
Temporal Variables for Time Modeling in
Business Processes

Marco Franceschetti

Department of Informatics-Systems, Alpen-Adria-Universität Klagenfurt, Austria
firstname.lastname@aau.at http://isys.uni-klu.ac.at

Abstract. The modeling of temporal aspects in business processes is
based on the representation of time as a mere property of control-flow
constructs. Other timepoints cannot be represented, which limits the
types of temporal constraints that modelers can express. Additionally,
such representation of time hinders modularization and support for pri-
vacy in distributed processes. Here we propose a new process metamodel
in which temporal aspects are explicitly modeled with temporal vari-
ables. We show that our metamodel gives modelers increased expressive-
ness to represent temporal constraints. We then give indications on how
our metamodel can be used for overcoming the identified gaps.

Keywords: Business processes, Time modeling, Temporal variables

1 Introduction

Effective business processes management requires expressive models to capture
all the relevant aspects of processes. The correct and comprehensive modeling
of temporal aspects plays a crucial role in this perspective. Extensive research
has been conducted over time and processes in the last decades, corroborating
the relevance of temporal aspects in business process modeling. Despite the nu-
merous approaches to conceptual modeling and verification of timed processes,
such as [3, 6, 5, 9, 11, 14, 16], expressiveness limitations still affect the modeling of
temporal information and temporal constraints in processes. In the current ap-
proaches, the temporal dimension of a process is regarded to as a mere property
of its activities, not directly accessible. This limits the spectrum of possible tem-
poral constraints that one can express. We aim at filling this gap by introducing
a language with increased expressiveness for defining timed processes.

Here we propose a process metamodel that allows to represent temporal as-
pects as data elements. The reason behind it is that processes manipulate data,
and temporal information handled at runtime is data too. This explicit repre-
sentation of time allows modeling additional temporal information which are
unrelated to process activities, defining a more extensive set of temporal con-
straints, while still allowing the verification of temporal properties of a process.

This work is supervised by Prof. Johann Eder from the Information and Com-
munication Systems research group at the Alpen-Adria-Universität Klagenfurt,
Austria.

The remainder of this paper is structured as follows: in Sect. 2 we present
a series of motivating examples to show the gaps that our work aims at filling.
Sect. 3 presents our research questions and methods. In Sect. 4 we present the
state of the art. In Sect. 5 we define our process metamodel and briefly show
how we can evaluate it. Sect. 6 gives an overview of the next steps of work, and
we draw conclusions in Sect. 7.

2 Motivating Examples

Most business processes comprise temporal requirements to be fulfilled for a
correct execution. Temporal properties of such processes can be checked at design
time. However, there are real-world scenarios for which no mapping of temporal
information or constraint is possible with the current modeling approaches. Here
we show examples of such cases.

– Temporal information unrelated to control flow elements. Since existing ap-
proaches to time modeling only consider temporal aspects related to control
flow elements, no other timepoints can be referred to. Suppose a medical
scenario in which a patient comes to the hospital for urgent treatment. The
treatment is possible only if the patient has not taken a specific medicine in
the previous 24 hours. The medicine intake is not an activity of the treat-
ment process, since it might have happened before. Therefore, the temporal
information related to it is not part of the process. While in the real world
it could be obtained from an interview with the patient, in a process model
there would be no way to represent and directly refer to such a temporal
information. More in general, with the existing approaches, all temporal in-
formation that is not bounded to an executable element is not representable
and cannot be used for defining temporal constraints.

– Temporal constraints across modules. The advantages of modularizing pro-
cesses span from the ability to reuse existing processes inside new ones, to
the simplification of the overall process models thanks to abstraction. The
presence of temporal constraints crossing modules, however, nullify these ad-
vantages. A temporal constraint involving a timepoint ti within a module
and one outside of it would require the outer process to have access to the
module internals in order to refer to ti, because it is a property of an activ-
ity in the module. Moreover, the outer process could require to dynamically
constrain durations inside of the module, in order to satisfy some overall
temporal constraint. In such a case there is no way to convey temporal in-
formation from the outside process to the internals of the module.

– Temporal constraints across distributed processes. A distributed process is
realized by the interplay of local processes executed by different process
partners; no central authority exists for computing a global schedule, and a
shared-nothing architecture is assumed. The presence of temporal constraints
across local processes then requires the access to the internals of those pro-
cesses by other process partners, which is undesirable since it means a lack
of privacy and a potential exposition of business secrets. Similarly to the

65

case of modules, currently no way to directly refer to temporal information
originating outside of a local process is possible either.

3 Research Questions and Methods

The research questions that arise by looking at our examples, and that we try
to answer with this work are the following:

1. How can we explicitly model temporal aspects of business processes as data
elements such as temporal variables?

2. What are the semantics of such process models?
3. Which expressive power will be enabled in (possibly modularized or distributed)

process models, if temporal variables are introduced?
4. How can we define the correctness and other temporal properties, such as

controllability, for (possibly modularized or distributed) process models, if
temporal variables are introduced?

5. How can we check the correctness and other temporal properties, such as
controllability, for (possibly modularized or distributed) process models, if
temporal variables are introduced?

The first contribution of this project is to provide a formalism with increased
expressiveness for defining timed business processes, overcoming the expressive-
ness issues presented in Sect. 2 and allowing the modeling of a broader range of
real-world processes. By applying design science methods, a language for defin-
ing (possibly modularized or distributed) process models with temporal variables
will be produced, based on the one we presented in [10]. Temporal variables will
be used to represent timepoints and durations; temporal constraints will be
stated over them. Production of formal definitions, theorems and proofs will be
the method applied for defining the metamodel semantics. The evaluation of the
metamodel will be based on its implementation, and the design of real-world-
based process models. Algorithm design will be the method for generating data
interfaces for modularized and distributed processes in presence of temporal con-
straints; proofs of soundness and completeness will be given for validation, and
implementation will be done to assess the viability of the approach.

An additional contribution is the production of a set of tools for assessing
properties of processes expressed with the proposed language. Production of
formal definitions, theorems and proofs will be the method applied for defin-
ing the notions of correctness and controllability of processes expressed with the
proposed language. Algorithm design will be the method for checking such prop-
erties, also in modularized and distributed processes. Also in this case, proofs of
soundness and completeness will be given for validation, and algorithm imple-
mentation will assess the feasibility of the approach.

4 State of the Art

Numerous previous works considered the incorporation of temporal aspects in
workflows. The modeling of timepoints in BPMN is considered in [8], where

66

Time-BPMN is introduced to tackle the modeling of temporal constraints and
dependencies. The work defines attribute and properties extensions and their
depiction. Arbitrary timepoints, external to process activities, however, are out
of the modeling scope. Arbitrary events are considered in [17], however, they are
always associated to either state changes of objects or triggering of operations in
the enactment environment. Thus, expressiveness is still limited. [2] surveys var-
ious approaches to the modeling of temporal constraints in business processes.
None of those approaches explicitly models temporal aspects through temporal
variables. The focus of [7] is on the build- and instantiation-time computation
of activity deadlines to allow process execution without violating temporal con-
straints and the overall process deadline. The considered temporal constraints are
upper- and lower-bound constraints. The adopted process metamodel, however,
does not represent temporal aspects of activities in an explicit manner as we do
here, and modularization and distributed processes are not considered. A formal
framework for time modeling in production workflows is introduced in [14], along
with algorithms for CPM-based calculation of minimum and maximum process
durations and for constraints verification. The considered timepoints, however,
only refer to process elements and there is a lack of support for additional time-
points. Attention to temporal constraints is given also in [3], where a temporal
conceptual model for workflows is proposed, and three classes of temporal con-
straints are defined: task constraints, schedule-task constraints, and inter-task
constraints. However, all considered timepoints for constraint definition relate to
process tasks: no additional external event is contemplated. [12] focuses on the
representation and support of modularized processes. The basis of the proposed
representation for processes are Temporal Constraint Networks (TCNs, [4]), to
which process models are abstracted for calculating temporal properties, such
as controllability. Mapping processes to TCNs translates start and end events
of activities to TCN nodes. However, such an approach ignores the existence
of arbitrary timepoints. Temporal constraints on data are important also for
temporal databases [15], however the focus is limited to their satisfiability, not
addressing controllability aspects.

5 Process Metamodel

Since our aim is to allow expressing additional temporal aspects in process mod-
els, we need to address time at metamodel level. We propose a metamodel that
aims at overcoming the expressiveness issues discussed before. It includes a min-
imal set of control-flow constructs that allow to model the most common control
patterns [1]. We consider acyclic workflow nets composed of nodes connected
with directed edges. Nodes can be activities, xor-splits, xor-joins. Xor-splits have
exactly two outgoing edges, and xor-joins have exactly two incoming edges. The
semantics is that in a single process instance only one successor of a xor-split is
executed, as well as only one predecessor of a xor-join. All the other nodes have
the implicit semantics of and-splits and and-joins, meaning that all edges leaving
a node that is not a xor-split are followed for execution, and all predecessors of

67

a node that is not a xor-join have to be executed before that node can execute.
Activities can be either contingent or noncontingent. Contingent activities have
fixed minimum and maximum duration, but their actual runtime duration can-
not be controlled; instead, it can only be observed when the activity is executed.
An example of contingent activity is a bank money transfer, for which some time
between one and four days is required but there is no way to control it. Noncon-
tingent activities have a fixed minimum and maximum duration as well, but the
actual duration can be controlled by a human agent. Durations and other time-
points are explicitly represented as data elements which can be read or written
by activities. Constraints can be stated to express duration restrictions between
timepoints.

5.1 Process Graph

Since we consider time as data, following our previous work on handling data in
distributed processes [10], we represent processes with process graphs.

Definition 1 (Process Graph). A process graph P is a tuple (N,E, Γ, V, C),
where:

– N is a set of nodes, each with its dmin and dmax, and sets r and w of read,
resp. written variables;

– E is a set of edges, each ∈ (N ×N);
– Γ is a set of propositional letters;
– V is a set of variables, partitioned in Vd (generic data variables) and Vt

(temporal variables);
– C is a set of constraints, partitioned in UBC (upper-bound) and LBC (lower-

bound). Constraints are in the form (s, d, δ), with s, d ∈ Vt, δ ∈ N ∪ Vt.

Nodes can be of different types: start, end, activity, xor-split, xor-join. Each
node n has two associated temporal variables representing its minimum and max-
imum durations: n.dmin and n.dmax. Furthermore, it has two temporal variables
representing its start and end times at process runtime: n.s and n.e, respectively.
The following inequality must hold for all nodes n: 0 ≤ n.dmin ≤ n.e − n.s ≤
n.dmax. Each node n is also associated with two sets of variables n.r, n.w ⊆ V
containing the variables read and written in it.

Edges connect nodes and define the control flow of a process. We use edges
to define the sets of predecessors, resp. successors of a node n as: n.pred =
{m ∈ N | ∃(m,n) ∈ E}, n.succ = {m ∈ N | ∃(n,m) ∈ E}. A node n with
‖n.pred‖ = 0 is a start node; a node n with ‖n.succ‖ = 0 is an end node.

We use propositional letters to construct labels. Labels indicate through
which paths a certain node can be reached from the start node. Different paths
are possible due to the presence of decisions taken at xor-splits. For each xor-split
node xs we associate a propositional letter λ(xs) = µ ∈ Γ . The two outgoing
edges e1 and e2 of a xor-split xs have labels e1.γ = λ(xs) and e2.γ = ¬λ(xs),
respectively. All other edges e have label e.γ = True. Each node n of a process
graph has a label n.Λ which is defined depending on the type of the node:

68

– n.Λ = {True} if n is a start node;
– n.Λ =

⋃
m∈n.pred(m.Λ) if n.type = xor-join;

– n.Λ = ⊗{m.Λ∧(m,n).γ | (m,n) ∈ E} for any other node, where the operator
⊗ is defined as the cross-conjunction of a set of sets Λi of conjunctive terms:
⊗Λ = {λ1 ∧ · · · ∧ λn | λi ∈ Λi, 1 ≤ i ≤ n}.
The set V is partitioned in the set of generic (data elements) variables Vd

and the set of temporal variables Vt. Temporal variables encode temporal infor-
mation such as durations, timepoints, deadlines. We define three partitions of
Vt, depending on the type of information a temporal variable represents.

1. Vtn is the set of temporal variables derived from all nodes in the process
graph: Vtn = {n.dmin | n ∈ N} ∪ {n.dmax | n ∈ N} ∪ {n.s | n ∈ N} ∪ {n.e |
n ∈ N};

2. Vtd is the set of temporal variables referring to temporal information that
is written in some node in the process and is not derived as a temporal
property of that node;

3. Vte is the set of temporal variables given by the environment, such as deadline
for process termination (temporal variable Ω), maximum time of start for a
node, elapsed time since process start (temporal variable η).

Each vt ∈ Vt is associated with a label φ(vt), depending on its type:

– φ(vt) = n.Λ if vt ∈ Vtn;
– φ(vt) =

⋃
n n.Λ, vt ∈ n.w if vt ∈ Vtd;

– φ(vt) = True if vt ∈ Vte.
The label determined by φ corresponds to the values of the decision variables
under which a temporal variable is correctly initialized.

Constraints reflect restrictions on the values that can be assumed by variables
at runtime. Here we concentrate on temporal constraints, as they are the ones
that most influence the execution of a process and determine if certain temporal
properties, such as controllability, hold. Two types of temporal constraints exist:
upper- and lower-bound. Upper-bound constraints express maximum allowed du-
rations between events, while lower-bound constraints express minimum required
durations between events. The set C of constraints is therefore partitioned into
the sets UBC and LBC of upper-, resp. lower-bound constraints. The semantics
of a constraint c = (s, d, δ) is defined after the partition it belongs to:

– d− s ≤ δ if c ∈ UBC;
– d− s ≥ δ if c ∈ LBC.

5.2 Well-Formed Process

For space reasons, we informally define the requirements for a process to be well-
formed, in order to avoid ill process definitions. In a nutshell: each xor-join node
must not be reached by two different paths at the same time (disjoint paths); for
all nodes that are not xor-joins their predecessors must be compatible; for each
temporal constraint, there must be at least one path in which both the involved
temporal variables are correctly initialized; each temporal variable must not be
written more than once in a same process instance.

69

5.3 Metamodel Evaluation

We sketch the steps needed to evaluate our metamodel: we first need to show that
it is able to express all the established time patterns [13] (with the exception of
those that relate to loops, since loops are not contemplated in our metamodel).
We can show that each time pattern can be constructed with our metamodel,
proving that it is not less expressive than existing metamodels. Additionally, we
can show that our metamodel brings additional expressiveness since it captures
the situations pointed out in Sect.2 which existing approaches fail to model.

6 Next Steps

Having our process metamodel at disposal, we identify three main avenues for
further work, guided by our research questions: the automated check for temporal
properties, in particular controllability, the support for modularized processes,
and the support for distributed processes.

6.1 Correctness and Controllability

Given a process model, it is interesting for modelers to determine its correctness
and its controllability. For correctness here we refer to an assignment of times-
tamps to temporal variables which is not contradictory. The concept of control-
lability covers the problem of determining the possibility of executing a process
without violating its temporal constraints. Temporal Constraint Networks, and
their specialization which includes decision points and uncertain durations given
by contingency (CSTNUs), are a widely used graph-based structure for repre-
senting timepoints and their dependencies. Since established methods exist for
determining their controllability, we plan to develop a mapping to transform our
process models into CSTNUs for controllability check. The idea is to map each
temporal variable to a timepoint of a CSTNU, and each temporal constraint
to an edge of the CSTNU. This method will allow to exploit the established
results for controllability check in CSTNUs to determine the controllability of
our process models. A formalization of the concepts of correctness and control-
lability through formal definitions will be provided. Algorithms for determining
if a process is correct and controllable, as well as for mapping process models to
CSTNUs, will be developed and implemented.

6.2 Modularized Processes

The explicit representation of temporal information opens new possibilities for
modularized processes by allowing the expression of temporal constraints with-
out exposing module internals. Temporal variables can be used both as input
and output parameters of a module, and be referenced in constraints within the
module or in the outer process containing it. With constraints, input parameters
coming from the outer process can influence timepoints within a module, and

70

output parameters from a module can influence timepoints in the outer pro-
cess. The influence of parameters opens questions such as whether and under
which conditions it is necessary to recompute temporal properties of modules
for checking the ones of the outer process. Methods for determining the required
data exchanges across modules, and the need to recompute temporal properties
of modules when required, will be identified, and corresponding algorithms will
be designed and implemented. Additionally, as it is possible to assign ranges for
the timestamps referenced in temporal constraints crossing modules, algorithms
to predetermine such ranges will be designed and implemented.

6.3 Distributed Processes

Our metamodel can be applied to distributed processes, allowing to keep lo-
cal process internals hidden even in the presence of temporal constraints across
local processes. In a distributed process, several participants enact their local
processes in coordination with each other. The coordination between different
local processes can be realized by introducing communication primitives to ex-
change data at required points, as shown in [10]. The communication primitives
are activity nodes in which data is sent or received. A distributed process can
therefore be represented through our process graph, by assigning each node to the
corresponding process partner for execution. Temporal constraints across local
processes can be realized by exchanging temporal variables using communication
primitives. Means to automatically identify the required data exchanges will be
investigated, and corresponding algorithms will be designed and implemented.
Additionally, algorithms for the automatic generation of temporal ranges for ex-
ecuting local activities which would fulfil the global temporal constraints will
be designed and implemented. The same will be done for algorithms aimed at
verifying the overall temporal properties of distributed processes.

7 Conclusion

Despite temporal aspects being of humongous importance in business processes,
most existing approaches neglect those which are not directly related to process
activities, and provide a limited expressiveness for representing time. In this pa-
per we have introduced a new metamodel for processes which is the first using
temporal variables to represent temporal aspects. We have sketched proof that
our proposed metamodel is able to capture all the compatible established time
patterns, and that our explicit representation of time provides additional ex-
pressiveness by enabling the modeling of new temporal aspects and constraints.
Future work includes the verification of temporal properties of processes, possibly
by mapping our metamodel to CSTNUs, the automatic generation of interfaces
for process modules and for distributed processes.

71

References

1. van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1), 5–51 (2003)

2. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. Service Ori-
ented Computing and Applications 9(1), 75–85 (2015)

3. Combi, C., Pozzi, G.: Temporal conceptual modelling of workflows. In: Conceptual
Modeling-ER 2003, pp. 59–76. Springer Berlin Heidelberg (2003)

4. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial intelligence
49(1-3), 61–95 (1991)

5. Eder, J., Pichler, H., Vielgut, S.: An architecture for proactive timed web service
compositions. In: Business Process Management Workshops. LNCS, vol. 4103, pp.
323–335. Springer (2006)

6. Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with condi-
tional execution paths. In: Database and Expert Systems Applications. pp. 243–
253. Springer (2000)

7. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In:
Advanced information systems engineering. pp. 286–300. Springer (1999)

8. Gagne, D., Trudel, A.: Time-bpmn. In: Commerce and Enterprise Computing,
2009. CEC’09. IEEE Conference on. pp. 361–367. IEEE (2009)

9. Guermouche, N., Godart, C.: Timed model checking based approach for web ser-
vices analysis. In: ICWS 2009. IEEE International Conference on Web Services,
2009. pp. 213–221. IEEE (2009)

10. Köpke, J., Franceschetti, M., Eder, J.: Analyzing data-flow implementations for
distributed execution of inter-organizational processes. In: Proceedings of the 19th
International Conference on Information Integration and Web-based Applications
& Services. pp. 502–510. ACM (2017)

11. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware
processes at run time. In: On the Move to Meaningful Internet Systems: OTM
2013 Conferences. pp. 39–56. Springer (2013)

12. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controlling time-awareness in
modularized processes. In: Enterprise, Business-Process and Information Systems
Modeling, pp. 157–172. Springer (2016)

13. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Requir. Eng. 19(2), 113–141 (2014). https://doi.org/10.1007/s00766-012-
0162-3, http://dx.doi.org/10.1007/s00766-012-0162-3

14. Marjanovic, O., Orlowska, M.: On modeling and verification of temporal con-
straints in production workflows. Knowledge and Information Systems 1(2), 157–
192 (1999)

15. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: A survey. IEEE
Transactions on Knowledge and Data Engineering 7(4), 513–532 (1995)

16. Pichler, H., Eder, J., Ciglic, M.: Modelling processes with time-dependent con-
trol structures. In: International Conference on Conceptual Modeling. pp. 50–58.
Springer (2017)

17. Rolland, C.: A methodology for information system design. In: Proceedings of the
May 4-7, 1981, national computer conference. pp. 583–589. ACM (1981)

72

