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Abstract

The aim of this work is twofold, on the one hand the associated ¢-
orthogonal polynomials with a class of discrete g-distributions, by their
weight functions are derived and on the other hand the combinatorial
interpretation of these g-orthogonal polynomials is presented. Specifi-
cally, we derive the associated g-orthogonal polynomials with some de-
formed types of the g-negative Binomial of the second kind, g-binomial
of the second kind and Euler distributions. The derived g-orthogonal
polynomials are based on the little ¢-Jacobi, affine ¢-Krawtchouk and
little g-Laguerre/Wall orthogonal polynomials, respectively. Also, we
provide a combinatorial interpretation of these g-orthogonal polynomi-
als, as applications of a generalization of matching extensions in paths,
already presented by the authors.

1 Introduction

Kemp [Kem92al [Kem92b], introduced Heine and Euler, g-Poisson distributions, with probability functions given
respectively by

FH(2) :eq(—)\)qitf,x:0,1,27..., 0<g<1, 0<A<oo (1)

and
2(r) = By )\)[;\];,:czo,l,l..., 0<g<1, 0<Al-gq) <1, (2)

where N N

“ale) =2, Ry . 2 o~ g <! ®)

and
B =3 0 (q?”q@zn S g <1 )

@ @n [n]q
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Charalambides [Chal0l [Chal6], derived Heine as direct approximation, as n — oo, of the ¢g-Binomial I and the
g-negative Binomial I, with probability functions given respectively by

FB(z) = (Z) q(3>9f1‘[(1+eqj—1)—1, c=01,...n, (5)

and

n+x

NB(g) = (’”il) d@or [ +64 )" 2=0,1,..., (6)

j=1
where 0 > 0, 0 < ¢ < 1.

Moreover, Charalambides [Chal0l [Chal6], derived Euler distribution as direct approximation, as n — oo, of
the g-Binomial IT and the negative g-Binomial II, with probability functions given respectively by

n xn—a: -
BS(x) = (m) 0 H(l—@qj b, 2=0,1,...,n, (7)
q j=1
and
FNBS(2) = (””_1) 0° T2 —64"), e =0,1,..., (8)
t a  j=1

where 0 < <land 0 <g<1lorl<g<oowithg" 1 < 1.

Kyriakoussis and Vamvakari [KV10| introduced deformed types of the g-negative Binomial of the first kind,
g-binomial of the first kind and of the Heine distributions and derived the associated g-orthogonal polynomials,
based on discrete g-Meixner, ¢g-Krawtchouk and ¢g-Charlier orthogonal polynomials respectively.

Moreover, Kyriakoussis and Vamvakari [KV12] established families of terminating and non-terminating ¢-Gauss
hypergeometric series discrete distributions and associated them with defined classes of generalized g-Hahn and
big g-Jacobi orthogonal polynomials, respectively.

Also, Kyriakoussis and Vamvakari[KV05] presented generalization of matching extensions in graphs and provided
combinatorial interpretation of wide classes of orthogonal and g-orthogonal polynomials as generating functions
of matching sets in paths.

In this paper, we derive the associated g-orthogonal polynomials with some deformed types of the g-negative
Binomial of the second kind, g-binomial of the second kind and Euler distributions. The derived g-orthogonal
polynomials are based on the little g-Jacobi, affine ¢-Krawtchouk and little ¢-Laguerre/Wall orthogonal
polynomials respectively. Also, we provide a combinatorial interpretation of these g-orthogonal polynomials, as
applications of a generalization of matching extensions in paths, already prresented by the authors.

For the needs of this paper the class of discrete g-distributions, g-negative Binomial I, g-Binomial I and Heine
will be called class of discrete q-distributions of type I, while the class of discrete g-distributions, g-negative
Binomial II, ¢g-Binomial IT and Euler will be called class of discrete q-distributions of type II.

2 Preliminaries

Let v be a probability measure in R with finite moments of all orders

s = /R 2 dv(z).

Then there exist a sequence of normalized orthogonal polynomials {p.,,(x)} with respect to the measure v
satisfying the recurrence relation

P () = Pmy1(®) + P (x) + byPm—1(x), m > 1, 9)
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with initial conditions
po(z) =1, pi(x) =2 — aop.

Moreover, they satisfy the orthogonality relation
/ pm(x)pu(x)dv(‘r) = 5mub1b2 T bm7 m,v >0 (10)
s

where 6,,, the Kronecker delta.
The polynomials {p,,,(x)} depend on the moment sequence {sp, }m>0 and they can be obtain from the formula

S0 S1 oo Sm
S1 S92 oo Sm41
b1b2 . bm . . . .
pm(x) = \/ D, D |- : : : ) (11)
Sm—1 Sm ... S2m-—1
1 z ...ox™

where D,,, = det({s;+; }o<i,j<m) denotes the Hankel determinant.

Conversely, Favard’s (1935) theorem ensures the existence of a probability measure v on R for which the sequence
of polynomials determined by the recurrence relation @D are orthogonal. It can also be shown that the probability
measure v is supported only in finitely many points if and only if b,, = 0 for some m on, thus the sequence of
polynomials is essentially finite. The mean value and the variance of the random variable X in R with probability
density function v(z) are given respectively by

p=ay and o2 =b.

If a,, = 0 then all moments of odd order are zero
Somi1 = / m2m+1dv(x) =0.
TER

Also, from the recurrence relation @D the following representation of orthogonal polynomials is derived
pm(T) =

T+ aq b;/Q 0 0
bé/2 T+ as bé/z 0 :
0 bL/? x+az
po(z) . .3 ) ° (12)
0
: . T+ by_1 0%2
0 0 b2 T+ by

(see Szegd( [Szeb9], p.374).

Note that the probability measure v is uniquely determined if the coefficinets a,, and b, in the rec-
curence relation (9) are bounded when m — oo (see Christiansen [Chr04]).

The g-orthogonal polynomials Little g-Jacobi, affine ¢-Krawtchouk and little ¢-Laguerre/Wall satisfy the
recurrence relation @ with a,, and b,, given in the next table respectively.
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Table 1 : g-Classical Orthogonal Polynomials: Little g-Jacobi, affine ¢-Krawtchouk and little ¢g-Laguerre/Wall

Little g-Jacobi

P (a5a,b;q)

g™ (1+a%bg™  +a(1-(14b)g™ —(14b)g™ —(1+b)g™ > +bg"" 7))
m (1—abg?™)(1—abg?>m+2)

b —aq" T (1—q™)(1—aq™)(1—bg™)(1—abg™)(c—abqg™)(1—cq™)
m (1—abg?®™)2(1—abg®>™—1)(1—abg?™+1)

Affine g-Krawtchouk
pﬁff(fv;p, n,q)
m | 1= [0 =¢"™)(A —pg™ ") = pg™ (1 — ¢™)]
b [ pg" "1 —q™) (A —pg™) A — g™ ")
Little ¢g-Laguerre/Wall

pEEW (2, a5q)

am ‘ qm(l_ m+1)+aq (l_qm)
b | ag®™ (1 - ¢™)(A — ag™)

3 Main Results
3.1 Associated ¢-Orthogonal Polynomials with the class of Discrete g-Distributions of type II

In this section we derive the associated g-orthogonal polynomials with the class of discrete g- distributions of
type II, , and , in respect to their weight functions. We begin by transfering from the random variable X
of the g-negative Binomial of the second kind distribution to the equal-distributed deformed random variable
Y = [X];, and we obtain a deformed g-negative Binomial II distribution defined in the spectrum S = {[z],,
x=0,1,...} with p.f.

Yy = <n+§((z)) a 1>q9g(y)J1_[1 — 01, 0<0<1,0<qg<1,
y = [0lg [1g, [2]g,---, (13)
where
gly) = M

Ingq
Using the orthogonality relation of the normalized little g-Jacobi orthogonal polynomials [[sm05], [KS98] and the

linear transformation of orthogonal polynomials [Sze59|, we easily derive the following result.

Proposition 3.1. The probability distribution with p.f. fNBS( ) is induced by the normalized linear transfor-
mation of the little q-Jacobi orthogonal polynomials, say p;,(y;a,b,q), 0 < q < 1, given by

-1 a'bq +1; qd)m i
P (y;a,b,q) = ((m)) ( o L3 (4 0,8,), (14)
q\2/ (1= q)™(ag; ¢)m
wherey = [z]q, x =0,1,..., and pLitt (y;a,b, q) the little g-Jacobi orthogonal polynomials with parameter a = 0/q

and b= ¢ 1.

Next, we transfer from the random variable X of the g-Binomial of the second kind distribution to the
equal-distributed deformed random variable ¥ = [X],, and we obtain a deformed ¢-Binomial II distribution
defined in the spectrum S = {[z],, = =0,1,...} with p.f.

—g(y
Py = (g )99(y H —0¢H,0<0<1,0<qg<1,

j=1

y = [0g[Hg, 25 - (15)
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where
(1 - (1 - q)y)

9(y) = Ing

Using the orthogonality relation of the normalized affine g-Krawtchouk orthogonal polynomials [Ism05}, [KS98]
and the linear transformation of orthogonal polynomials [Szeb9], we easily derive the following result.

Proposition 3.2. The probability distribution with p.f. f{?s(y) 1s induced by the normalized linear transforma-

tion of deformed affine q-Krawtchouk orthogonal polynomials, say p;‘,‘LK (y;p,q,m), 0 < q <1, given by
pripna) = (1=a) (g, a5 Q)mpw’ (¢ "y; 01, ), (16)
where y = [z]q, z = 0,1,..., and pAff(g~™y:ip,n, q) the deformed affine q-Krawtchouk orthogonal polynomials

with parameter p = 0/q.

Finally, we transfer from the random variable X of the Euler distribution to the equal-distributed deformed
random variable Y = [X],, and we obtain a deformed Euler distribution defined in the spectrum S = {[z],,
x=0,1,...} with p.f.

L = E,(-\ A 0 1, 0 < A1 1
fY(y) - q(_ )W)]qp <gqg <l < ( _Q)< 3
y = [0lg[tg: [2lg, -, (17)
where

Ingq

Using the orthogonality relation of the normalized little ¢-Laguerre/Wall orthogonal polynomials [[sm05] [KS98]
and the linear transformation of orthogonal polynomials [Sze59], we easily derive the following result.

Proposition 3.3. The probability distribution with p.f. f£(y) is induced by the normalized linear transformation
of the little q-Laguerre/Wall orthogonal polynomials, say p% (y;a,q), 0 < g < 1, given by

Pha,q) = (~1)"™(ag:q)m(1 - q) "¢ pEEY (y50,0), (18)
where y = [z]y, ©=0,1,..., and pLW (y; a, q) the little q-Laguerre/Wall orthogonal polynomials with parameter

a=XA1-gq).

Remark 3.4. The approximation, as n — oo, of the ¢-Binomial I and the g-negative Binomial I to the Heine dis-
tribution, can alternatively be concluded by the limit of the associated g-orthogonal polynomials, g-Krawtchouk
and g-Meixner to the g-Charlier ones. Also, the approximation, as n — oo, of the ¢g-Binomial IT and the ¢-
negative Binomial IT to the Euler distribution, can also be concluded by the limit of the associated little g-Jacobi
and affine ¢g-Krawtchouk to the little g-Laguerre/Wall ones. The above mentioned conclusions can be justified
since the coefficients in the recurrence relation of the associated g-orthogonal polynomials are bounded in m.

3.2 Combinatorial Interpetation of the Associated ¢-Orthogonal Polynomials

Combinatorial interpretation of orthogonal polynomials using matchings in graphs has received much attention
by several authors over the last decades. Among them we refer to Feinsilver et al [FSS96], Godsil [God81], Godsil
and Gutman |[GGS8I], Viennot [Vie83], and Heilmann and Lieb [HL72], Kyriakoussis and Vamvakari [KV05].
Let G be a simple graph on m vertices with vertex labels 1 to m, having edge weight W (i, j) a non-negative real
number for each unordered pair of vertices < 7,5 > ,1=1,2,...,m, 7 =1,2,...,m, @ < j and vertex weight
w;, 1 =1,2,...,m. Also, let M be a matching set of G consisting of disjoint edges pairwise having no vertex in
common. Then the weight of M, say Wg (M), is defined by

Wo(M) = T[ W5 [] w

(i,7)eM iEgM
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and the corresponding generating function in m variables including the vertex and edge weights is defined by

P(Giwi,wy, . wm) = > (=DM T Wi, 5) [ w

M (i,5)eM igM

with | M| the number of edges in M, summing over all matchings M of G .

Let L., be a path on m vertices with edge weight W (i, j) > 0 when |i — j| =1, W (i,j) = 0 otherwise and with
vertex weight w;, ¢ =1,2,...,m. Note that w; and W (i,i + 1) are bounded sequences in 4, i=1,2,....
Kyriakoussis and Vamvakari [KV03], setting

L, = P(Lp;wi,we, ..., Wy)
= Y =0T w6 [T ws (19)
M (i,5)eM igM

where |M| the number of edges in M, have proved the following proposition.

Proposition 3.5. The generating function of matching sets in paths, L,,, satisfies the recurrence relation
£7n+1 = wn+1£m — W(m, m + I)Em_l, m = O7 1, 2, ‘e (20)
with initial conditions L_1 =0 and Lo = 1.

Remark 3.6. Setting in vertex weight w,, = = — a,, and edge weight W (m,m + 1) = b,,, where a,
and b, are bounded sequences in m, and comparing (20) with @, we have a wide class of generating func-
tions of matching sets in paths identified with g-orthogonal polynomials. Between them the little g-Jacobi,
affine ¢-Krawtchouk and little g-Laguerre/Wall polynomials where the bounded sequences a,, and b, are given
respectively in the Table 1.

Remark 3.7. 3. Setting in (20) vertex weight w,, = [z], — d,, and edge weight W (m,m + 1) = g,,,, where
dy, and g, are bounded sequences in m and comparing (20) with @D we have a wide class of generating
functions of matching sets in paths identified with transformed g-orthogonal polynomials. Between them the
associated transformed little ¢-Jacobi, affine ¢-Krawtchouk, and little ¢-Laguerre/Wall polynomials with the
deformed g-negative binomial of type II, g-binomial of type IT and Euler distributions respectively.
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