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Abstract

The aim of this work is twofold, on the one hand the associated q-
orthogonal polynomials with a class of discrete q-distributions, by their
weight functions are derived and on the other hand the combinatorial
interpretation of these q-orthogonal polynomials is presented. Specifi-
cally, we derive the associated q-orthogonal polynomials with some de-
formed types of the q-negative Binomial of the second kind, q-binomial
of the second kind and Euler distributions. The derived q-orthogonal
polynomials are based on the little q-Jacobi, affine q-Krawtchouk and
little q-Laguerre/Wall orthogonal polynomials, respectively. Also, we
provide a combinatorial interpretation of these q-orthogonal polynomi-
als, as applications of a generalization of matching extensions in paths,
already presented by the authors.

1 Introduction

Kemp [Kem92a, Kem92b], introduced Heine and Euler, q-Poisson distributions, with probability functions given
respectively by
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Charalambides [Cha10, Cha16], derived Heine as direct approximation, as n → ∞, of the q-Binomial I and the
q-negative Binomial I, with probability functions given respectively by
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)
q

q(
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2)θx
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(1 + θqj−1)−1, x = 0, 1, . . . , n, (5)

and
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q

q(
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(1 + θqj−1)−1, x = 0, 1, . . . , (6)

where θ > 0, 0 < q < 1.

Moreover, Charalambides [Cha10, Cha16], derived Euler distribution as direct approximation, as n → ∞, of
the q-Binomial II and the negative q-Binomial II, with probability functions given respectively by
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(1− θqj−1), x = 0, 1, . . . , n, (7)

and
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q
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(1− θqj−1), x = 0, 1, . . . , (8)

where 0 < θ < 1 and 0 < q < 1 or 1 < q <∞ with θqn−1 < 1.
Kyriakoussis and Vamvakari [KV10] introduced deformed types of the q-negative Binomial of the first kind,
q-binomial of the first kind and of the Heine distributions and derived the associated q-orthogonal polynomials,
based on discrete q-Meixner, q-Krawtchouk and q-Charlier orthogonal polynomials respectively.
Moreover, Kyriakoussis and Vamvakari [KV12] established families of terminating and non-terminating q-Gauss
hypergeometric series discrete distributions and associated them with defined classes of generalized q-Hahn and
big q-Jacobi orthogonal polynomials, respectively.
Also, Kyriakoussis and Vamvakari[KV05] presented generalization of matching extensions in graphs and provided
combinatorial interpretation of wide classes of orthogonal and q-orthogonal polynomials as generating functions
of matching sets in paths.
In this paper, we derive the associated q-orthogonal polynomials with some deformed types of the q-negative
Binomial of the second kind, q-binomial of the second kind and Euler distributions. The derived q-orthogonal
polynomials are based on the little q-Jacobi, affine q-Krawtchouk and little q-Laguerre/Wall orthogonal
polynomials respectively. Also, we provide a combinatorial interpretation of these q-orthogonal polynomials, as
applications of a generalization of matching extensions in paths, already prresented by the authors.
For the needs of this paper the class of discrete q-distributions, q-negative Binomial I, q-Binomial I and Heine
will be called class of discrete q-distributions of type I, while the class of discrete q-distributions, q-negative
Binomial II, q-Binomial II and Euler will be called class of discrete q-distributions of type II.

2 Preliminaries

Let v be a probability measure in R with finite moments of all orders

sm =

∫
R

xmdv(x).

Then there exist a sequence of normalized orthogonal polynomials {pm(x)} with respect to the measure v
satisfying the recurrence relation

xpm(x) = pm+1(x) + ampm(x) + bmpm−1(x), m ≥ 1, (9)
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with initial conditions
p0(x) = 1, p1(x) = x− a0.

Moreover, they satisfy the orthogonality relation∫
S

pm(x)pν(x)dv(x) = δmνb1b2 · · · bm, m, ν ≥ 0 (10)

where δmν the Kronecker delta.
The polynomials {pm(x)} depend on the moment sequence {sm}m≥0 and they can be obtain from the formula

pm(x) =

√
b1b2 · · · bm
Dm−1Dm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sm
s1 s2 . . . sm+1

. . . .

. . . .

. . . .
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1 x . . . xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (11)

where Dm = det({si+j}0≤i,j≤m) denotes the Hankel determinant.
Conversely, Favard’s (1935) theorem ensures the existence of a probability measure v on R for which the sequence
of polynomials determined by the recurrence relation (9) are orthogonal. It can also be shown that the probability
measure v is supported only in finitely many points if and only if bm = 0 for some m on, thus the sequence of
polynomials is essentially finite. The mean value and the variance of the random variable X in R with probability
density function v(x) are given respectively by

µ = a0 and σ2 = b1.

If am = 0 then all moments of odd order are zero

s2m+1 =

∫
x∈R

x2m+1dv(x) = 0.

Also, from the recurrence relation (9) the following representation of orthogonal polynomials is derived
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

(see Szegö( [Sze59], p.374).

Note that the probability measure v is uniquely determined if the coefficinets am and bm in the rec-
curence relation (9) are bounded when m→∞ (see Christiansen [Chr04]).

The q-orthogonal polynomials Little q-Jacobi, affine q-Krawtchouk and little q-Laguerre/Wall satisfy the
recurrence relation (9) with am and bm given in the next table respectively.
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Table 1 : q-Classical Orthogonal Polynomials: Little q-Jacobi, affine q-Krawtchouk and little q-Laguerre/Wall

Little q-Jacobi
pLitJm (x; a, b; q)

am
qm(1+a2bqm+1+a(1−(1+b)qm−(1+b)qm−(1+b)qm+2+bq2m+1))

(1−abq2m)(1−abq2m+2)

bm
−aqm+1(1−qm)(1−aqm)(1−bqm)(1−abqm)(c−abqm)(1−cqm)

(1−abq2m)2(1−abq2m−1)(1−abq2m+1)

Affine q-Krawtchouk
pAffm (x; p, n, q)

am 1−
[
(1− qm−n)(1− pqm+1)− pqm−n(1− qm)

]
bm pqm−n(1− qm)(1− pqm)(1− qm−n−1)

Little q-Laguerre/Wall
pLLWm (x, a; q)
am qm(1− aqm+1) + aqm(1− qm)

bm aq2m−1(1− qm)(1− aqm)

3 Main Results

3.1 Associated q-Orthogonal Polynomials with the class of Discrete q-Distributions of type II

In this section we derive the associated q-orthogonal polynomials with the class of discrete q- distributions of
type II, (8),(7) and (2), in respect to their weight functions. We begin by transfering from the random variable X
of the q-negative Binomial of the second kind distribution (8) to the equal-distributed deformed random variable
Y = [X]q, and we obtain a deformed q-negative Binomial II distribution defined in the spectrum S = {[x]q,
x = 0, 1, . . .} with p.f.

fNBSY (y) =

(
n+ g(y)− 1

g(y)

)
q

θg(y)
n∏
j=1

(1− θqj−1), 0 < θ < 1, 0 < q < 1,

y = [0]q, [1]q, [2]q, . . . , (13)

where

g(y) =
ln(1− (1− q)y)

ln q
.

Using the orthogonality relation of the normalized little q-Jacobi orthogonal polynomials [Ism05, KS98] and the
linear transformation of orthogonal polynomials [Sze59], we easily derive the following result.

Proposition 3.1. The probability distribution with p.f. fNBSY (y) is induced by the normalized linear transfor-
mation of the little q-Jacobi orthogonal polynomials, say pJm(y; a, b, q), 0 < q < 1, given by

pJm(y; a, b, q) =
(−1)m(abqm+1; q)m

q(
m
2 )(1− q)m(aq; q)m

pLitJm (y; a, b, q), (14)

where y = [x]q, x = 0, 1, . . . , and pLitJm (y; a, b, q) the little q-Jacobi orthogonal polynomials with parameter a = θ/q
and b = qn−1.

Next, we transfer from the random variable X of the q-Binomial of the second kind distribution (7) to the
equal-distributed deformed random variable Y = [X]q, and we obtain a deformed q-Binomial II distribution
defined in the spectrum S = {[x]q, x = 0, 1, . . .} with p.f.

fBSY (y) =

(
n

g(y)

)
q

θg(y)
n−g(y)∏
j=1

(1− θqj−1), 0 < θ < 1, 0 < q < 1,

y = [0]q, [1]q, [2]q, . . . , (15)

175



where

g(y) =
ln(1− (1− q)y)

ln q
.

Using the orthogonality relation of the normalized affine q-Krawtchouk orthogonal polynomials [Ism05, KS98]
and the linear transformation of orthogonal polynomials [Sze59], we easily derive the following result.

Proposition 3.2. The probability distribution with p.f. fBSY (y) is induced by the normalized linear transforma-
tion of deformed affine q-Krawtchouk orthogonal polynomials, say pAKm (y; p, q, n), 0 < q < 1, given by

pAKm (y; p, n, q) = (1− q)−m(pq, q−n; q)mp
Aff
m (q−ny; p, n, q), (16)

where y = [x]q, x = 0, 1, . . . , and pAffm (q−ny; p, n, q) the deformed affine q-Krawtchouk orthogonal polynomials
with parameter p = θ/q.

Finally, we transfer from the random variable X of the Euler distribution (2) to the equal-distributed deformed
random variable Y = [X]q, and we obtain a deformed Euler distribution defined in the spectrum S = {[x]q,
x = 0, 1, . . .} with p.f.

fEY (y) = Eq(−λ)
λg(y)

[g(y)]q!
, 0 < q < 1, 0 < λ(1− q) < 1,

y = [0]q, [1]q, [2]q, . . . , (17)

where

g(y) =
ln(1− (1− q)y)

ln q
.

Using the orthogonality relation of the normalized little q-Laguerre/Wall orthogonal polynomials [Ism05, KS98]
and the linear transformation of orthogonal polynomials [Sze59], we easily derive the following result.

Proposition 3.3. The probability distribution with p.f. fEY (y) is induced by the normalized linear transformation
of the little q-Laguerre/Wall orthogonal polynomials, say pLm(y; a, q), 0 < q < 1, given by

pLm(y; a, q) = (−1)m(aq; q)m(1− q)−mq(
m
2 )pLLWm (y; a, q), (18)

where y = [x]q, x = 0, 1, . . . , and pLLWm (y; a, q) the little q-Laguerre/Wall orthogonal polynomials with parameter
a = λ(1− q).

Remark 3.4. The approximation, as n→∞, of the q-Binomial I and the q-negative Binomial I to the Heine dis-
tribution, can alternatively be concluded by the limit of the associated q-orthogonal polynomials, q-Krawtchouk
and q-Meixner to the q-Charlier ones. Also, the approximation, as n → ∞, of the q-Binomial II and the q-
negative Binomial II to the Euler distribution, can also be concluded by the limit of the associated little q-Jacobi
and affine q-Krawtchouk to the little q-Laguerre/Wall ones. The above mentioned conclusions can be justified
since the coefficients in the recurrence relation of the associated q-orthogonal polynomials are bounded in m.

3.2 Combinatorial Interpetation of the Associated q-Orthogonal Polynomials

Combinatorial interpretation of orthogonal polynomials using matchings in graphs has received much attention
by several authors over the last decades. Among them we refer to Feinsilver et al [FSS96], Godsil [God81], Godsil
and Gutman [GG81], Viennot [Vie83], and Heilmann and Lieb [HL72], Kyriakoussis and Vamvakari [KV05].
Let G be a simple graph on m vertices with vertex labels 1 to m, having edge weight W (i, j) a non-negative real
number for each unordered pair of vertices < i, j > , i = 1, 2, . . . ,m, j = 1, 2, . . . ,m, i < j and vertex weight
wi, i = 1, 2, . . . ,m. Also, let M be a matching set of G consisting of disjoint edges pairwise having no vertex in
common. Then the weight of M , say WG(M), is defined by

WG(M) =
∏
〈i,j〉εM

W (i, j)
∏
i 6∈M

wi
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and the corresponding generating function in m variables including the vertex and edge weights is defined by

P (G;w1, w2, . . . , wm) =
∑
M

(−1)|M |
∏
〈i,j〉εM

W (i, j)
∏
i6∈M

wi

with |M | the number of edges in M , summing over all matchings M of G .
Let Lm be a path on m vertices with edge weight W (i, j) > 0 when |i− j| = 1, W (i, j) = 0 otherwise and with
vertex weight wi, i = 1, 2, . . . ,m. Note that wi and W (i, i+ 1) are bounded sequences in i, i = 1, 2, . . . .
Kyriakoussis and Vamvakari [KV05], setting

Ln = P (Lm;w1, w2, . . . , wm)

=
∑
M

(−1)|M |
∏
〈i,j〉εM

W (i, j)
∏
i 6∈M

wi (19)

where |M | the number of edges in M , have proved the following proposition.

Proposition 3.5. The generating function of matching sets in paths, Lm, satisfies the recurrence relation

Lm+1 = wn+1Lm −W (m,m+ 1)Lm−1, m = 0, 1, 2, . . . (20)

with initial conditions L−1 = 0 and L0 = 1.

Remark 3.6. Setting in (20) vertex weight wm = x − am and edge weight W (m,m + 1) = bm, where am
and bm are bounded sequences in m, and comparing (20) with (9), we have a wide class of generating func-
tions of matching sets in paths identified with q-orthogonal polynomials. Between them the little q-Jacobi,
affine q-Krawtchouk and little q-Laguerre/Wall polynomials where the bounded sequences am and bm are given
respectively in the Table 1.

Remark 3.7. 3. Setting in (20) vertex weight wm = [x]q − dm and edge weight W (m,m + 1) = gm, where
dm and gm are bounded sequences in m and comparing (20) with (9) we have a wide class of generating
functions of matching sets in paths identified with transformed q-orthogonal polynomials. Between them the
associated transformed little q-Jacobi, affine q-Krawtchouk, and little q-Laguerre/Wall polynomials with the
deformed q-negative binomial of type II, q-binomial of type II and Euler distributions respectively.
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