
Business Process Execution on Blockchain

Orlenys López-Pintado
Supervisors: Luciano Garćıa-Bañuelos and Marlon Dumas

University of Tartu, Estonia
orlenyslp@ut.ee

Abstract. Nowadays, in traditional Business Process Management Sys-
tems (BPMSs) supporting inter-organizational collaborations issues like
the lack of trust and the flexibility to adapt to changes quickly are still
a roadblock. Blockchain technology provides a tamper-proof mechanism
for decentralized execution of collaborative business processes. In that
context, a blockchain can serve not only to keep track of the exchanged
information but also to coordinate, via smart contracts, the execution
of steps as prescribed by a process model. Nevertheless, current solu-
tions in this field are still in an early stage or at a high level of ab-
straction. This research aims at developing a BPMS on blockchain to
handle inter-organizational collaborations that relies on the translation
of process models captured in the Business Process Model and Notation
(BPMN) into smart contracts. Unlike existing solutions, we consider the
blockchain as the platform supporting the full execution of a process.
This work presents the main challenges to be tackled, outlines the re-
search approach to follow and describes some preliminary results on de-
signing the architecture of the prototype and compiling process models
into smart contracts.

Keywords: Business Process Management Systems, Blockchain, Busi-
ness process execution, Smart contracts

1 Introduction

Business Process Management Systems (BPMS) are information systems that
automate the execution of business processes typically described by a model.
They coordinate the interactions of human actors with machine operations pro-
viding to the organizations a flexible way to manage their processes. Nowadays,
a big variety of BPMSs cover some of the traditional steps of the business pro-
cess lifecycle, i.e. identification, discovery, analysis, redesign, implementation,
execution, monitoring, adaptation and evolution [4]. However, typical issues like
interoperability, dynamic interactions, trust and security are not fully addressed
in inter-organizational collaborations between mutually untrusted parties [16].

Several challenges exist in the field of inter-organizational collaborations. One
of them is the autonomy of organizations and the lack of trust, e.g. which partner
performs a given task, what data should be accessed and by who, and so forth.
Although some agreements can be reached, choosing a trustworthy mechanism



or a middleman can be a problem even bigger than the process automation itself
[16]. Another challenge is flexibility to allow changes on the process requirements
in real time [15, 17], such as dynamic onboarding and replacement of business
parties. In the logistics field, some common collaborative processes require dy-
namic binding and re-binding. For example, in a buyer-supplier-carrier process,
the carrier might sometimes be appointed (selected) by the supplier, and other
times by the buyer. Also sometimes the seller might have the right to change
the carrier after the initial appointment, e.g. if the initially appointed carrier is
not able to pick up the merchandise on time. In other words, the responsibility
for a given task can change across cases.

Blockchain provides a suitable platform to execute inter-organizational pro-
cesses in a trusted manner [8]. The above is supported by two main concepts
of the blockchain technology. First, no central authority is required but a peer-
to-peer network store a copy of the information as a linked sequence of blocks.
Thus, each block contains a set of valid transactions. Second, the inclusion of
smart contracts provides support to implement businesses rules and updating
the process status as programmable scripts [1].

The use of blockchain as a distributed ledger to handle different collabora-
tive scenarios has been investigated in [19]. By executing inter-organizational
process as smart contracts on blockchain some common issues can be solved.
First, blockchain will serve as an immutable and trusted ledger that records and
validates every operation during the process execution. Transactions can be re-
stricted to a set of roles, i.e. they can be executed only by a participant with
an authorized signature. In addition, other business rules can be implemented
by the smart contracts to perform the tasks. Participants may access the trans-
actions generated by the process which enable the monitoring of its execution.
Besides, with encryption, it is possible to restrict the access to data that is public
but only readable by participants with the corresponding privileges [11].

Implementing business processes using the low-level primitives provided by
blockchain platforms is cumbersome. In contrast, established Business Process
Management Systems (BPMSs) provide convenient abstractions for rapid devel-
opment of process-oriented applications. Aligned with that vision, the problem
to address in this research project is to design a BPMS on blockchain to handle
inter-organizational collaborations.

2 Related Work

The first work addressing the problem of lack of trust on inter-organizational
business processes using blockchain was reported in [20]. The authors introduce
the architecture of an Ethereum-based platform for tracking the execution of
collaborative processes specified as choreographies in Business Process Model
Notation(BPMN) [13]. In a BPMN choreography, the aim is to capture the
exchange of messages among the partners that can be cumbersome. Ultimately,
it is a weak approach to build consensus which makes the process execution less

11



flexible (e.g. dealing with dynamic on-boarding or rebinding of parties requires
more message exchanges).

In [6] the authors explore approaches to transform BPMN models into Solid-
ity smart contracts. Additionally, some strategies to reduce the cost of deploy-
ment and execution of the smart contracts are presented. However, advanced
process model constructions such as embedded and external subprocesses, multi-
instances activities and all kind of event propagation are not covered.

In [9] is discussed a vision on how the artifact-centric paradigm [3] can be
suitable to model business collaborations over blockchain technology. Similarly,
the author of [12] advocates the use of blockchain to coordinate collaborative
business processes based on choreography models. Finally, [5] presents a high-
level solution to map smart contracts from domain-specific languages. However,
all these efforts are still nascent and we are not aware of any concrete implemen-
tation of the ideas presented in the three papers above.

From the BPM industry, we can mention an open source BPMS owned by
a consulting company named Bonitasoft [14]. The system allows integrating a
BPMN process model with the blockchain platform offered by Chain Inc. The
solution provides a software connector which enables process instances to forward
requests to the blockchain. However, the approach is different from our vision
because we consider the process instance running on the blockchain

3 Design Principles and Research Questions

The closest work to our problem statement was presented in [20]. There, col-
laborative business processes are captured via BPMN choreographies which are
a weak approach to build consensus as described in Section 2. The authors
consider the blockchain as a storage for tracking messages exchanged by exter-
nal business processes running on conventional BPMSs. Conversely, we see the
blockchain technology as the platform supporting the execution of a full-fledged
BPMS. Consequently, the underlying architecture of such system is radically
different.

We aim to develop a prototype which will provide high-level of abstraction
based on the following principles: (i) The process must be modeled as a single-
pool model in BPMN [13], i.e not a collaborative process nor a choreography.
Each party is represented by a lane. Interactions between two parties are modeled
by sequence flows that go from one lane to another. (ii) Process state is stored
in the blockchain. (iii) The execution logic of the process model is translated
into smart contracts which must run independently of any other off-chain com-
ponent. In other words, the execution of a process instance runs autonomously
in the blockchain, no matter if it was deployed by an external application that
is interrupted later. Accordingly, the research will be structured to address the
following research questions:

1. How to compile the standard of BPMN to execute processes as smart con-
tracts?

12



1.1. How to compile simple BPMN models including only tasks and gate-
ways?

1.2. How to compile BPMN models with subprocesses and multi-instances?
1.3. How to compile BPMN models to allow event handling?
1.4. How to compile BPMN models including data management?
1.5. How to compile BPMN models with tasks involving interaction with

external resources (e.g., user and service)?
2. What would be a suitable software architecture to develop a business process

management system on top of blockchain?
2.1. How feasible is it to use traditional BPMSs architectures on blockchain

platforms?
2.2. How to develop de the system through off-chain and on-chain operations?
2.3. How to store the data required by the process execution?
2.4. How to guaranty dynamism, flexibility and autonomy of processes de-

ployed therein?
3. How to implement an access control mechanism suitable for inter-organizatio-

nal processes between mutually untrusted parties?
3.1. What would access control mechanisms allow us to capture the wide

range of dynamic binding and rebinding scenarios found in collaborative
business processes?

3.2. How can these access control mechanisms be seamlessly integrated into
the standard BPMN notation?

3.3. How can the resulting access control-enhanced BPMN models be com-
piled into smart contracts?

3.4. How to protect/validate data received exchanged among untrusted re-
sources?

4. How to optimize the code generated by the prototype to improve the degree
of concurrency to allow the deployment of large process models?

4 Research Methodology

To solve the problem, we are following the methodology of design science in
information systems. The aim is to answer the research questions and implement
a prototype iterating incrementally in cycles: build -evaluate [7]. We decompose
every research question into multiple sub-questions such that every iteration
answers one sub-question (sub-problem). Additionally, an iteration must follow
the process: (i) check awareness of the problem to propose an initial solution,
(ii) suggest a tentative design, (iii) develop an artifact and extend/update the
prototype, (iv) evaluate the solution, (v) analyze the results to decide if move to
the next iteration or repeat the process again in the current iteration to improve
the result.

The evaluation follows the experimental approach described in [7]. In each
iteration, the prototype is studied in a controlled environment to assess results.
Synthetic and real-life datasets are used to simulate the process execution un-
der different constraints. This experimentation includes coverage of the BPMN
standard, interactions with stakeholders and analysis of system performance.

13



5 Preliminary Results

At the current stage, we have addressed the first two research questions. In ad-
dition, the architecture of the system supports a default access control policy
that will be improved in next iterations. Results are implemented and tested in
an open source prototype named Caterpillar [10]. The source code of the pro-
totype may be accessed from https://github.com/orlenyslp/Caterpillar.
Like most BPMSs, Caterpillar supports the creation of instances of process mod-
els in the standard BPMN 2.0. Moreover, the participants can track the state of
process instances and execute tasks thereof.

The prototype is implemented on top of Ethereum [21]. The process mod-
els are compiled into Solidity1, a contract-oriented programming language for
Ethereum. In the following, we will describe briefly key aspects of Caterpillar.

5.1 Compiling BPMN to Solidity

As described before, Caterpillar assumes the input to be a BPMN process model
and not a choreography. The current version of the Caterpillar compiler accepts
models with tasks (default, user, script, service and receive), gateways (exclu-
sive, parallel and event-based), events (default, terminate, message, signal, error
and escalation), call-activities, embedded subprocesses, event-subprocesses and
multi-instance activities (parallel and sequential) [13].

In most of the cases, Caterpillar produces at least two smart contracts from
a flatten BPMN model. One to implement the control flow perspective. The
second, named worklist, to handle the execution of workitems by stakeholders.
In order to specify the data perspective of a process and how to manage it, the
BPMN models are annotated with solidity snippets which are embedded later
as fully executable instructions in the control flow and worklist contracts. These
snippets can be global variables of the process, conditions for exclusive gateways,
constraints to manage the data provided by process participants through user
tasks, operations to perform by script tasks and so on.

The control flow perspective of a process is implemented by simulating a
token game as specified in the BPMN standard [13]. In such game, a token is
generated by the start event, which will traverse sequence flows in the model
until an end event consumes it. Commonly, an activity is enabled, i.e. can be
executed, if a token exists on any of its incoming edges.

Providing support to subprocesses and events poses a challenge. In such con-
text, implementing the control flow perspective of a process model can require
not a single contract (as in flattening models) but a hierarchy of smart contracts.
Besides, a mechanism to propagate events and data along the hierarchy must be
defined. For example, embedded subprocesses are designed inside a parent pro-
cess. In this case, the steps required to execute the process, or to propagate data
can be calculated statically in compilation time. On the other hand, call activi-
ties reference other contracts whose information may be unknown at compilation

1 https://solidity.readthedocs.io/en/v0.4.21/

14



time. The above requires a mechanism to associate the smart contract encap-
sulating a subprocess linked to some activity. In addition, a common interface
is required to propagate events between contracts probably defined from differ-
ent viewpoints. Note that a process can be reused in distinct contexts. Lastly,
event-subprocess are triggered by events and they are not part of the flow of its
parent process. Consequently, they must be instantiated as result of catching an
event propagated in the hierarchy.

The parsing of subprocesses and events also modifies the basic control flow
approach used in flatten models. Here, checking the token distribution on the
edges is not enough to determine if a process is running. For example, a child
contract referenced by a call activity can be running and the parent is still
active even without tokens on edges. In this case, tracking both token distri-
bution and running activities (including transactions with pending validation
in the blockchain) is required. On the other hand, boundary events and event-
subprocesses do not fit in the typical token game because they have no incoming
edge. Therefore, to check if they are enabled is required to check the element
where they are attached or included depending on the case. In addition, a process
must instantiate all its children and keep track when the execution is finished.

In order to handle events, Caterpillar provides three main types of propa-
gation. One designed to send data from a child subprocess to its parent in the
hierarchy. A second to propagate information from a parent to their children
which can interrupt running instances if an error or abnormal termination oc-
curs, e.g. when an interrupting boundary event is caught or a terminate end
event is reached. Lastly, the third type is used to throw messages by publishing
information in the event log of Ethereum2. All the event handling semantics
presented in the BPMN standard [13] is fully covered for the six events (default,
terminate, message, signal, error and escalation) allowed by the prototype.

5.2 System Architecture

The architecture of Caterpillar is presented in Fig. 1. The prototype distinguishes
two types of components: (i) on-chain to represent operations implemented in the
smart contracts running in the blockchain and (ii) off-chain referring the com-
ponents interacting with the deployed contracts from outside of the blockchain.

The on-chain component named Workflow Handler manages the smart con-
tracts compiled from the BPMN models, implementing the control-flow per-
spective. Besides, other two components named Worklists Handler and Service
Bridge are aimed to handle the interactions with external stakeholders and infor-
mation systems respectively. The contracts in these last two components must
implement the access control mechanism of the related process. Although the
compiler generates default contracts providing access to every participant, these
can be replaced during the process execution.

2 https://media.consensys.net/technical-introduction-to-events-and-logs-in-
ethereum-a074d65dd61e

15



Ethereum client node(e.g. Geth, Parity)Ethereum client node(e.g. Geth, Parity)

 Descentralized 
storage

(e.g. IPFS, Swarm)

 Descentralized 
storage

(e.g. IPFS, Swarm)

R
ES

T
 A

P
I

R
ES

T
 A

P
I

Runtime
Registry

Service 
Bridge

Workflow 
Handler

Worklist 
Handler

Contract 
Factories

Compilation 
Tool

Deployment 
Mediator

Execution 
Monitor

Event
 Monitor

Modeling 
Panel

Execution 
Panel

Process 
Repository

Ethereum 
Log

Configuration 
Panel

Solidity 
Compiler

Fig. 1. Architecture of Caterpillar

The key component supporting the autonomy and flexibility of Caterpillar is
named Runtime Registry. Relations among contracts are updated and accessed
from the registry. On the other hand, Contract Factories are responsible to cre-
ate new instances. For example, a factory establishes which worklist is related to
a particular instance of a process. Note that the worklist can be different even
among instances of the same contract. Indeed, the available factories are stored
and accessed from the registry. Besides, the Runtime Registry keeps the addresses
of any smart contract instantiated by the prototype as well as references to the
compilation artifacts of the contracts. In other words, the history of process exe-
cutions, active instances, relations between contracts and the metadata required
to create new instances can be retrieved from the Runtime Registry.

Aligned with the idea to provide tamper-resilient storage, Caterpillar pro-
poses the usage of a decentralized storage implemented on top of IPFS [2] to
store the compilation metadata as well as information of the process required for
its execution. IPFS-based storage produces a hash value that uniquely identifies
each one of the compilation artifacts of a process model. Thus, this hash serves
as a reference to recover the data required to create new instances of a process.

The functionalities enclosed in the off-chain components are exposed through
a REST API that allows developers to interact with the on-chain components
[10]. The API supports operations to compile and deploy the smart contacts from
a BPMN model, to create instances of a contract, to configure relations/links
in the registry, to find and execute enabled tasks and so on. An event monitor
listens which events are stored in the log of the blockchain. Accordingly, push

16



notifications with information about the related transactions are generated. On
top of the architecture, visual tools are provided in a web-based user interface
to model, configure and execute process instances for usage of business analysts
without any technical knowledge about the internal functioning of Caterpillar.

6 Outlook

The current version of Caterpillar lacks any access control mechanism, meaning
that any participant can alter the state of execution of any process instance.
The research question 3 aims to solve this gap. Mainstream BPMSs are largely
based on a classical Role-Based Access Control Model. Concretely, each task in
the process is mapped to a role. Any user (e.g. worker) who plays the role corre-
sponding to a task can perform it. On top of this basic RBAC model, commercial
BPMSs allow one to define constraints such as “retain familiar” (i.e. the same
participant who performed a previous task should perform the current task) or
“four-eyes principle” (the current task must not be performed by the partic-
ipant who performed a previous task). Some BPMSs also support concepts of
“delegation”, as well as a wide range of resource allocation mechanisms [18]. Col-
laborative business processes, however, require more sophisticated access control
mechanisms. In particular, some common collaborative processes in the field of
logistics require dynamic binding and re-binding, as described in Section 1. Ad-
ditionally, in some cases, an organization may require protecting its data from
another untrusted party. In this situation, data encryption and policies to access
it needs to be developed.

A limitation of the current prototype can be seen if the number of elements
in the model is large. Here, the maximum amount of resources allowed per block
(i.e. ether in the Ethereum platform) can be overflowed. However, divide and
conquer approaches can be used while compiling to scale the process models. In
addition, some strategies to optimize the code generated could be applied with
the aim to reduce the costs of deployment and execution.

References

1. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: Platforms,
applications, and design patterns. In: Financial Cryptography and Data Security -
FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta, April 7, 2017, pp. 494–509 (2017)

2. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR
abs/1407.3561 (2014)

3. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

4. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer Berlin, Berlin (2018)

5. Frantz, C., Nowostawski, M.: From institutions to code: Towards automated gen-
eration of smart contracts. In: 2016 IEEE 1st International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W), Augsburg, Germany, September
12-16, 2016, pp. 210–215 (2016)

17



6. Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized Execution
of Business Processes on Blockchain. In: BPM 2017, LNCS. Springer (2017)

7. Hevner, A., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly 28(1), 75–105 (2004)

8. Hull, R.: Blockchain: Distributed event-based processing in a data-centric world:
Extended abstract. In: Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23,
2017, pp. 2–4 (2017)

9. Hull, R., Batra, V.S., Chen, Y.M., Deutsch, A., III, F.T.H., Vianu, V.: Towards a
shared ledger business collaboration language based on data-aware processes. In:
Service-Oriented Computing - 14th International Conference, ICSOC 2016, Banff,
AB, Canada, October 10-13, 2016, Proceedings, pp. 18–36 (2016)

10. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: A
blockchain-based business process management system. In: Proceedings of the
BPM Demo Track and BPM Dissertation Award co-located with 15th Interna-
tional Conference on Business Process Modeling (BPM 2017), Barcelona, Spain,
September 13, 2017. (2017)

11. Mendling, J., et al.: Blockchains for business process management - challenges and
opportunities. ACM Trans. Management Inf. Syst. 9(1), 4:1–4:16 (2018)

12. Norta, A., Ma, L., Duan, Y., Rull, A., Kõlvart, M., Taveter, K.: eContractual
choreography-language properties towards cross-organizational business collabora-
tion. J. Internet Services and Applications 6(1), 8:1–8:23 (2015)

13. Object Management Group: Business Process Model and Notation, version 2.0.
URL http://www.omg.org/spec/BPMN/2.0/. Accessed 2018-04-08

14. Palacin, L.: Accelerate blockchain technology adoption with Bonita BPM and
Chain Core. URL https://vimeo.com/202058656. Accessed 2018-04-08

15. Pourmirza, S., Dijkman, R.M., Grefen, P.: Switching parties in a collaboration at
run-time. In: 18th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2014, Ulm, Germany, September 1-5, 2014, pp. 136–141 (2014)

16. Pourmirza, S., Peters, S., Dijkman, R., Grefen, P.: A systematic literature review
on the architecture of business process management systems. Information Systems
66, 43 – 58 (2017)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

18. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: Advanced In-
formation Systems Engineering, 17th International Conference, CAiSE 2005, Porto,
Portugal, June 13-17, 2005, Proceedings, pp. 216–232 (2005)

19. Walport, M.: Distributed ledger technology: Beyond blockchain. Tech. Rep. 19,
UK Government Office for Science (2016)

20. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted Business Process Monitoring and Execution Using Blockchain. In: BPM
2016, LNCS 9850, pp. 329–347. Springer (2016)

21. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger eip-150
revision (759dccd - 2017-08-07) (2017). Accessed: 2018-04-08

18


