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Abstract

A generalized ballot sequence is a sequence over the set of non-negative
integers where in any of its prefixes each positive integer i occurs at
most as often as any integer less than i. We show that the Reflected
Gray Code order induces a 3-adjacent Gray code on the set of fixed
length generalized ballot sequences (that is, Gray code where consec-
utive sequences differ in at most 3 adjacent positions). Non-trivial
efficient generating algorithms for generalized ballot sequences, in both
lexicographic and Gray code order, are also presented.

1 Introduction

A ballot sequence is a sequence defined over the alphabet {0, 1}, where in any of its prefixes the number of
occurrences of the symbol 1 is at most the same as that of symbol 0. In this paper we consider a more general
notion, namely generalized ballot sequence (or Yamanouchi word, see e.g. [Sta99, Prop. 7.10.3]): a sequence s
over the alphabet of non-negative integers is said to be a generalized ballot sequence if for every prefix s′ of s,
and for every i, the number of occurrences of i in s′ is greater than or equal to the number of occurrences of
i + 1 in s′. Such a length n sequence encodes a ballot counting scenario in an election involving n candidates,
in which during the counting progress, the number of votes collected by i-th candidate is always greater than or
equal to those collected by (i+ 1)-th candidate [Ber87, Ren08, Sag01]. The cardinality of the set of generalized
ballot sequences of length n follows the integer sequence A000085 in [OEI].

Originally Gray codes appeared in the study of signal processing [GrA53], and here we adopt its definition
from [Wal03]: a Gray code is an infinite set of sequence-lists with unbounded sequence-length, one list for each
sequence-length, such that the number of distinct symbols between any two consecutive sequences (i.e., the
Hamming distance) in any list is bounded independently of the sequence-length. A d-Gray code is a Gray code
where the Hamming distance between any two consecutive sequences is upper bounded by d. If the positions
where the successive sequences differ are adjacent, then we say that the list is a d-adjacent Gray code. In addition,
if the last sequence differs from the first one in the same way, then the Gray code is cyclic.

The original binary Gray code in [GrA53] was naturally generalized to Reflected Gray Code for arbitrary k-ary
sequences by Er in [Er84]. Here we show that the restriction of the Reflected Gray Code to the set of length n
generalized ballot sequences induces a 3-adjacent Gray code. Similar techniques based on variations of the order
relation induced by the Reflected Gray Code was used implicitly, for example in [Kin81, Wal00], and developed
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systematically as a general method in [Vaj10, BV05, Vaj01, Vaj07, Vaj08, Vaj11, Sab15, BBP15, Sab17], and
our Gray code is in the light of this direction. In the second part of this paper we give constant amortized time
exhaustive generating algorithms for generalized ballot sequences for both, lexicographic order and the obtained
Gray code.

2 Notation and definitions

Through this paper, we denote a sequence of length n by an n-tuple (for instance, s1s2 · · · sn), or by an italicized
boldface letter (for instance, s and t). For a given sequence s, the notation |s|i refers to the number of occurrences
of the symbol i in s. For example, if s = 1121313, then |s|1 = 4, |s|2 = 1, and |s|3 = 2.

Definition 2.1. A length n generalized ballot sequence is an integer sequence s = s1s2 . . . sn over the set of
non-negative integers with s1 = 0 and |s′|i+1 ≤ |s′|i, for all i, 0 ≤ i ≤ n− 1, in any prefix s′ of s.

Notice that a non-empty prefix of a ballot sequence is still a (smaller length) ballot sequence and we denote
by Bn the set of length n ballot sequences. See Table 1 for the set B5.

Definition 2.2. Let s = s1s2 · · · sn and t = t1t2 · · · tn be two distinct integer sequences. Let k be the leftmost
position where s, t differ, and u =

∑k−1
i=1 si =

∑k−1
i=1 ti. We say that s precedes t in Reflected Gray Code order

(RGC order for short), denoted by s ≺ t, if either

� u is even and sk < tk, or

� u is odd and sk > tk.

We denote by Bn the list of all sequences in Bn with respect to RGC order. Actually, as it is noticed in
[Vaj01], it is easy to see that for any k ≥ 2 the set of unrestricted k-ary sequences of length n listed in RGC
order yields a 1-Gray code (see again [Er84]).

Table 1: Generalized ballot sequences of length 5: (a) in lexicographic order, and (b) in RGC order together
with the Hamming distance between consecutive sequences.

1 0 0 0 0 0 14 0 1 0 0 0
2 0 0 0 0 1 15 0 1 0 0 1
3 0 0 0 1 0 16 0 1 0 0 2
4 0 0 0 1 1 17 0 1 0 1 0
5 0 0 0 1 2 18 0 1 0 1 2
6 0 0 1 0 0 19 0 1 0 2 0
7 0 0 1 0 1 20 0 1 0 2 1
8 0 0 1 0 2 21 0 1 0 2 3
9 0 0 1 1 0 22 0 1 2 0 0
10 0 0 1 1 2 23 0 1 2 0 1
11 0 0 1 2 0 24 0 1 2 0 3
12 0 0 1 2 1 25 0 1 2 3 0
13 0 0 1 2 3 26 0 1 2 3 4

1 0 0 0 0 0 14 0 1 2 3 0 3
2 0 0 0 0 1 1 15 0 1 2 3 4 1
3 0 0 0 1 2 2 16 0 1 2 0 3 2
4 0 0 0 1 1 1 17 0 1 2 0 1 1
5 0 0 0 1 0 1 18 0 1 2 0 0 1
6 0 0 1 2 3 3 19 0 1 0 2 3 3
7 0 0 1 2 1 1 20 0 1 0 2 1 1
8 0 0 1 2 0 1 21 0 1 0 2 0 1
9 0 0 1 1 0 1 22 0 1 0 1 0 1
10 0 0 1 1 2 1 23 0 1 0 1 2 1
11 0 0 1 0 2 1 24 0 1 0 0 2 1
12 0 0 1 0 1 1 25 0 1 0 0 1 1
13 0 0 1 0 0 1 26 0 1 0 0 0 1

(a) (b)

A recursive generating algorithm is said to run in constant amortized time (CAT) if it generates each object
in O(1) time, in amortized sense. Such an algorithm is also called a CAT algorithm. Ruskey [Rus03] shows that
a recursive generating algorithm is a CAT one if it satisfies the following three properties:

1. Each recursive call generates at least one object (there is no dead-end recursive call);

2. The number of computations in each recursive call is proportional to the degree of the call (that is, the
number of subsequent recursive calls produced by the current call). The call having zero degree is referred
as terminate call.

3. The number of recursive calls having degree one (if any) is O(N), where N is the number of generated
objects.
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3 The Gray code

Before proving the Graycodeness of Bn, first we need the three following lemmas. The proof of the first one is
straightforward from Definition 2.2.

Lemma 3.1. If s = s1s2 · · · sk ∈ Bk and M = max{s1, s2, . . . , sk} + 1, then 0 and M is, respectively, the
smallest and the largest admissible value for sk+1 with respect to s, such that ssk+1 ∈ Bk+1.

Lemma 3.2. Let s = s1s2 · · · sk · · · sn ∈ Bn be the last sequence in Bn, with respect to RGC order, having prefix
s1s2 · · · sk, for some k ≤ n, and let M = max{s1, s2, . . . , sk} + 1. Then, the sequence s is a length n prefix of
the infinite sequence α defined below.

� If
∑k

i=1 si is even, and

– if M is even, then α = s1 · · · skM(M + 1)00 · · · , or

– if M is odd, then α = s1 · · · skM00 · · · .

� If
∑k

i=1 si is odd, then α = s1 · · · sk00 · · · .

Proof. We begin the proof for the first claim where
∑k

i=1 si is even. By Lemma 3.1, M is the largest admissible
value for sk+1 with respect to s1s2 · · · sk. Since s is the the last sequence in Bn having prefix s1s2 · · · sk and∑k

i=1 si is even, it follows by definition of RGC order that sk+1 = M . Accordingly for the rest of the sequence,
by Lemma 3.1 and definition of RGC order, the two following possibilities hold:

� if M is even, then
∑k+1

i=1 si is even and this implies sk+2 = (M + 1). Since sk+2 is odd, then
∑k+2

i=1 si is odd
too, so that sk+3 = 0, which is the smallest admissible value with respect to s1s2 · · · sksk+1sk+2. Continuing
in similar way for all succeeding positions, we have 0 = sk+4 = sk+5 = . . ..

� if M is odd, then
∑k+1

i=1 si is odd, and as previously, sk+2 = 0. Continuing in similar way, we have
0 = sk+3 = sk+5 = . . ..

For the second claim, if
∑k

i=1 si is odd, then as previously, sk+1 is the smallest admissible value with respect to
s1s2 · · · sk. Continuing in similar way, we have 0 = sk+2 = sk+3 = · · · .

Lemma 3.3. Let t = t1t2 · · · tk · · · tn ∈ Bn be the first sequence in Bn, with respect to RGC order, having prefix
t1t2 · · · tk, for some k ≤ n, and let N = max{t1, t2, . . . , tk}+ 1. Then, the sequence t is a length n prefix of the
infinite sequence β defined below.

� If
∑k

i=1 ti is odd and

– If N is even, then β = t1 · · · tkN(N + 1)00 · · · .
– If N is odd, then β = t1 · · · tkN00 · · · .

� If
∑k

i=1 si is even, then β = t1 · · · tk00 · · · .

Proof. The proof is similar with that of Lemma 3.2, by changing “even” with “odd” and vice versa, with the
exception that the parity of N follows the parity of M .

Combining Lemmata 3.2 and 3.3 we have the next theorem describing the Graycodeness of Bn.

Theorem 3.4. The list Bn is a 3-adjacent Gray code.

Proof. If s and t are consecutive in Bn, where s precedes t, and k is the leftmost position where s and t
differ, then s is the last sequence in Bn having prefix s1s2 · · · sk, and t is the first sequence in Bn having prefix
t1t2 · · · tk. Besides at position k, by referring to Lemma 3.2 and 3.3, the difference possibly occurs at position
k + 1 and k + 2, since in any case si = ti = 0, for i ≥ k + 3.

The proof for the adjacency is by showing that if sk+2 6= tk+2, then sk+1 6= tk+1. By referring to Lemma 3.2
and 3.3, we have the following conditions:
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� If
∑k

i=1 si and
∑k

i=1 ti have the same parity, then sk+2 6= tk+2 happens when

α = s1 · · · skM(M + 1)00 · · · and β = t1 · · · tk00 · · · ,

or alternatively,
α = s1 · · · skM00 · · · and β = t1 · · · tkN(N + 1)00 · · · .

� If
∑k

i=1 si and
∑k

i=1 ti have different parity, then sk+2 6= tk+2 happens according to the following:

– if M 6= N and M , N have the same parity, then

α = s1 · · · skM(M + 1)00 · · · and β = t1 · · · tkN(N + 1)00 · · · .

or

– if M 6= N and M , N have different parity, then,

α = s1 · · · skM(M + 1)00 · · · and β = t1 · · · tkN00 · · · ,

or alternatively,
α = s1 · · · skM00 · · · and β = t1 · · · tkN(N + 1)00 · · · .

Conditions above clarify that if sk+2 6= tk+2, then sk+1 6= tk+1, which proves the adjacency property.

By [Er84], the length n sequences 000 · · · 0 and 010 · · · 0 are the first and last, respectively, length n ballot
sequences listed with respect to RGC order. This implies that Bn is also a cyclic Gray code.

4 Algorithmic considerations

In this section we give exhaustive generating algorithms for ballot sequences in both lexicographic and RGC
order. They require some additional notions that we introduce below.

For s = s1s2 · · · sn ∈ Bn we define A(s), the set of admissible values with respect to s, as the set of integers a
such that sa ∈ Bn+1. Recall from Lemma 3.1 that 0 ∈ A(s) and max{s1, s2, . . . , sn}+ 1 ∈ A(s), for any such a
sequence s. For example, if s = 010213 ∈ B6, then A(s) = {0, 2, 4}; and A(s0) = {0, 1, 2, 4}, A(s2) = {0, 3, 4},
and A(s4) = {0, 2, 5}. The Parikh vector of s is the sequence c = c0c1 · · · cn−1 with ci = |s|i, for i = 0, 1, . . . , n−1.

Let s ∈ Bn be a ballot sequence and c = c0c1 · · · cn−1 its Parikh vector. For an a ∈ A(s), the Parikh
vector c′ of the ballot sequence sa ∈ Bn+1 is simply obtained from c and considering cn = 0, and it is c′ =
c0 · · · ca−1(ca + 1)ca+1 · · · cn. However, the set A(sa) of admissible values for sa is a little more complicated, and
it is given by the next easy to see proposition.

Proposition 4.1. If s ∈ Bn, a ∈ A(s) and c is the Parikh vector of s, then

A(sa) =

{
A(s) ∪ {a+ 1} if ca−1 > ca − 1,

A(s) ∪ {a+ 1} \ {a} otherwise.

Lexicographic generation

Every non-empty prefix of a ballot sequence is a smaller size ballot sequence, and our generating algorithm
expands recursively each length k ballot sequence into length k + 1 ones, until the desired size is obtained, and
the sequence is printed out by procedure Print.

At each generated prefix t, our algorithm needs the set A(t), and this is implemented by two linked lists succ
and pred defined as follows. For an a ∈ A(t):

� succ[a] is the smallest value in A(t) larger than a, if it exists; and is succ[a] = n otherwise.

� pred[a] is the largest value in A(t) smaller than a, if it exists; and pred[a] = −1 otherwise.

Before the first recursive call of our generating algorithm, the variables are initialized as follows:

� the current sequence s is 0 ∈ B1, the unique generalized ballot sequence of length one,

� c, the Parikh vector of the current generated sequence is the length n array 100 · · · 0,
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procedure Update(a: integer)
c[a] := c[a] + 1;
if succ[a] 6= a+ 1 then
succ[a+ 1] := succ[a]; succ[a] := a+ 1;
pred[succ[a+ 1]] := a+ 1; pred[a+ 1] := a;

if a 6= 0 and c[a] = c[a− 1] then
succ[pred[a]] := succ[a];
pred[succ[a]] := pred[a];

end procedure

procedure Restore(a, before, after : integer)
c[a] := c[a]− 1;
succ[before] := a; pred[after ] := a;
pred[a] := before; succ[a] := after ;

end procedure

Figure 1: Procedures Update and Restore.

procedure Gen Lex(k: integer)
local a, before, after : integer;
if k = n+ 1 then Print;
else a := 0;

while a < n
s[k] := a;
before := pred [a]; after := succ[a];
Update(a);
Gen Lex(k + 1);
Restore(a, before, after);
a := succ[a];

end while
end procedure

Figure 2: Procedure Gen Lex.

� succ[0] = 1 and succ[1] = n,

� pred[n] = 1, pred[1] = 0 and pred[0] = −1.

For each value a ∈ A(s), the lists succ and pred are updated, and after the corresponding recursive call, succ
and pred are restored. The obtained lexicographic generating algorithm for Bn is Gen Lex in Figure 2, the
main call is Gen Lex(2), and n is a global variable.

Gray code generation

Adapting the algorithm Gen Lex according to the considerations in Section 3 we obtain the algorithm
Gen Gray in Figure 3 which generates the set Bn in RGC order, that is the list Bn. The main call is
Gen Gray(2, 0).

Theorem 4.2. Algorithm Gen Lex and Gen Gray satisfy the CAT desiderata.

Proof. Since {0,M} ⊂ A(s), letting M = max{s1, s2, · · · , sn}+1, it follows that each recursive call Gen Lex(k+
1) or Gen Gray(k + 1, sum) generates at least two ballot sequences s1s2 · · · sk0 and s1s2 · · · skM , so that
there is no call of degree one. Each recursive call produces several subsequent recursive calls doing the similar
computations with different parameters. This means that the number of computations in each recursive call is
proportional to the degree of call. So the algorithm satisfies the CAT desiderata presented at the end of Section
2.

As a result, Theorem 4.2 confirms the CAT complexity for both algorithms.

Corollary 4.3. Algorithm Gen Lex and Gen Gray are CAT generating algorithms.
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procedure Gen Gray(k, sum: integer)
local a, before, after : integer;
if k = n+ 1 then Print;
else if sum mod 2 = 0 then

a := 0;
while a < n

s[k] := a;
before := pred[a]; after := succ[a];
Update(a);
Gen Gray(k + 1, sum+ a);
Restore(a, before, after);
a := succ[a];

end while
else
a := pred[n];
while a ≥ 0

s[k] := a;
before := pred[a]; after := succ[a];
Update(a);
Gen Gray(k + 1, sum+ a);
Restore(a, before, after);
a := pred[a];

end while
end procedure

Figure 3: Procedure Gen Gray.
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