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Abstract

Grassmann (or anti-commuting) variables are extensively used in the-
oretical physics. In this paper we use Grassmann variable calculus to
give new proofs of celebrated combinatorial identities such as the Lind-
ström-Gessel-Viennot formula for graphs with cycles and the Jacobi-
Trudi identity. Moreover, we define a one parameter extension of Schur
polynomials that obey a natural convolution identity.

1 Introduction - Grassmann variables and calculus

Grassmann (or anti-commuting) variables χ1, ..., χm (m ∈ N) are defined through their anti-commutation rela-
tions:

χiχj = −χjχi, ∀i, j = 1, . . . ,m. (1)

As an immediate consequence, one has the following crucial identity:

χ2
i = 0, ∀i = 1, . . . ,m. (2)

More precisely, the Grassmann algebra Λm over the m anti-commuting variables {χ1, . . . , χm} is defined as the
linear span of the 2m independent products of the χi’s. Its elements are functions of the form

f(χ) =

m∑
n=0

1

m!

∑
1≤i1,... in≤n

ai1...inχi1 . . . χin , (3)

where ai1...in are complex coefficients, antisymmetric with respect to their indices, aiσ(1),...iσ(n)
= ε(σ)ai1,...,in ,

and the vector space structure is simply defined by addition and scalar multiplication of the coefficients. A
function f which is a sum of only even (resp. odd) monomials is called even (resp. odd). The multiplication
rule for monomials is

(χi1 . . . χin)(χj1 . . . χjp) =

{
0 if {i1, . . . , in} ∩ {j1, . . . , jp} 6= ∅
sgn(k)χk1 . . . χkn+p

otherwise
, (4)
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with k = (k1, . . . , kn+p) the permutation of (i1, . . . , in, j1, . . . , jp) such that k1 < . . . < kn+p. It is then extended
to the whole Grassmann algebra by distributivity. For notational convenience, we will furthermore commute
complex and Grassmann variables, and to permute the Grassmann variables themselves following the defining
rule (1).

One then defines the exponential of a Grassmann function f by

ef(χ) :=

+∞∑
p=0

1

p!
f(χ)p, (5)

which, following (1), is a simple polynomial expression. In particular one immediately finds that eχi1 ...χin =
1 + χi1 . . . χin . Another interesting property is that eAeB = eA+B for any even Grassmann functions A and B
(since A and B therefore commute).

Due to these multiple properties, Grassmann variables are extensively used in quantum field theory to describe
the physics of fermions1, which are particles obeying the so-called Fermi-Dirac statistics, statistics which is based
on anti-commutation laws (unlike bosons2, which are particles obeying the Bose-Einstein statistics (statistics
based on commutation laws), and which are described by physicists using usual commuting variables) – the
interested reader is reported to quantum field theory textbooks such as [FKT02] for more details.

The Grassmann integral
∫
dχ ≡

∫
dχm . . . dχ1 is the unique linear map from Λm to C s. t.∫

dχχ1 . . . χm = 1.

Moreover,
∫
dχχi1 . . . χin = 0 whenever n < m.

Example 1.1. Let χ and χ̄ be two independent Grassmann variables (the bar has nothing to do with any
complex conjugation) and let a ∈ C. One computes:∫

dχ̄dχ e−χ̄aχ =

∫
dχ̄dχ (1− χ̄aχ) =

∫
dχ̄dχ (−χ̄aχ) = a

∫
dχ̄dχχχ̄ = a. (6)

Similarly, one computes:
∫
dχ̄dχχχ̄ e−χ̄aχ = 1.

Example 1.2. Consider N independent Grassmann variables {χi | 1 ≤ i ≤ N}. Then, for any permutations σ
of {1, . . . , N}, one has: ∫

dχN . . . dχ1 χσ(1) . . . χσ(N) = sgn(σ). (7)

Let M be an N−dimensional square matrix whose entries are commuting variables (such as complex numbers).
Its determinant can be expressed as a Grassmann Gaussian integral over 2N Grassmann variables χ̄i, χi,
i = 1, . . . , N . As above, the conjugate notation conveniently accounts for the doubling of variables. Using the
morphism property of the exponential on even functions, one proves:

detM =

∫
dχ̄NdχN . . . dχ̄1dχ1 exp

− N∑
i,j=1

χ̄iMijχj

 . (8)

Similarly, one can express any minor of M using Grassmann calculus. Let 0 ≤ p ≤ N and let I = {i1, . . . , ip},
J = {j1, . . . , jp} be two subsets of indices of {1, . . . , N}, where i1 < . . . < ip and j1 < . . . < jp. We denote by
MIcJc the matrix obtained by deleting from M the rows with indices in I and the column with indices in J .
One has

(−1)ΣI+ΣJ det(MIcJc) =

∫
dχ̄dχχJ χ̄I exp

− N∑
i,j=1

χ̄iMijχj

 , (9)

where we have used the notation
dχ̄dχ := dχ̄NdχN . . . dχ̄1dχ1.

1Example of fermions are: the electrons, the neutrinos, the quarks.
2Examples of bosons are: photons, gluons, Higgs bosons.
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Moreover, ΣI =
∑p
k=1 ik, ΣJ =

∑p
k=1 jk and

χJ χ̄I := χj1 χ̄i1 . . . χjp χ̄ip . (10)

One can prove more general Grassmann Gaussian integral formulas3, such as:

∫
dηdη̄ exp

 N∑
k,`=1

η̄kM
−1
k` η` +

N∑
k=1

(ψ̄kηk + η̄kψk)

 = det(M−1) exp

− N∑
k,`=1

ψ̄kMk`ψ`

 . (11)

The integrand here leaves in the Grassmann algebra {η̄i, ηi, χ̄i, χi | i = 1, . . . , N}.
In this paper, we use Grassmann calculus to prove the Lindström-Gessel-Viennot (LGV) lemma and the Jacobi-

Trudi identity. Note that the LGV lemma proof we give does not require the use of any involution arguments.
The vanishing contribution of intersecting paths will appear as a simple consequence of the Grassmann nilpotency
identity (2)!

2 Grassmann proof of the LGV lemma

Let G be a finite directed graph. Note that we allow loops and multiple edges. Let V = {v1, . . . , vN} be the set
of vertices of G. One assigns to each edge e a weight we. One further assumes that the variables we commute
with each others.

A path P from v to v′ is a collection of edges (e1, e2, . . . , ek) such that one can reach v′ from v by successively
traversing e1, . . . , ek in the specified order. Following [Tal12], let us recall the following definitions. The weight
of a given path P = (e1, . . . , ek) is:

wt(P ) :=
m∏
k=1

wek . (12)

The weight path matrix of the graph G is the matrix M = (mij)1≤i,j≤N , whose entries are:

mij :=
∑

wt(P ). (13)

The sum above is taken on paths P from vi to vj .
These quantities are considered as formal power-series in the weights. A crucial remark is that

M = (Id−A)−1, (14)

where A = (Aij) is the weighted adjacency matrix of the graph (Aij = wij if there is an edge from vi to vj ,
and 0 otherwise).

A cycle is a path from a vertex v to itself (or more precisely an equivalent class thereof up to change of source
vertex). We denote by C the set of all possible collections of self-avoiding and pairwise vertex-disjoint cycles,
including the empty collection. Given C = (C1, . . . , Ck) ∈ C, we define its weight and sign as

wt(C) :=

k∏
i=1

wt(Ci) , and sgn(C) := (−1)k, (15)

while, by convention, wt(C) = sgn(C) = 1 for the empty collection.

Lemma 2.1. The determinant of M−1 is:

det(M−1) =
∑
C∈C

sgn(C).wt(C). (16)

Proof. Equations (14) and (8) yield:

det(M−1) =

∫
dχ̄dχ exp

− N∑
i,j=1

χ̄i(δij −Aij)χj

 =

∫
dχ̄dχ

N∏
i=1

(1 + χiχ̄i)

N∏
k,l=1

(1 +Aklχ̄kχl). (17)

3See, for example, [FKT02], for more details on Grassmann integration and Grassmann changes of variables.
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The integrand decomposes as sums of terms of the form

Ak1l1 . . . Aksls × χ̄k1χl1 . . . χ̄ksχls χi1 χ̄i1 . . . χir χ̄ir , (18)

giving a non-zero contribution to the integral if and only if: all Grassmann variables appear exactly once and
Akj lj 6= 0 for all 1 ≤ j ≤ s. Let us assume that this is the case. The inequality Akj lj 6= 0 implies that there
is a directed edge ej from vkj to vlj ; this means that Akj lj = wkj lj . Let us call Hs the subgraph made out
of the edges e1, . . . , es. Each ingoing (resp. outgoing) edge at a vertex v` ∈ Hs is associated to a variable χ`
(resp. χ̄`). Hence there cannot be more than one ingoing (resp. outgoing) edge of Hs at each v`. On the other
hand, if there were only say one ingoing but no outgoing edge at v`, this would require that χ̄ik = χ̄` for some
1 ≤ k ≤ r. This would however necessarily bring a second factor χik and therefore cancel the integrand. We
conclude that there must be exactly one ingoing at one outgoing edge at each vertex of Hs. This means that
Hs must decompose into a collection C of self-avoiding and pairwise vertex-distinct cycles. Furthermore there
is in this case a unique choice of indices 1 ≤ i1 < . . . < ir ≤ N yielding a non-vanishing monomial of degree 2N .
Each collection of cycles C is weighted by wt(C), up to a sign. Moreover, the integral is of the form of (7), with
σ a product of |C| disjoint cycles of even length, the other cycles being trivially of length 1. The signature of σ
is therefore sgn(C), and we conclude that C contributes with a term sgn(C)wt(C).

One considers now the minor MAB, where A = {a1, . . . , ap} and B = {a1, . . . , ap} are p-dimensional sets of
indices in {1, . . . , n}. A p-path from A to B is a collection of paths P = (P1, . . . , Pk) s. t. Pi connects ai to
bσP(i), for some permutation σP. The weight and sign of P are furthermore given by:

wt(P) :=

k∏
i=1

wt(Pi) , and sgn(P) := sgn(σP). (19)

The p-path P is self-avoiding if: 1) each Pi is self-avoiding; 2) Pi and Pj are vertex-disjoint whenever i 6= j.
We denote by PA,B the set of self-avoiding p-paths from A to B.

Finally, a self-avoiding flow from A to B is a pair (P,C) such that: 1) P ∈ PA,B; 2) C ∈ C; and 3) P and
C are vertex disjoint. We denote the set of self-avoiding flow from A to B by FA,B.

The LGV formula for graph with cycles is:

Theorem 2.2. One has [Tal12]

det(MAB) =

∑
(P,C)∈FA,B

sgn(P)wt(P) sgn(C)wt(C)∑
C∈C

sgn(C)wt(C)
. (20)

In particular, if G is acyclic then [GV85, Lin73]:

det(MAB) =
∑

P∈PA,B

sgn(P)wt(P). (21)

Let us now give the Grassmann calculus proof of this identity.

Proof. The left-hand side of (20) is a minor of the matrix M . We need to re-express it as a minor of M−1.

To this purpose, we could directly use det((M−1)AB) = (−1)ΣA+ΣB det(MBcAc )
det(M) . Nevertheless, in this paper we

instead rely exclusively on Grassmann calculus. One can thus use formula (9) to express det(MAB) as

(−1)ΣAc+ΣBc
∫
dψ̄dψ ψBc ψ̄Ac exp

− N∑
i,j=1

ψ̄iMijψj

 . (22)

We now re-express the exponential above using the Grassmann Gaussian integral formula (11). This leads to

(−1)ΣAc+ΣBc

det(M−1)

∫
dψ̄dψ ψBc ψ̄Ac

∫
dηdη̄ exp

(
N∑

k`=1

η̄kM
−1
k` η` +

N∑
k=1

(ψ̄kηk + η̄kψk)

)
. (23)
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The denominator is given by Lemma 2.1. The integral in the numerator writes:

(−1)ΣAc+ΣBc
∫
dηdη̄ exp

 N∑
k,`=1

η̄kM
−1
k` η`

∫ dψ̄dψ ψBc ψ̄Ac exp

(∑
k

(ψ̄kηk + η̄kψk)

)
. (24)

In order to perform the Grassmann integral on the sets of variables ψ̄ and ψ in (24), we use the following result:

Lemma 2.3. The following identity holds∫
dψ̄dψ ψBc ψ̄Ac exp

(
N∑
k=1

(ψ̄kηk + η̄kψk)

)
= (−1)ΣA+ΣB η̄BηA. (25)

Proof. When developing the exponential in (25) above, the only term which leads to a non-vanishing contribution
is the one containing: (

p∏
i=1

ψ̄aiηai

)(
p∏
i=1

η̄biψbi

)
=

p∏
i=1

ψ̄aiηai η̄biψbi = (ψBψ̄A)(η̄BηA). (26)

The Grassmann integration on the lef-hand side of (25) leads to (ηAη̄B) multiplied by the sign:∫
dψ̄dψ (ψBc ψ̄Ac) (ψBψ̄A) = (−1)ΣA+ΣB. (27)

This concludes the proof.

Expression (24) above thus becomes:

∫
dηdη̄ η̄BηA exp

 N∑
k,`=1

η̄kM
−1
k` η`

 =

∫
dηdη̄ η̄BηA

N∏
i=1

eη̄iηi
N∏

k,`=1

e−η̄kAk`η` . (28)

Using now (14), this rewrites as

(−1)p
∫
dη̄dη η̄BηA

N∏
i=1

(1 + ηiη̄i)

N∏
k,l=1

(1 +Aklη̄kηl). (29)

A similar analysis as the one of Lemma 2.1 then shows that the non-zero contributions to the integral are labelled
by self-avoiding flows (P,C) ∈ FA,B. Indeed, open paths are now allowed, but their source (resp. sink) vertices
must be associated to a Grassmann variable η̄ai (resp. ηbi) and therefore be in A (resp. in B). The key argument
is that, because of the Grassmann nilpotency condition (2), the paths and cycles must be self-avoiding and
pairwise vertex-disjoint!

The term indexed by the flow (P,C) is equal to wt(P) wt(C), up to a sign. By the same argument as in
Lemma 2.1, the term associated to (P,C) differs from the one associated to (0, ∅) by a factor sgn(C). In the
latter situation, one can relabel the variables ηbi and assume without loss of generality that Pi connects ai to bi
(for all i), and that a factor sgn(P) is included. The only difference with respect to the case studied in Lemma
2.1 is that we have now a permutation with |P| = p even cycles, yielding an extra factor (−1)p which cancels
the one of formula (29). Finally, the sign associated to a general (P,C) ∈ PAB is equal to sgn(C)sgn(P), which
concludes the proof.

3 Transfer matrix approach

In quantum field theory, the path integral represents a space time approach to the time evolution of a system,
represented as a sum over paths. Accordingly, the LGV lemma is interpreted as the evolution of a system of
fermions on a lattice that represents a discrete analogue of space-time. In some instances, it turns out that this
evolution can also be described in another formalism based on singling out a time direction in space-time. In
our case, this formalism applies to a particular class of graphs which are described below. The sum over paths
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G1

G2

Gn

(-4,1) (-2,1) (-1,1) (1,1)

(-3,4) (0,4) (1,4) (2,4)

2

3 4

2 2

1 3

1.a. Graph G1 → G2 → · · · → Gn 1.b. Non intersecting lattice paths 1.c. Skew Young table

Figure 1: Some illustrations

is then interpreted as a matrix element of an operator between an initial and a final state which are elements
of a Hilbert space constructed as follows. We refer the reader to [DI89] for some background on statistical field
theory.

Let us consider N Grassmann variables χ1, . . . , χN . The scalar product is defined in analogy with the standard
scalar product on holomorphic functions, using an integration over Grassmann variables

〈f, g〉 =

∫
dχdχ exp

(
− χχ

)
f(χ)g(χ) =

N∑
k=0

1

k!

∑
1<i1,··· ,ik≤N

ai1...ikbi1...ik . (30)

Moreover, given an N ×N matrix T̃ , one has:

T̃ ·f(χ) =

N∑
k=0

1

k!

∑
1≤i1,...,ik≤N

ai1...ik
( ∑

1≤j1≤N

T̃i1j1χj1) . . .
( ∑

1≤jk≤N

T̃ikjkχjk
)
. (31)

This action can also be written in terms of Grassmann integration as

T̃ ·f(χ) =

∫
dηdη exp

(
− ηη

)
exp

(
η T̃ χ

)
f(η), (32)

where we have used the notation:

η T̃ χ =

N∑
i,j=1

ηiT̃ijχj .

Moreover, if S̃ is another N ×N matrix,

(S̃ T̃ )·f(χ) =

∫
dψdψdηdη exp

(
− ηη

)
exp

(
η S̃ψ

)
exp

(
− ψψ

)
exp

(
ψ T̃χ

)
f(η). (33)

Consider now a sequence of n weighted directed graphs G1, . . . , Gn each having N vertices labeled by an integer
i ∈ {1, . . . , N}. Loops, multiple edges and isolated vertices are allowed. We denote by wm,ij the weight of an
edge oriented from vertex i to vertex j in Gm, with the convention that the weight vanishes if there is no such
an edge. We label the nN vertices of the disjoint union G1 ∪ · · · ∪ Gn by pairs (i,m) where the second index
refers to the graph Gm and the first one to the vertex i in Gm.

We define the graph G1 → G2 → · · · → Gn by adding N(n− 1) edges to the disjoint union G1 ∪ · · · ∪Gn see
Fig. 1.a. These N(n− 1) edges connect the vertex (i,m) to the vertex (i,m+ 1), for all m ∈ {1, . . . , n− 1} and
i ∈ {1, . . . , N} with a weight 1. The weighted adjacency matrix of G1 → G2 → · · · → Gn is given by

A(i,m),(j,p) :=


wi,j if p = m

1 if p = m+ 1 and i = j

0 otherwise.

(34)

The previous construction is motivated by the following theorem, relating k non intersecting paths in G1 →
G2 → · · · → Gn, starting at vertices A ∈ G1 and ending at vertices B ∈ Gn, to a k× k minor in a N ×N matrix
constructed using the weighted adjacency matrices Ai of Gi.
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Theorem 3.1. One has∑
non intersecting paths P1, . . . ,Pk A → B

and cycles C1, . . . , Cr in G1 → G2 → · · · → Gn

(−1)ε(A,B)(−1)rw(P1) · · ·w(Pk)w(C1) · · ·w(Cr)

= det(1−An) · · · det(1−A1) det
[
(1−An)−1 · · · (1−A1)−1

]
AB, (35)

with ε(A,B) the signature of the permutation of the labels of the vertices in B with respect to those in A and
detMA,B is the determinant restricted to the lines corresponding to A and columns to B.

Proof. The result is proved by induction on n. For n = 1, the statement corresponds to Theorem 2.2. Then,
one passes from n to n+ 1 by integrating pairs of variables between vertices (i,m) and (i,m+ 1) and the use of
(33).

In statistical physics, a homogeneous term of degree k in H represents a state of k fermions occupying the
vertices of Gm at time m. The anti-commutation relations express Pauli exclusion principle that states that two
fermions cannot occupy the same vertex. The operator (1 − Am)−1 (multiplied by a power of its determinant)
transforms this state into another k fermion state at time m+ 1, on the vertices of Gm+1. Thus, Tm represents
a discrete time evolution; this matrix is known in physics as the transfer matrix.

The interest of this result comes from the evaluation of the sum over paths by a minor in an N ×N matrix
instead of an nN × nN matrix as would result from an application of the LGV lemma. In the next two sections
we show how this result can be used in the theory of Schur functions. Other related applications of fermionic
techniques can be found in [LLN09] and [Zin09].

4 An application to Schur functions

Given an integer k, a partition of k is a decreasing sequence λ1 ≥ · · · ≥ λr of r integers such that λ1+· · ·+λr = k.
A partition is conveniently represented by a Young diagram denoted λ and made of r left justified rows, the kth

row containing λk boxes, with the longer rows on the top of the shorter ones. We set |λ| := λ1 + · · ·+ λr.
Given a second Young diagram µ with r′ rows, we write µ ≤ λ if r′ ≤ r and if for all i {1, . . . , r}, µi ≤ λi.

When µ ≤ λ, the skew Young diagram λ/µ is constructed by removing the µi first left boxes in the line i of λ for
all i. We also consider the empty Young diagram and λ/∅ = λ while λ/λ = ∅. We further set µi = 0 for i ≥ r′.

A semi standard (skew) Young tableau (SSYT) of shape λ/µ is a filling of the Young diagram λ/µ by some
integers in {1, . . . , n} in such a way that they are increasing along the columns and non decreasing along the
rows. To each of these integers we associate an indeterminate xm and the Schur function is defined as

sλ/µ(x) :=
∑

skew Young Tableau
of shape λ/µ

∏
1≤m≤n

xkmm , (36)

where km is number of times the integer m appears in the SSYT, see Fig. 1.c.
It is known (see [GV85]) that sλ/µ(x) can be constructed using r non intersecting lattice paths as follows.

Define a graph G with vertices labelled (i,m) with i and m positive integers and oriented edges from (i,m) to
(i + 1,m) and from (i,m) to (i,m + 1). The graph G is conveniently visualized as a two dimensional square
lattice with arrows pointing upwards and rightwards. Although infinite, at any stage of the computation only a
finite number of vertices are involved. We leave the precise range of i unspecified for notational convenience and
assume 1 ≤ m ≤ n unless otherwise stated. Then, the skew Schur functions can be written as a sum over r non
intersecting paths on G,

sλ(x) =
∑

non intersecting lattice paths P1, . . . ,Pr
Pi: (µi−i+l,1)→(λi−i+l,n)

W (P1) · · ·W (Pi). (37)

where l is a global translation parameter that does not affect the result, because of translation invariance. The
weight of a path is again given by the product of the weight of its edges. The weight of an horizontal edge from
(i,m) to (i+ 1,m) is xm and the weight of all vertical edges is 1.

The graph G can be written as G = G1 → G2 → · · · → Gn with all Gm isomorphic to a one dimensional
lattice with edges oriented to the right, i.e. from i to i + 1. The weighted adjacency matrix is made of right
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translations T (defined by Tij = 1 if j = i+ 1 and 0 otherwise) multiplied by xm, such that 1−Am = 1− xmT .
Its inverse reads (1−Am)−1 =

∑
p≥0(xm)p T p. One then has

(1−An)−1 · · · (1−A1)−1 =
∑
k

hk(x)T k, (38)

with hk(x) the complete symmetric functions of x1, . . . , xn of degree k,

hk(x) =
∑

k1+···kn=k

xk11 · · ·xknn . (39)

We can apply Theorem 3.1 (with all Gm acyclic so that there is no contribution of cycles) and equation (35)
yields the celebrated Jacobi-Trudi identity

sλ/µ(x) = det
(
hλj−µi+i−j(x)

)
1≤,i,j≤r, (40)

for a skew partition with r rows, with the convention that hj−i(x) = 0 if i > j.
From a physical point of view, we may associate to a partition an element of H defined by |λ〉 =

χ
λ1−1+l

· · ·χ
λr−r+l

. Introducing U(x) = (1− xnT )−1 · · · (1− x1T )−1, Schur functions are transition amplitudes

between two such states, sλ/µ(x) = 〈λ|U(x)|µ〉, which is non zero only if µ ≤ λ.
If we separate the variables x into two disjoints sets denoted x′ and x′′, one has: U(x) = U(x′)U(x′′). This

comes from the fact that all these operators commute. The relation

〈λ|U(x)|µ〉 =
∑

µ≤ν≤λ

〈λ|U(x′)|ν〉〈ν|U(x′′)|µ〉 (41)

then leads to the convolution identity:

sλ/µ(x) =
∑

µ≤ν≤λ

sλ/ν(x′)sν/µ(x′′). (42)

This identity follows from the LGV lemma. From a lattice point of view, this is a vertical composition. In the
next section, we will derive an horizontal composition from the multiplication law

Ua+b(x) = Ua(x)U b(x).

5 A one parameter extension of Schur polynomials

Let us introduce the following symmetric polynomials

Sk(a, x) =
∑

k1+···kn=k

xk11 . . . xknn
∏

1≤m≤n

a(a+ 1) . . . (a+ km − 1)

km!
. (43)

For a = 1 we recover the complete homogeneous polynomials Sk(1, x) = hk(x). For example,

S1(a, x) = a
∑

1≤m≤n

xm, S2(a, x) =
a(a+ 1)

2

∑
1≤m≤n

x2
m + a2

∑
1≤p<m≤n

xmxp, (44)

S3(a, x) =
a(a+ 1)(a+ 2)

6

∑
1≤m≤n

x3
m +

a2(a+ 1)

2

∑
1≤p<m≤n

(x2
mxp + xmx

2
p) + a3

∑
1≤q<p<m≤n

xmxpxq. (45)

These polynomials appear in the expansion of Ua(x) = (1− xnT )−a · · · (1− x1T )−a, generalizing (38),

Ua(x) =
∑
k≥0

Sk(a, x)T k, (46)

which follows from writing (1−xmT )−a = 1
Γ(a)

∫∞
0
dtmt

a−1
m exp−tm(1−xmT ). Using Ua(x) = (1−xnT )−a · · · (1−

x1T )−a in equation (35) instead of U(x) = (1− xnT )−1 · · · (1− x1T )−1 leads to a one parameter generalization
of the Schur function. The latter are defined by replacing the hk(x) by Sk(a, x) in the Jacobi-Trudi identity (40).
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Definition 5.1 (One parameter extension of Schur polynomials). Let

sλ/µ(a, x) := det
(
Sλj−µi+i−j(a, x)

)
1≤i,j≤r. (47)

We use here the convention S0(a, x) = 1 and Sk(a, x) = 0 for k < 0.

Schur functions are recovered for a = 1, sλ/µ(1, x) = sλ/µ(x). Theorem 3.1 then implies that Sλ/µ can also
be written as a sum over r non intersecting lattice paths for a skew diagram with r rows. However, since we use
(1− xmT )a instead of (1− xmT ), for j > i there is an edge from (i,m) to (j,m) weighted by

w(i,m)→(j,m) = (−1)j−i+1 a(a− 1) . . . (a− j + i+ 1)

(j − i)!
xj−im . (48)

In that case, the paths (i,m) → (i, p) → (j, p) → (j, q) and (k,m) → (k, q) for i < k < j do not intersect but
contribute with an extra −1 because the order of their endpoints have been reversed.

Example 5.2 (s(2,1)(a, x) as a sum over paths). The paths contributing to s(2,1)(a, x) join vertices (1, 1) and
(2, 1) on on side and (2, n) and (4, n) on the other side.

(1, 1)→ (1,m)→ (2,m)→ (2, n)
(2, 1)→ (2, p)→ (3, p)→ (3, q)→ (4, q)→ (4, n)

a3
∑

1≤p<m≤n,
1≤p≤q≤n

xmxpxq

(1, 1)→ (1,m)→ (2,m)→ (2, n)
(2, 1)→ (2, p)→ (4, p)→ (4, n)

−a
2(a− 1)

2

∑
1≤p<m≤n

xmx
2
p

(1, 1)→ (1,m)→ (4,m)→ (4, n)
(2, 1)→ (2, n)

−a(a− 1)(a− 2)

6

∑
1≤m≤n

x3
m

(1, 1)→ (1,m)→ (3,m)→ (3, p)→ (4, p)→ (4, n)
(2, 1)→ (2, n)

+
a2(a− 1)

2

∑
1≤m≤p≤n

x2
mxp

For Schur functions, the last three contributions are absent (a = 1), since they involve horizontal segments of
length 2 and 3. In the last two rows there is a extra sign because of the interchange of endpoints.

s (a, x) = det

(
S2(a, x) 1
S3(a, x) S2(a, x)

)
=
a(a2 − 1)

3

∑
1≤m≤n

x3
m + a2

∑
1≤p<m≤n
1≤p≤q≤n

xmxpxq. (49)

The main interest of this extension of Schur polynomials is the following convolution identity:

Theorem 5.3 (Convolution identity). One has

sλ/µ(a+ b, x) =
∑

ν partition
µ≤ν≤λ

sλ/ν(a, x)sν/µ(b, x).. (50)

Note that, for the empty partition, one has: s∅(a, x) = 1.

Proof. The proof relies on the multiplication law Ua(x)U b(x) = Ua+b(x). This translates to

Sk(a+ b, x) =
∑
p+q=k

Sp(a, x)Sq(b, x). (51)

The result then follows from the expansion of the determinant in (47), expansion which uses the Cauchy-Binet
formula.

Example 5.4. The convolution identity for (2, 1) reads

s (a+ b, x) = s (a, x) + s (a)s (b)(x) + s (a, x)s (b, x) + s (a, x)s (b, x) + s (b, x). (52)

Other identities satisfied by sλ(a, x) can easily be proven. For example, for the conjugate diagrams (obtained
by symmetry with respect to the main diagonal), one has:

sλ∗/µ∗(a, x) = (−1)|λ|−|µ|sλ/µ(−a, x).
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