen uniformly at random from the neighbors
of Xi, i = 1, . . . , k − 1. Then P kv,w(G) is the probability that a random walk of length k starting at v ends at w.

In particular, if G is a graph with root 0, P 2k
0,0(G), is the probability that a 2k-step random walk returns to 0.

In the context of Random Graph theory, random walks have been defined as Markov chains and their properties
have been studied in details. These include among others, the distribution of first and last hitting times of the
random walk, where the first hitting time is given by the first time the random walk steps into a previously
visited edge of the graph, and the last hitting time corresponds the first time the random walk cannot perform
an additional move without revisiting a previously visited edge, the continuous analogue of the random walk.

A question that can be arisen in real world network phenomena is what if the random selection of a neighbor
vertex is varying by the number of the previously visited vertices? The study of such random walks on random
graphs can be realized by considering random walks on d-dimensional integer lattices, d ≥ 1, with transition
probabilies varying by the number of steps.

In this work, we introduce nearest neighbour random walks on the integers and on the two-dimensional integer
lattice with transition probabilities q-varying by the number of steps, 0 < q < 1. These q-random walks are
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defined as Markov chains discrete time stochastic processes. Our main results characterize under which conditions
the considered q-random walks are transient or reccurent. Also, we define the relative continuous time q- random
walks stochastic processes. Moreover, we present a q-Brownian motion as a continuous analogue of the q-random
walk stochastic process on the integers. The maxima and first hitting time of this q-Brownian motion are studied.
Furthermore, we produce simulations in R of all the considered stochastic processes, indicating first hitting times
to the origin. As further study, we propose nearest neighbour q-random walks on the three-dimensional integer
lattiice.
q-Random walks in square or triangular lattices, where a vertex is added to one of the four or six directions
respectively, according to edge (transition) probabilities varying by the number of previously visited vertices,
can be applied to describe among others several real world phenomena arising in networkscience, neuroscience
and statistical mechanics.

2 Preliminaries, Definitions and Notation

2.1 Markov Chains and Classification of States

Let a discrete time stochastic process {X(t), t ∈ T}, where T a countable set. If T is the set of nonnegative
integers, then the process is denoted as Xn, n = 0, 1, 2, . . . . If Xn = i, then the process is said to be in state i
at time n. The one-step transition probability from state i to state j, say Pi,j , is given by

Pi,j = P (Xn+1 = j + 1/Xn = i,Xn−1 = in−1, . . . , X0 = i0) , (1)

for all states i0, i1, . . . , in−1, i, j, n ≥ 0. This stochastic process is known as a Markov chain.
The n-step transition probability, say Pni,j , is given by

Pni,j = P (Xn+m = j + 1/Xm = i) , n ≥ 0, i, j ≥ 0. (2)

If Pni,j > 0 for some n ≥ 0, we say that state j is accessible from state i. States i and j communicate if state j
is accessible from state i and state i is accessible from state j. The Markov chain is said to be irreducible if all
states communicate with each other.

A state i is recurrent if with probability 1, the process will reenter state i. A state i is transient if with
probability< 1, the process will reenter state i. A state i is recurrent if

∑∞
n=0 P

n
i,i =∞. A state i is transient if∑∞

n=0 P
n
i,i <∞. If state i is recurrent and state i communicates with state j, the state j is recurrent.

2.2 q-Series Preliminaries, 0 < q < 1

The q-binomial coefficient is defined by(
n

k

)
q

:=
(q; q)n

(q; q)k(q; q)n−k
=

[n]q!

[k]q![n− k]q
,

where

[n]q! = [1]q[2]q . . . [n]q =
(q; q)n

(1− q)n
=

∏n
k=1(1− qk)

(1− q)n

is the q-factorial number of order n with [t]q = 1−qt
1−q .

The q-binomial coefficient
(
n
k

)
q
, for n and k positive integers, equals the k-combinations {m1,m2, . . . ,mk} of

the set {1, 2, . . . , n}, weighted by qm1+m2+···+mk−(k+1
2 ),∑

1≤m1<m2<···<mk≤n

qm1+m2+···+mk−(k+1
2 ) =

(
n

k

)
q

. (3)

Let n be a positive integer and let x, y and q be real numbers, with q 6= 1. Then, a version of q-Cauchy formula
is (

x+ y

n

)
q

=

n∑
k=0

qk(y−n+k)
(
x

k

)
q

(
y

n− k

)
q

. (4)
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The q-multinomial coefficient is defined by(
n

k1, k2, . . . , kr−1

)
q

=
[n]q!

[k1]q![k2]q! · · · [kr−1]q![kr]q!
, (5)

where kr = n− k1 − k2 − · · · − kr−1, for ki = 0, 1, 2, . . . , n, i = 1, 2, . . . , r,n = 0, 1, 2, . . . .
Kyriakoussis and Vamvakari [KV13], have established the following q-Stirling formula for n → ∞, of the

q-factorial number of order n,

[n]q! ∼=
(2π(1− q))1/2

(q log q−1)1/2

q(
n
2)q−n/2[n]

n+1/2
1/q∏∞

j=1(1 + (q−n − 1)qj−1)
. (6)

Let a sequence of q-Bernoulli trials with varying probability of success at the ith trial,

pi =
θqi−1

1 + θqi−1
, i = 1, 2, . . . , 0 < q < 1, 0 < θ <∞.

Then the probability function (p.f) of the number X of successes at n such trials is given by

fX(x) = P (X = x) =

(
n

x

)
q

q(
x
2)θx∏n

j=1(1 + θqj−1)
, x = 0, 1, . . . , n, (7)

for θ > 0, 0 < q < 1. The distribution of the random variable (r.v.) X is called q-binomial distribution of the
first kind, with parameters n, θ and q (see Charalambides [Cha16]).

3 Main Results

3.1 q-Random Walks on the Integers

In this section, we introduce a nearest neighbour q-random walk on the integers with transition probabilities
q-varying by the number of steps, 0 < q < 1. This random walk is defined as a Markov chain discrete time
stochastic process.

Definition 3.1. The Markov chain whose state space is the set of all integers with q-varying transition proba-
bilities, 0 < q < 1, given by

Pi,i+1 =
θqi−1

1 + θqi−1
= 1− Pi,i−1, i = 0,±1,±2, . . . , 0 < q < 1, 0 < θ <∞ (8)

is called q-random walk on the integers.

At each state of the q-random walk the chain either increases or dicreases by 1, with respective probabilities
Pi,i+1 and Pi,i−1, i = 0, 1, 2, . . . , of independent q-Bernoulli trials. Because all states communicates, they are
either all transient or recurrent. Therefore, we consider state 0 and determine whether

∑∞
n=0 P

n
0,0 is finite or

infinite. Because it is impossible to be back in the initial state after an odd number of transitions, we have
that

∑∞
n=0 P

2n+1
0,0 = 0, n ≥ 0. But the chain will be back in initial state after 2n transitions if n of them

were increases and n of them were decreases. Because each q-Bernoulli trial results in an increased state with
probability Pi,i+1, i = 1, 2, . . . , 2n, by the p.f. (7), the desired probability is the q-binomial probability of the
first kind

P 2n
0,0 =

(
2n

n

)
q

q(
n
2)θn∏2n

j=1(1 + θqj−1)
, θ > 0, 0 < q < 1. (9)

By using q-Stirling formula (6), the next theorem is concluded.

Theorem 3.2. The q-random walk on the integers after 2n steps, starting from the origin 0, for θ constant or
for θ = q−αn, 0 < a < 1, n = 0, 1, 2, . . . is recurrent, while for θqn →∞, as n→∞, is transient.
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Remark 3.3. 1 Possible realizations of the transience condition considered in the above theorem are among
others the next two ones

θ = q−cn, c > 1 or θ = exp(O(n)).

Next, we present the relative continuous time q-random walk stochastic process. Analytically, consider the
time interval (0, t], t > 0, and partition it into parts which are geometrically decreasing with rate q, defined by
δi(n; t) = (n)−1q qi−1t, i = 1, 2, . . . , n, n ≥ 1. Also, consider the process generated by making a step of length

δ = 1 to the right and a step of length δ = 1 to the left at every time period (n)−1q qi−1t, i = 1, 2, . . . , n, with
probability of success (right step) and probability of failure (left step) given respectively by

P (Xi = δ) =
θ(n)−1q qi−1t

1 + θ(n)−1q qi−1t
and P (Xi = −δ) =

1

1 + θ(n)−1q qi−1t
, (10)

where 0 < q < 1, 0 < θ < ∞. Then, at time
∑n
i=1 δi(n; t) = t the position of the process is the r.v. Xn,q(t) =∑n

i=1Xi.

Definition 3.4. The continuous time stochastic process {Xn,q(t), t ≥ 0}, is called q-random walk stochastic
process with parameters q, n and θ, if the following properties hold

(a) In each of the consecutive mutually disjoint time intervals of length δi(n; t) = (n)−1q qi−1t, i =
1, 2, . . . , n, n ≥ 1, at most one event (right or left step) occurs and

P

(
Xn,q

(
1− qi

1− qn
t

)
−Xn,q

(
1− qi−1

1− qn
t

)
= δ

)
=

θqi−1t
(n)q

1 + θqi−1t
(n)q

,

(11)

P

(
Xn,q

(
1− qi

1− qn
t

)
−Xn,q

(
1− qi−1

1− qn
t

)
= −δ

)
=

1

1 + θqi−1t
(n)q

, δ = 1, i = 1, 2, . . . , n,

0 < θ <∞.

(b) The increments Xn,q(ti)−Xn,q(ti−1), where ti − ti−1 = (n)−1q qi−1t, i = 1, 2, . . . , n are independent.

(c) The process starts at time t = 0 with Xn,q(0) = 0.

Remark 3.5. 2 The above q-random walk stochastic process, has been recently defined by Vamvakari [Vam17].
This q-random walk stochastic process, has been proved that is approximated, as n → ∞, by a continuous
analogue one {Yq(t), t ≥ 0}, where the r.v. Yq(t) is the position after time t with probability density function

f(y, t) =
q−7/8

σ(2π)1/2

(
q−1 − 1

)1/2
(log q−1)1/2

(
(1− q)1/2

q3/2
· (y − µt)

σt
+ q−1

)−1/2
· exp

(
1

2 log q
log2

(
q−3/2(1− q)1/2 · (y − µt)

σt
+ q−1

))
, (12)

y > µt − σtq1/2(1− q)−1/2,

where the mean value µ and the variance σ2 of the r.v. Yq(t) are given by

µt = E(Yq(t)) = ct, σ2
t = V (Yq(t)) =

1− q
q

(ct)2 + ct. (13)

Definition 3.6. The continuous stochastic process {Yq(t), t ≥ 0}, is called q-Brownian motion with parameters
q, µt and σ2

t , if the following properties hold

(A) The distribution of the increment Yq(t2) − Yq(t1), with t2 − t1 = (1 − q)t, t > 0, is the linear transformed
standardized Stieltjes-Wigert distribution with p.d.f (12), where µt2−t1 = c(1− q)t and σ2

t2−t1 = 1−q
q (c(1−

q)t)2 + c(1− q)t.

(B) The increments Yq(tk)− Yq(tk−1), where tk − tk−1 = qk−1(1− q)t, k = 1, 2, . . . , are independent.
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(C) Yq(0) ≥ 0 and Yq(t) is continuous at t = 0.

Using suitably the above properties of the q-Brownian motion, the pdf (12) of the r.v.Yq(t), and its mean
value and variance (13), as well as the reflection principle, the following theorem is proved.

Theorem 3.7. Let Wq(T ) = max0≤t≤T Yq(t) the r.v. of the maxima in the q-Brownian motion and Tb the first
time passage of the process Yq(t) from the point b with b > µt − σtq1/2(1− q)−1/2. Then

P (Wq(T ) ≥ b) = q−15/8 (1− erf(Bt)) (14)

and the p.d.f of the first time passage from b is given by

fTb
(t) = −dBt

dt

2q−15/8√
π

exp
(
−B2

t

)
, (15)

where

Bt =
1√

2logq−1

(
log

(
q−3/2(1− q)1/2 b− µt

σt
+ q−1

)
+
logq

2

)
. (16)

3.2 q-Random Walks on the Two-Dimensional Integer Lattice

In this section, we introduce a nearest neighbourq- random walk on the two-dimensional integer lattice with
transition probabilities q-varying by the number of steps, 0 < q < 1. This random walk is defined as a Markov
chain discrete time stochastic process.

Definition 3.8. The Markov chain in which at each transition is likely to take one step to the right, left, up or
down in the plane with q-varying transition probabilities given respectively by

P(i,j),(i+1,j) =
θ1q

i−1

(1 + θ1qi−1)(1 + θ2qj−1)
,

P(i,j)(i−1,j) =
1

(1 + θ1qi−1)(1 + θ2qj−1)
,

P(i,j),(i,j+1) =
θ2q

j−1

(1 + θ1qi−1)(1 + θ2qj−1)
,

P(i,j)(i,j−1) =
θ1q

i−1θ2q
j−1

(1 + θ1qi−1)(1 + θ2qj−1)
, i, j = 0,±1,±2, . . . , (17)

where 0 < θ1 <∞, 0 < θ2 <∞, 0 < q < 1, is called q-random walk on the two-dimensional integer lattice.

We now study if this Markov chain is also recurrent as the q-random walk in one-dimension. Because the q-
random walk in two-dimensions is irreducible, it follows that all states are recurrent if state 0= (0, 0) is recurrent.
Now after 2n transitions the chain will be back if for some x, x = 0, 1, . . . , n, the 2n steps consist of x steps to
the right, x to the left, n − x up, and n − x down. Each step will be independenlty in any of these directions
with varying probabilities given respectively by (17).

Let X+ be the number of “right steps”, X− be the number of “left steps”, Y + be the number of “up steps” and
Y − be the number of ’“down steps” after 2n steps. We need to find the probability function of the 4th-variate
random variable (X+, X−, Y +, Y −).

Let Ai be the event of “right step” at the ith step, i = 1, 2, . . . , n, and consider a permutation
(i1, i2, . . . , ix, ix+1, . . . , in) of the n positive integers. Also, let Bj be the event of “up step” at the jth step,
j = 1, 2, . . . , n with i + j = n, and consider a permutation (j1, j2, . . . , jn−x, jn−x+1, . . . , in) of the n positive
integers. Then using the independence of each step, the q-varying transition probabilities (17), the relations
(3),(5) and

(
n
2

)
=
(
x
2

)
+
(
n−x
2

)
+ x(n− x), we derive the following lemma.

Lemma 3.9. Let the 4th-variate random variable (X+, X−, Y +, Y −) , where X+ be the number of “right steps”,
X− be the number of “left steps”, Y + be the number of “up steps” and Y − be the number of ’“down steps” after
2n steps in the two-dimensional q-random walk starting from the origin 0. Then, it holds that

Pn0,0 = P
(
X+ = x,X− = x, Y + = n− x, Y − = n− x

)
=

=
θ2n2 q2(

n
2)
(

2n
x,x,n−x

)
q
q−x(n−x)

(
θ1
θ2

)2x
∏2n
i=1 (1 + θ1qi−1 + θ2qn−i−1 + θ1θ2qn−2)

, x = 0, 1, 2, . . . , n. (18)
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By the above lemma 3.9, the q-Cauchy formula (4) and the q-Stirling formula (6), the next theorem is
concluded.

Theorem 3.10. Let the q-random walk on the 2D dimensional integer lattice after 2n steps, starting from the
origin 0, with θ1/θ2 = qn/2, n = 0, 1, 2, . . .. Then for θ2 constant or for θ2 = q−αn, 0 < a < 1, n = 0, 1, 2, . . . ,
the 2D q-random walk is recurrent, while for θ2q

n →∞, as n→∞, is transient.

Remark 3.11. 3 Possible realizations of the transience condition considered in the above theorem are among
others the next two ones

θ2 = q−cn, c > 1 or θ2 = exp(O(n)).

Next, we introduce the relative bivariate q-random walk stochastic process. Analytically, let the time interval
(0, t], t > 0, and partition it into parts which are geometrically decreasing with rate q, defined by δi(n; t) =
(n)−1q qi−1t, i = 1, 2, . . . , n, n ≥ 1. Also, let the process generated by taking one step, of length δ = 1, to the

right, left, up or down in the plane at every time period (n)−1q qi−1t, i = 1, 2, . . . , n n ≥ 1, with q-varying
transition probabilities

pi,1 = P (Xi = δ, Yi = 0) =
θ1q

i−1t/(n)q
(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)

,

pi,2 = P (Xi = −δ, Yi = 0) =
1

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

Pi,3 = P (Xi = 0, Yi = δ) =
θ2q

n−i−1t/(n)q
(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)

,

Pi,4 = P (Xi = 0, Yi = −δ) =
θ1θ2q

n−2t2/(n)2q
(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)

, (19)

where 0 < θ1 < ∞, 0 < θ2 < ∞, 0 < q < 1 with θ1/θ2 = qn/2. Then, at time
∑n
i=1 δi(n; t) = t, the position of

the process is the bivariate r.v. (Xn,q(t), Yn,q(t)) with Xn,q(t) =
∑n
i=1Xi and Yn,q(t) =

∑n
i=1 Yi.

Definition 3.12. The continuous time bivariate stochastic process {(Xn,q(t), Yn,q(t)) , t > 0}, is called bivariate
q-random walk stochastic process with parameters n, θ1, θ2 and q, 0 < q < 1, if the following properties hold

(a) In each of the consecutive mutually disjoint time intervals of length δi(n; t) = (n)−1q qi−1t, i =
1, 2, . . . , n, n ≥ 1, at most one event (right or left or up or down step) occurs and

P

(
Xn,q

(
1− qi

1− qn t
)
−Xn,q

(
1− qi−1

1− qn t

)
= δ, Yn,q

(
1− qi

1− qn t
)
− Yn,q

(
1− qi−1

1− qn t

)
= 0

)
=

θ1q
i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn t
)
−Xn,q

(
1− qi−1

1− qn t

)
= −δ, Yn,q

(
1− qi

1− qn t
)
− Yn,q

(
1− qi−1

1− qn t

)
= 0

)
=

1

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn t
)
−Xn,q

(
1− qi−1

1− qn t

)
= 0, Yn,q

(
1− qi

1− qn t
)
− Yn,q

(
1− qi−1

1− qn t

)
= δ

)
=

θ2q
n−i−1t/(n)q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
,

P

(
Xn,q

(
1− qi

1− qn t
)
−Xn,q

(
1− qi−1

1− qn t

)
= 0, Yn,q

(
1− qi

1− qn t
)
− Yn,q

(
1− qi−1

1− qn t

)
= −δ

)
=

θ1θ2q
n−2t2/(n)2q

(1 + θ1qi−1t/(n)q)(1 + θ2qn−i−1t/(n)q)
, δ = 1, i = 1, 2, . . . , n, 0 < θ1, θ2 <∞, θ1/θ2 = qn/2.

(b) The bivariate increments (Xn,q(ti)−Xn,q(ti−1), Yn,q(ti)− Yn,q(ti−1)) , where ti − ti−1 = (n)−1q qi−1t, i =
1, 2, . . . , n, are independent.

(c) The process starts at time t = 0 with (Xn,q(0), Yn,q(0)) = (0, 0).
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3.3 q-Random Walks Processes and q-Brownian Simulations in R

Using definition 3.4, the q-random walk process has been simulated in R. Figures 1-6 represent the results of
these simulations for various values of the parameters q, n, θ and t. There is strong indication, implied by
theorem 3.2, that for θ constant or for θ = q−αn, 0 < a < 1, even for small values of n, the 1st return to the
origin occurs before or at time t. While, for θ = q−cn, c > 1 or θ = exp(O(n)), there is no return to the origin.
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Figure 1: Generation of 5, q-Random Walk Processes in R with with q = 0.7, n = 30, θ = q−15, t = 1.

Figure 2: Generation of 5, q-Random Walks Processes with q = 0.7, n = 30, θ = 1, t = 10.

Figure 3: Generation of 5, q-Random Walks Processes with q = 0.9, n = 30, θ = 1, t = 10.
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Figure 4: Generation of 5 q-Random Walks with θ = 10, q = 0.5, n = 30, t = 10.

Figure 5: q-Random Walk Process with q = 0.7, n = 30, θ = q−45, t = 10.

Figure 6: q-Random Walks Process with q = 0.7, n = 30, θ = exp(30), t = 10.

Also, q-Brownian motion simulation in R has been produced by definition 3.6. Figures 7-8 represent the
results of these simulations for some values of the parameters q and t.
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Figure 7: q-Brownian Motion Simulation in R with q = 0.9, t = 1.

Figure 8: q-Brownian Motion Simulation in R with q = 0.9, t = 10 .

Moerover, using definition 3.12 the two-dimensional q-random walk process has been simulated in R-package.
Figures 9-14 represent the results of these simulations for various values of the parameters q, n, θ1, θ2 and t.
Analogously as in one-dimension, there is strong indication, implied by theorem 3.10, that for θ2 constant or for
θ2 = q−αn, 0 < a < 1, with θ1/θ2 = qn/2, even for small values of n, the 1st return to the origin occurs before
or at time t. While, for θ2 = q−cn, c > 1 or θ2 = exp(O(n)), there is no return to the origin. Note that R-codes
are available under request.
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Figure 9: 2D q-Random Walk Process Simulation in R with q = 0.9, n = 20, θ2 = q10, t = 10.

Figure 10: 2D q-Random Walk Process Simulation in R with q = 0.9, n = 20, θ2 = q10, t = 1.

Figure 11: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = q10, t = 10.
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Figure 12: 2D q-Random Walk Process Simulation in R with q = 0.7, n = 20, θ2 = q−10, t = 10.

Figure 13: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = q−30, t = 10.

Figure 14: 2D q-Random Walk Process Simulation in R with q = 0.5, n = 20, θ2 = e10, t = 10.

3.4 Further Study

q-Random walks in higher than two dimensions can also be defined. For instance, we can introduce a nearest
neighbour random walk on the three-dimensional integer lattice with transition probabilities q-varying by the
number of steps, 0 < q < 1. This random walk is defined as a Markov chain discrete time stochastic process as
follows.

Definition 3.13. The Markov chain in which at each transition is likely to take one step to the six directions
to the right, left, up, down, in, or out in the space, with q-varying transition probabilities given respectively by

P(i,j,k),(i+1,j,k) =
θ1q

i−1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

P(i,j,k)(i−1,j,k) =
1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

P(i,j,k),(i,j+1,k) =
θ2q

j−1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

P(i,j,k)(i,j−1,k) =
θ2q

i−1θ3q
k−1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

P(i,j,k),(i,j,k+1) =
θ3q

k−1 + θ1q
i−1θ3q

k−1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

P(i,j,k)(i,j,k−1) =
θ1q

i−1θ2q
j−1θ3q

k−1

(1 + θ1qi−1)(1 + θ2qj−1)(1 + θ3qk−1)
,

where i, j, k = 0,±1,±2, . . ., 0 < θ1, θ2, θ3 < 1, 0 < q < 1, is called q-random walk in three-dimensional integer lattice.

Starting from this three dimensional q-random walk, it is interestingly to study the transience and recurrency
of q-random walks higher than two dimensions. Also, random walks in square or triangular lattices, where a
vertex is added to one of the four or six directions respectively, according to edge (transition) probabilities varying
by the number of previously visited vertices, can be applied to describe several real world network, neuroscience
and statistical physics phenomena.

References

[AF02] D. F. Aldous, J.A. Fill. Reversible Markov Chains and Random Walks on Graphs.Unfinished monograph,
2002. https://www.stat.berkeley.edu/users/aldous/RWG/Book_Ralph/book.html

[And99] G. E. Andrews, R. Askey, R. Roy. Special Functions. Cambridge University Press, Cambridge, NY,
1999.

164

 https://www.stat.berkeley.edu/users/aldous/RWG/Book_Ralph/book.html


[Bol01] B. Bollobás. Random Graphs. 2nd Edition, Cambridge University Press, Cambridge, 2001.

[Cha16] C, A. Charalambides. Discrete q-Distributions. John Wiley Sons, New Jersey, 2016.

[DS97] D. Crippa, D. K. Simon. q-Distributions and Markov processes. Discrete Mathematics, 170:81-98, 1997.

[Fel64] W. Feller. An Introduction to Probability Theory and its Applications- Volume 1. Wiley, NY, 1964.
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