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Abstract. We study the relation between labelled transition systems
and the corresponding partial orders of regions. In particular, we focus
on the sets of their potential events, or labels on the transitions, pro-
viding them with a structure so as to reason about concurrency from
the perspective of the observable properties of these systems. This is
achieved by introducing the notion of minimal events, as the generators
of such a structure of labels. We show that these events are sufficient to
synthesize a transition system, such that its Regional Partial Order is
isomorphic to the one obtained with the full set of events.

1 Introduction

Elementary Net Systems [15], or ENS, represent a suitable paradigm to study
the logical structure of observable properties of distributed systems. As a class
of Petri Nets, they explicitly represent concurrency, and as elementary systems,
their local states are interpretable as Boolean variables. Unlike in the sequential
case, on a system depicting concurrency, these properties do not interact accord-
ing to the classical Boolean logic. This work studies such logical variables, and
their interactions.

ENS are formalized as bipartite directed graphs, the nodes of which belong
in one of the following classes. A condition, or local state, can take the values
true or false. An event can dynamically alter the values of the conditions which
are connected to it by an edge. This change in the values is guided by the firing
rule [12]. A global state of the system is determined by a total truth assignment
on the conditions, it corresponds to a marking. The case graph of the net system
is a graph depicting the global behaviour of the system. Its nodes are the global
states of the system, and edges are now labelled with the events. As formalized
in Section 2.1, an Elementary Transition System, or ETS, is the case graph of
some Elementary Net System.

In this model, the labeling function induces an equivalence relation on the
transitions. Such a relation, and the corresponding equivalence classes, were
studied in the frame of 2-Structures [10, 11], in a work that set the foundation
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of Region Theory. A region is a subset of global states, such that transitions
entering, and those exiting it, are labelled consistently. In our view, regions cor-
respond to local properties of the system; they are determined by the behaviour
of a single sequential component. Due to the firing rule of ENS, there is a cor-
respondence between conditions and regions, by requiring consistency in the
labelling of transitions with respect to the latter. Given a condition of an ENS
the set of global states for which it is true is a region of the corresponding ETS.
Furthermore, it was shown in [10, 11], that for each region of its case graph, a
condition can be added to an ENS, without effects on its global behaviour. Actu-
ally, this fact is at the core of the solution to the Elementary Synthesis Problem
([9]): given an ETS, obtain an ENS such that its case graph is isomorphic to it.
An ENS with a condition for each region provides a solution to this problem.

Regions, as subsets of global states, can be ordered by inclusion. The set of
regions of an ETS is closed under set complement, and union of disjoint elements.
Such structures, orthomodular partial orders, were well studied in the first at-
tempts to axiomatize quantum mechanics [7], and were therefore called quantum
logics. This notion is introduced in Section 2.2. This subsection also introduces a
set of relations one can define on quantum logics, so as to express some properties
of the subclass of such logics, that arise in our framework. This work essentially
deals with the relations between quantum logics and ETS. However, net systems
are considered implicitly throughout the sections, in the interpretation of local
and global states, as conditions and markings.

By identifying regions and conditions, we stress the duality between global
states, seen as subsets of conditions, and regions, seen as subsets of global states.
This duality was exploited in [4] to present a construction which, given a quan-
tum logic, provides an ETS. A canonical ETS is obtained, in which states are
particular subsets of the logic. A transition is considered between each ordered
pair of states. Events are characterized by their local effect, and so the labels
on the transitions are determined by the set of regions in which the two states
differ. We already studied such a construction in [6], where we showed that some
of these events are redundant when computing regions. In that work we focused
on Condition/Event Transition Systems, further on CETS, which mainly differ
from ETS in the existence of an initial state.

In this work, we continue that study by selecting a specific subclass of the
events of the synthesized system that guarantees both connectedness and preser-
vation of the regional structure: one can consider the regions of the canonical
CETS obtained from a logic. The canonical CETS, and the alternative CETS
we here propose will carry the same set of regions. The main contribution of this
work relies on the properties of the regions which are minimal for the partial
order defining the logic [3]. These regions, henceforth atomic regions, or simply
atoms, were shown to be sufficient to solve the Synthesis Problem. In fact, with
the appropriate relations defined on them, atoms are sufficient to describe the
whole logical structure, as we report in Section 2.4.

This rather technical result will allow us to develop on the relation between
the logic of regions, and the associated canonical CETS. It was already pointed
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out, as a remark in [8], that the events built as subsets of regions form a partial
group. In this work, we formalize this notion, thus endowing the set of events
with a structure. In Section 3.1, we introduce a partial composition operation
on the events of the logic, with neutral element, and inverse. We also identify
concurrency between events with the commutativity of their composition. In
Section 3.2, such commutativity is characterized in relational terms over the
atomic structure of the logic. This will allow us to determine whether an event
is the concurrent composition of other two, solely on the base of the logical
structure. This fact is then further developed in Section 3.3 to define a partial
order of events, and conclude that events which are minimal with respect to
this order, are sufficient to convey all information regarding concurrency of the
synthesized CETS. We also show that when considering only these events, the
resulting CETS is connected.

2 Condition/Event Systems, Definitions and Notation

2.1 Transition Systems

Definition 1. A labelled transition system is a structure A = (Q,E, T ), where
Q is a set of states, E is a set of events and T ⊆ Q×E×Q is a set of transitions
such that:

1. the underlying graph of the labelled transition system is connected;
2. ∀(q1, e, q2) ∈ T q1 6= q2;
3. ∀(q, e1, q1)(q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

We will write s [e〉 to mean that there is s′ such that (s, e, s′) ∈ T , in this case we
may also write s [e〉 s′. Transition system will mean labelled transition system
in what follows.

Note: we will always use finite structures in this contribution.
Regions were introduced in [10] and [11], as a tool for solving the synthesis

problem [9]: construct a Petri net from a specification of its intended behaviour
in terms of a transition system. The synthesis problem is solved for several classes
of nets and corresponding classes of transition systems [1].

Definition 2. A region of a transition system A = (Q,E, T ) is a subset r of Q
such that every event crosses r uniformly, namely:
∀e ∈ E,∀(q1, e, q2), (q3, e, q4) ∈ T :

1. (q1 ∈ r and q2 /∈ r) implies (q3 ∈ r and q4 /∈ r) and
2. (q1 /∈ r and q2 ∈ r) implies (q3 /∈ r and q4 ∈ r).

Given a transition system A, its set of regions will be denoted by R(A); given a
state q ∈ Q, the set of regions containing q will be denoted by Rq(A) and, when
the transition system is clear from the context, simply by Rq. Note that the set
of regions R(A) of a transition system A = (Q,E, T ) cannot be empty since at
least the whole set of states Q is a region. We say an event e ∈ E is orthogonal
to a region r ∈ R(A), whenever ∀(q1, e, q2) ∈ T : q1 ∈ r ⇔ q2 ∈ r.
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Definition 3. Let A = (Q,E, T ) be a transition system. The pre-set and post-
set operations, denoted respectively by the operators •( . ) and ( . )•, applied to
regions r ∈ R(A) and events e ∈ E are defined by:

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 /∈ r and q2 ∈ r};
2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 /∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.

Elementary systems require an initial global state. In this work, deal with a sim-
ilar class of systems, in which only simple connectedness of the underlying graph
is required. Condition/Event transition systems, in the context of the synthesis
problem, have been introduced as the class of transition systems representing the
behaviour of Condition/Event Net Systems, one of the basic classes of Petri nets
[12]. Figure 1 shows a transition system of this class.

Definition 4. A Condition/Event Transition System — CETS — is a transi-
tion system such that the following conditions are satisfied:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q ∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q ∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q2, e, q1) ∈ T .
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Fig. 1. A Transition System which is both CETS and ETS, with inital state 1.

We will use the following basic properties of regions of CETS:

42



Proposition 1. [3] Let A = (Q,E, T ) be a CETS and R(A) its set of regions,
then:

1. ∅, Q ∈ R(A);
2. r ∈ R(A) ⇒ Q \ r ∈ R(A);
3. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A)⇔ r1 ∪ r2 ∈ R(A)).

2.2 Logics of Regions as Quantum Logics

Using the basic properties of regions recalled in Proposition 1, the set R(A)
can be endowed with an algebraic structure: it can be partially ordered by set
inclusion, and a complement can be defined as set-complement operation. More
precisely, if A = (Q,E, T ) is a CETS, then the logic L(A) = 〈R(A),⊆, (.)′, ∅, Q〉,
where (r)′ = Q \ r, can be defined. We will call the logic L(A) regional logic.
This logic has been shown to be a quantum logic [4]:

Definition 5. ([13], definition 1.1.1) A quantum logic 〈L,≤, (.)′, 0, 1〉 is a set
L endowed with a partial order ≤ and a unary operation ( . )′ (called orthocom-
plement), such that the following conditions are satisfied:

1. L has a least and a greatest element (respectively 0 and 1) and 0 6= 1;
2. ∀x, y ∈ L x ≤ y ⇒ y′ ≤ x′;
3. ∀x ∈ L (x′)′ = x;
4. if {xi | i ∈ I} is a countable subset of L such that i 6= j ⇒ xi ≤ x′j, then∨

i∈I xi exists in L;
5. ∀x, y ∈ L x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

The symbols ∧ and ∨ refer, when defined, to the ordinary meet and join oper-
ations. We say that two elements x and y in a logic are orthogonal, and write
x ⊥ y, if x ≤ y′. Hence, Proposition 1 implies that two regions are orthogonal
whenever they are disjoint subsets of states.

Partial orders of regions are a subclass of quantum logics: they have been
shown verify a set of properties which may not hold in an arbitrary quantum
logic. One of them involves the notion of state.

Definition 6. ([13], definition 2.1.1) A two-valued state on a quantum logic L
is a mapping s : L→ {0, 1} such that:

1. s(1) = 1;
2. if {xi | i ∈ I} is a set of mutually orthogonal elements in L, then s(

∨
i∈I xi) =

Σi∈Is(xi).

Note: a two-valued state s, seen as a characteristic set function, always selects
either an element x ∈ L or its orthocomplement x′: ∀x ∈ L, s(x) = 1⇔ s(x′) =
0. An immediate consequence is that, if s1 and s2 are distinct states, then s1\s2,
seen as a set, is not empty. In this work, we will refer to two-valued states
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simply as states, and mainly consider them as the subsets they are formally
characteristic functions of.

Given a logic L, we denote by S(L) the set of all (two-valued) states on L and
by Sx the set {s ∈ S(L) | s(x) = 1}. In general, logics could, by their structure,
admit no state at all. Logics having “enough” states in such a way that the order
relation can be re-constructed by their states are called rich:

Definition 7. ([13], definition 2.1.14) Let L be a logic and x, y ∈ L. L is rich
if:

Sx ⊆ Sy ⇒ x ≤ y.

Intuitively, a rich logic is faithfully represented by its set of states. A theorem
due to Stanley Gudder ([13], 2.2.1) shows that each element of a rich logic can
be seen as the subset of states that contain it. Such subsets form, with inclusion
and set complement, a new logic which is isomorphic to the original one. In this
logic, meet and join correspond respectively to intersection and union, and two
elements are orthogonal whenever they are disjoint. This theorem also shows
that, under the assumptions of Proposition 1, inclusion and set complement
provide a rich quantum logic. Thus, regional logics are rich.

It is well known [1] that given an elementary transition system A, its re-
gions will constitute the places of an elementary net system whose case graph
is isomorphic to A. In this view, the states of a regional logic correspond to the
potential markings of the associated net system. The following definition will
allow us to identify the sequential components of such a net system, directly on
the regional logic. We introduce the notion of compatibility among regions, which
translates precisely the idea that they belong to the same sequential component:

Definition 8. We say that two elements a and b of a logic L are compatible if,
and only if, there exist three mutually orthogonal elements â, b̂ and c in L such
that a = â ∨ c and b = b̂ ∨ c.

The relation of compatibility between a and b is noted as a $ b. Its opposite
relation is noted by x 6$ y. Note that two ordered or orthogonal elements are
always compatible. A maximal subset of pairwise compatible elements in L, with
the partial order on L, is a sublogic of L. It is also a Boolean algebra: it is closed
under complement (·)′, meet (∧), and join (∨), and the last two distribute over
each other. We may refer to these as maximal Boolean sublogics or blocks of L.

Intuitively, the blocks of L will correspond to the sequential components
in the net system view. This motivates the idea that there should be some
consistency among compatible elements of the logic. The well studied property
of regularity, accurately translates this notion.

Definition 9. ([13], definition 1.3.26) A logic L is called regular if, for any set
{a, b, c} ⊆ L of pairwise compatible elements, a $ (b ∨ c).

The main consequence of regularity is precisely that it will allow us to inter-
pret compatibility of two elements as their belonging to the same sequential
component.

44



Proposition 2. ([13], Proposition 1.3.29) A logic L is regular if and only if ev-
ery pairwise compatible subset of L admits an enlargement to a Boolean sublogic
of L.

Indeed, it has been shown [4] that every regional logic is regular. In [4] regular
logic were called coherent logics.

The dual notion, that incompatibility of two regions should translate their
belonging to different sequential components, was studied in [5]. Two conditions
belonging to different sequential components are potentially marked indepen-
dently from each other. Hence, the underlying logic allows for four states, cor-
responding to the possible combinations of markings of the two conditions, as
places of the net system. This property of quantum logics, called eti, was shown
to hold in every regional logic.

2.3 Synthesis of Saturated Transition Systems

Given a regional logic L(A) = 〈R(A),⊆, (.)′, ∅, Q〉 for some CETS A, we can
construct a new transition system from L = L(A). The transition system defined
by L is constructed with S(L) as its set of states. Its events are pairs of symmetric
differences between states.

Definition 10. Let e = [s1, s2] denote the pair of set differences 〈s1\s2, s2\s1〉.
Define •e = s1 \ s2, and e• = s2 \ s1, so that e = 〈•e, e•〉. Let

E = {[s1, s2] = 〈s1 \ s2, s2 \ s1〉 | s1, s2 ∈ S(L), s1 6= s2}.

Transitions and their labels can now be defined as

T = {(s1, [s1, s2], s2) | s1, s2 ∈ S(L), s1 6= s2}.

We can now define the transition system A(L) = (S(L), E, T ). In this frame,
s1 [e〉 s2 ⇒ s2 = (s1 \ •e) ∪ e•. We will refer to this binding as firing rule.

It was shown in [4] that, if L is rich, then A(L) is an Elementary Transition
System. It was also shown that A embeds into A(L), but note that A(L) might
have more states than A. By construction, every pair of states in A(L) is linked
by a transition in each direction. Its underlying graph is complete. We will hence
say that it is saturated with both states, and events.

Note that the regions of A(L) form again a regional logic, R(A(L)). In gen-
eral, we know [4] that L(A) embeds into R(A(L)).

2.4 Block Diagrams, Cliques of Atoms and Examples

A compact graphical representation of finite logics can be obtained with a tech-
nique due to Richard Greechie and reported in [14] for the case of finite ortho-
modular lattices.
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Remark 1. The set of elements L of a logic, or any of its subsets S, together with
a symmetric relation such as $, 6$, or ⊥ can be considered as an undirected graph.
All notion of graph theory as in [2] can then be applied. For instance, we will
call a clique of the relation R, any subset of L such that each pair of its elements
is in R. Let S be clique of R, then it is maximal if ∀x /∈ S : (∃y ∈ S : x 6R y).

An element of a quantum logic L is called an atom whenever it is minimal for the
partial order when one excludes 0. Let A(L) be the set of such elements. When
restricted to atoms, the compatibility relation $ coincides with orthogonality
relation ⊥. Hence, the atoms of a maximal Boolean sublogic will form a maximal
clique of ⊥. Note that, in the net system interpretation, orthogonality acts as
mutual exclusion. Indeed, two atomic conditions belonging in the same sequential
component cannot be marked simultaneously. From point 3 in Definition 5, it
is clear that any element of the logic can be retrieved as the join of a subset of
such a clique, and actually, the pair (A(L),⊥|A(L)×A(L)) is sufficient to recover
the whole structure of the logic.

The block diagram of a logic exploits this fact, and depicts only the atoms
of the logic. Instead of representing all orthogonality dependencies, maximal
cliques of ⊥ are represented by straight lines. In this way, the block diagram of
a Boolean algebra will be composed only by one maximal clique of ⊥ while at
least two blocks are needed for the representation of a non-Boolean logic L. In
Figure 2, a simple non-Boolean logic L is represented. The two blocks of atoms
in A(L) composing its block diagram are drawn on the right.

a

a′

b

b′

c

c′

d

d′

e

e′

0

1

a

b
c

d

e

Fig. 2. A simple non-Boolean logic composed by two blocks.

We will now present a result that will allow us to characterize the states of the
logic on its block diagram. Informally, this result states that a state must contain
exactly one atom per maximal Boolean sublogic. In order to formalize this, we
shall define some notation.
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Definition 11. Let C⊥(A(L)) be the set of maximal cliques of the ⊥ relation.
Let Cnc(A(L)) be the set of maximal cliques of 6$. By CL(A(L)) we denote the
set of elements α ∈ Cnc(A(L)) such that ∀β ∈ C⊥(A(L)), |α ∩ β| = 1. Finally,
for any subset S ⊆ A(L), the up-closure of S is defined as ↑S := {s′ ∈ L | ∃s ∈
S : s ≤ s′}.

In [4], it was shown that states of a regular logic can be characterized in terms of
sets of atoms of the logic (see Proposition 29, p. 649). We restate here the result,
fitting it to the terminology used in this paper (in [4], coherent was used instead
of regular, prime filter instead of state, and the result was stated for transitive
partial Boolean algebras, a class coinciding with regular logics).

Theorem 1. Let 〈L,≤, (.)′, 0, 1〉 be a regular logic, A(L) its set of atoms, s ∈
S(L) and CL(A(L)) as in definition 11 above, then (s ∩ A(L)) ∈ CL(A(L)).
Moreover, if α ∈ CL(A(L)) then ↑α is a state in L.

Example 1. With reference to Figure 2 the states of L are: ↑{a, d}, ↑{a, e}, ↑{b, d},
↑{b, e}, ↑{c}. A maximal clique of 6$ is not, in general, sufficient for the definition
of a state. The requirement, as in definition 11, that each maximal clique of
6$ meets each maximal clique of ⊥ is essential. With reference to Figure 3, the
up-closure of the maximal clique {a1, b2, g1} of 6$, ↑{a1, b2, g1} is not a state since
an element from the block {c1, c2, c3} is missing.

Example 2. The regional logic L of the transition system in Figure 1 is repre-
sented, as block diagram of its atoms, in Figure 3. The minimal regions in L, cor-
responding to the atoms, are: a2 = {2, 4, 6, 8}, a1 = {1, 3, 5, 7}, g1 = {1, 2, 9, 11},
g2 = {3, 4, 10, 12}, b2 = {7, 8, 11, 12}, b1 = {5, 6, 9, 10}, c1 = {9, 10, 11, 12},
c2 = {1, 2, 3, 4} and c3 = {5, 6, 7, 8}. Its representation as Net System is in Fig-
ure 4 where only one representative of the class of markings is drawn. This
marking is composed by the regions c2 = {1, 2, 3, 4}, a1 = {1, 3, 5, 7} and
g1 = {1, 2, 9, 11}.

a1 a2

b1 b2

c1

c2

c3 g1 g2

Fig. 3. The regional logic of the tran-
sition system in Figure 1

γ
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β
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e

a1a2

b2

b1

g1

g2

c1
c3 c2

Fig. 4. Net System representation for
the Transition System in Figure 1, the
marking corresponds to state 1
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We now show that the events of a logic are fully characterized by the atoms in
their neighbourhoods. This allows us to characterize events on the block diagram
of L.

Definition 12. For each e ∈ E, the neighbourhood of e is ν(e) = •e ∪ e•; the
atomic neighbourhood is νA(e) = (•e ∩ A(L)) ∪ (e• ∩ A(L))

Lemma 1. Let e1, e2 ∈ E. If νA(e1) = νA(e2), then e1 = e2.

Proof. Let e1 = 〈s1 \ s2, s2 \ s1〉. Choose x ∈ s1 \ s2, and suppose that x is not
an atom of L. Then there is at least one atom a of L in s1, with a < x. From
x /∈ s2, it follows that a /∈ s2. A symmetric argument applies to s2 \ s1, hence
e1 cannot be distinguished from e2 because of a non-atomic element in their
neighbourhoods. ut

3 Structured Regional Events

The synthesis of the saturated transition system from a given logic, allows one to
identify sets of transitions according to the modifications they apply on states,
when these are seen as subsets of regions. These modifications, or symmetric
differences of regions, are then taken as the set of labels of the transition system.

3.1 The Structure of Events

In this section, we exploit this fact to endow the set of events with a richer
structure. We define a composition operation with inverse, and neutral element.
The neutral element will just be e∅ := 〈∅, ∅〉 the empty event. This event should
be considered only for structural purposes. Intuitively, it would just leave any
state unchanged; hence no transition carries it as a label.

We first define the operation of sequential composition of two events. The
resulting event will correspond to the consecutive occurrence of its operands.
The existence of this new event will depend, however, on the existence of a state
binding the operands in sequence. In our setting, events are defined over a fixed
structure of states, making the following a partial operation.

Let L be a regional logic.

Definition 13. We say that two events e1, e2 ∈ E are sequentiable iff

∃s ∈ S(L) : e1
• ⊆ s ∧ •e2 ⊆ s (1)

If two events are sequentiable, we define their sequential composition as:

e1 ⊕ e2 = 〈(•e1 \ e2•) ∪ (•e2 \ e1•), (e2• \ •e1) ∪ (e1
• \ •e2)〉

= 〈(•e1 ∪ •e2) \ (e1
• ∪ e2•), (e1• ∪ e2•) \ (•e1 ∪ •e2)〉

The definition does not depend on the choice of s. Condition 1 requires an
occurrence of e1 to bring the system to a state which enables e2. The following
result exemplifies why this is required, and shows that e1 ⊕ e2 belongs to E.
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Proposition 3. Let s0, s, s1 ∈ S(L) be three distinct states, and e1, e2 ∈ E be
events such that s0 [e1〉 s [e2〉 s1. Then s0 [e1 ⊕ e2〉 s1
Proof. By definition of E, e1 = 〈s0 \ s, s \ s0〉, and e2 = 〈s \ s1, s1 \ s〉. Then by
definition of ⊕, e1 ⊕ e2 = 〈((s0 \ s) ∪ (s \ s1)) \ ((s \ s0) ∪ (s1 \ s)),
((s \ s0)∪ (s1 \ s)) \ ((s0 \ s)∪ (s \ s1))〉. Straightforward set operations then lead
to e1 ⊕ e2 = 〈s0 \ s1, s1 \ s0〉. ut

Associativity of the composition comes as a consequence of this last result.
We now define the inverse of an event.

Definition 14. Let e ∈ E : e = 〈•e, e•〉. Then e−1 = 〈e•, •e〉 is the inverse of e.

The transition system synthesized from a logic is saturated with events. For
any ordered pair of states, E contains an event which labels the corresponding
transition. Hence, as stated in the following proposition, any event has an inverse.

Proposition 4. Let e ∈ E then e−1 ∈ E.

Proof. e ∈ E ⇒ ∃s, s′ ∈ SL : s [e〉 s′. By definition, it holds that e = 〈s\s′, s′\s〉.
Now, ∃t ∈ T : t = (s′, [s′, s], s), and clearly, it will carry as a label 〈s′ \s, s\s′〉 =
e−1 ∈ E. ut

The inverse is well defined for all event, and so is the composition e ⊕ e−1 =
e−1 ⊕ e = e∅.

Whenever composition of two events is well defined, inversion behaves ac-
cordingly, in the sense that (e1 ⊕ e2)−1 = e−12 ⊕ e−11 whenever they are defined.

The sequential composition operation is, of course, not commutative in gen-
eral. We can formalise concurrency of two events as the commutativity of their
sequential composition: the occurrence of any of them does not disable the other.

Definition 15. We say two events e1, e2 ∈ E are independent iff

νA(e1) ∩ νA(e2) = ∅

Note that this condition holds iff (•e1 ∪ e1•) ∩ (•e2 ∪ e2•) = ∅
We say they are concurrent if they are independent, and there exists a state

that enables both of them:

∃s ∈ S(L) : •e1 ∪ •e2 ⊆ s ∧ (e1
• ∪ e2•) ∩ s = ∅

It follows from independence that, when two events are concurrent, their com-
position becomes simply e1 ⊕ e2 = 〈•e1 ∪ •e2, e1• ∪ e2•〉.

We show that two events are concurrent if and only if their composition is
commutative and some state enables both of them. This correspondence between
concurrency among two events, and commutativity of their composition accu-
rately translates the idea that concurrent events form diamonds in the saturated
transition system. We exploit this fact to prove the following result.

Proposition 5. Let e1, e2 ∈ E; then they are concurrent iff e1 ⊕ e2 and e2 ⊕ e1
are well defined and equal, and there exists a state which enables both.
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Proof. We first prove that if e1 and e2 are concurrent, then their composition is
commutative. So let s, s1, s2, s

′ ∈ S(L) : s [e1〉 s1 ∧ s1 [e2〉 s′ ∧ s [e2〉 s2. The
firing rule yields s1 = (s\ •e1)∪ e1•, and s′ = (s1 \ •e2)∪ e2•, and it follows from
independence of e1 and e2 that s′ = (s\(•e1∪•e2))∪(e1

•∪e2•) = (s2\•e1)∪e1•.
Hence s2 [e1〉 s′.

For the converse, suppose s, s1, s2, s
′ ∈ S(L) : s [e1〉 s1 ∧ s1 [e2〉 s′∧

s [e2〉 s2 ∧ s2 [e1〉 s′. Assume, as a contradiction hypothesis that ∃a ∈ νA(e1) ∩
νA(e2) 6= ∅. We distinguish four cases. If a ∈ •e1∩ •e2 then a /∈ s1 and so s1��[e2〉.
If a ∈ •e1 ∩ e2• then a ∈ s2, and so s��[e2〉s2. Analogously a ∈ •e2 ∩ e1• implies
that s��[e1〉s1. Finally, If a ∈ e1• ∩ e2• then s1��[e2〉. ut

The following example should clarify the last proof. The composition of two
concurrent events is a diagonal of the diamond they form. In the net system
interpretation, this corresponds to an event which has the same effect as firing
the operands simultaneously. This view justifies the term of step.

Example 3. In Figure 5 we can see that s1 [e1〉 s5 [e2〉 s2, and s1 [e2〉 s6 [e1〉 s2.
The fact that from s1 the system reaches s2 after firing e1 and e2 regardless of
the order of firing, implies that e1 ⊕ e2 = e2 ⊕ e1 = d.

s6

s1

s2

s5

s8

s3

s4

s7

e1

e1

e1

e1

e2 e2 e2 e2
d d

Fig. 5. Two diamonds

We say that an event is a step if it is the diagonal of some diamond. Whenever
e1, e2 are concurrent events, we may write e = e1 ⊕ e2 = e1 step e2, and say
that e is the step {e1, e2}.

3.2 Induced Orthogonality Subgraphs

There is an essential difference between the non-commutative and the commuta-
tive composition of events. Indeed, commutative composition provides the diag-
onal of a diamond. Such a diagonal event should, in our view, be distinguished
from other events. Provided that a system already depicts two concurrent events,
their step provides no additional information regarding concurrency, or connect-
edness of the system. This section will be devoted to formalising, and proving
this last statement.

In order to do so, we study the structure of diamonds as seen in the Greechie
representation of the logic. In the following, we will consider states of the logic
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as the cliques of incompatibility of the atoms which intersect every block of the
logic as in theorem 1. We will therefore see events as the symmetric differences
of these. For the basic notions on graph theory, see [2].

Definition 16. Let G⊥(L) = (A(L),⊥|A(L)×A(L)) be the Orthogonality Graph
of a Regional Logic L. Given a subset of atoms A ⊆ A(L), we will call (A,⊥ |A2)
the subgraph of G⊥(L) induced by A.

Recall that each maximal clique of G⊥(L) corresponds to the set of atoms of a
block (maximal Boolean sublogic) of L.

A bipartite graph is a graph whose set of vertices can be partitioned in two
classes, such that no two vertices in the same class are bound by an edge (see
[2]). A state, seen as a subgraph of G⊥(L), has the property that no pair of
its vertices is in ⊥. We will see that this implies that, for each event e, its set
of pre-conditions and its set of post-condition, form a bipartite graph (•e, e•),
when considered as the subgraph of G⊥(L) induced by νA(e).

Proposition 6. Let e ∈ E, and G⊥(L) as in Definition 16. Then (•e∩A(L), e•∩
A(L)) is a bipartition of (νA(e),⊥ |νA(e)2).

Proof. e ∈ E implies ∃s, s′ ∈ S(L) : s [e〉 s′. Then •e ⊆ s and e• ⊆ s′. •e ⊆ s⇒
∀a1, a2 ∈ •e : a1, a2 ∈ s. From Theorem 1, it follows that a1 6$a2, so in particular
(a1, a2) /∈⊥. The result is analogous for e• and s′. ut

The converse, however, is not always the case. We here provide an example of a
logic, in which there is a bipartite subgraph of G⊥(L) which does not correspond
to an event.

Example 4. In Figure 3, we can consider ({a1, b1, g1, a2, b2, g2}) as an induced
subgraph. In this case, ({a1, b1, g1}, {a2, b2, g2}) forms a bipartition, but there
is no event e = 〈{a1, b1, g1}, {a2, b2, g2}〉, since no state enables it. Such a state
would be a maximal clique of 6$, but as seen in Example 2, {a1, b1, g1} does not
intersect every block of L, and is therefore not a state.

We wish to study the properties of diamonds, as seen on G⊥(L). The next result
will exhibit a property that any pair of concurrent events must verify.

Proposition 7. Let e1 and e2 be two concurrent events. Then ∀a1 ∈ •e1,∀a2 ∈
e2
• : a1 6$ a2, and symmetrically ∀a3 ∈ e1•,∀a4 ∈ •e2 : a3 6$ a4.

Proof. Since e1 and e2 are concurrent, they must form a diamond. Namely,
∃s, s1, s2, s′ ∈ S(L) : s [e1〉 s1 [e2〉 s′ ∧ s [e2〉 s2 [e1〉 s′. Hence, e1

• ∪ •e2 ⊆ s1,
and e2

• ∪ •e1 ⊆ s2. Theorem 1 then yields the result. ut

This last result might become clearer when looking at a Greechie diagram.

Example 5. Consider the events e1 = 〈{a1}, {a2}〉, and e2 = 〈{b1}, {b2}〉 from
Figure 3. They are both enabled at state s = {a1, b1, c3}. The existence of
the state s1 = {a2, b1, c3} implies that a2 ∈ e1

•, and b1 ∈ •e2 verify a2 6$ b1.
Symmetrically, the state s2 = {a1, b2, c3} provides a1 6$ b2.
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We shall now prove the much stronger converse result. Namely, we show that
given an event, seen as the bipartite induced subgraph of G⊥(L), we can deter-
mine whether it is the step of two concurrent events, and if so, actually recon-
struct the corresponding diamond.

Lemma 2. Connected components of the subgraph of G⊥(L) induced by an event
e, form a set of pairwise concurrent events, the step of which is e.

Proof. Let e ∈ E, and suppose that there is a partition {ai}i≤n of •e, and
a partition {bi}i≤n of e• such that ai ∪ bi are the connected components of
(νA(e),⊥ |νA(e)2), for i ≤ n. We proceed by induction over the states. For the
base case, consider s, s′ ∈ S(L) : s [e〉 s′. Now, let j ≤ n, then (s \ aj) ∪ bj must
be a clique of 6$, since otherwise there would be an r1 ∈

⋃
i 6=j ai and an r2 ∈ bj

such that r1 ⊥ r2, contradicting that aj ∪ bj is a connected component for ⊥.
Now suppose (s \ aj) ∪ bj is not a state. Then there must be a block B of

G⊥(L) such that ((s \ aj) ∪ bj) ∩B = ∅. s ∈ S(L) implies that ∃r ∈ s ∩B, so it
must be r ∈ aj . Analogously, s′ ∈ S(L) implies that ∃r′ ∈ s′ ∩ B, so it must be
r′ ∈ ⋃

i 6=j bi. Clearly, r, r′ ∈ B → r $ r′, and •e∩e• = ∅ → r 6= r′, so r ⊥ r′. This
contradicts the fact that aj∪bj is a connected component. Then sj = (s\aj)∪bj
must be a state, and there must be an ej = 〈aj , bj〉 ∈ E such that s [ej〉 sj .

The induction step is absolutely analogous. One only needs to consider the
event e′j = 〈⋃i 6=j ai,

⋃
i 6=j bj〉, noting that sj [e′j〉 s′.

The result holds for any choice of j ≤ n at any induction step, hence all
permutations of n provide a sequential decomposition of the event e. Note that,
by construction, and for any j ≤ n, the events ej are pairwise independent, and
the existence of the state s provides that they must be concurrent. It should be
clear that ∀j1 6= j2 : ej1 ⊕ ej2 = ej2 ⊕ ej1 ∈ E. It follows from associativity of ⊕
that

⊕
i≤n ei = e. ut

This Lemma represents the main technical contribution of this work, and most of
the results we henceforth present are consequences of it. Indeed, it is a powerful
tool which will allow us to decompose events, as the step of a family of pairwise
concurrent events.

In order to formalise the notion of minimality of the events which are no
further decomposable in this way, we introduce the following partial order of
events. We shall not extend our discourse on this last construction in this paper,
but we find it justifies the intuitive idea that such events are in some sense
minimal.

Definition 17. Let E be a set of events. We define <⊆ E2 as ∀e1, e ∈ E : e1 < e
iff ∃e2 ∈ E : e1 ⊕ e2 = e2 ⊕ e1 = e.

Proposition 8. (E,<) is a strict partial order

Proof. < is irreflexive since, by convention, we do not consider e∅ ∈ E. < is
transitive, as a consequence of Proposition 7, and independence of concurrent
events. < is antisymmetric, since e1⊕ e2 = e2⊕ e1 = e, and e3⊕ e = e⊕ e3 = e1
imply that e1⊕e2⊕e3 = e1, and so e3 = e−12 . Hence s [e〉 implies that s [e2〉 and
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s [e−12 〉, but then there must be an s′ ∈ S(L) : s′ [e2〉 s [e2〉, which contradicts
the separation axioms in Definition 4. ut

We will say that an event is minimal if it is minimal with respect to this partial
order. From Lemma 2, it should be clear that an event is minimal if and only if
it is connected, as a bipartite induced subgraph of G⊥(L).

3.3 The Subset of Minimal Events

The main result that we present here is that it is sufficient to consider minimal
events when synthesizing a transition system, in order for it to be connected,
but also to depict all the concurrency encoded in the logic. This last notion will
be formalized by comparing the set of regions of such a transition system, and
that of the canonical synthesized system, which is saturated with events.

Definition 18. We call M ⊆ E the set of events which are minimal in (E,<).

We will start showing that M is sufficient to generate the regions of the transition
system synthesized from L. The idea is rather simple. When two concurrent
events are in E, then the separation axioms (see Definition 4) corresponding to
their step are redundant.

Definition 19. Let A = (Q,E, T ) be a transition system, and G ⊆ E be a
subset of events of A. Define TG as the set of all transitions of A labelled by
some element of G. Then

A \G = (Q,E \G,T \ TG)

Clearly, A \G is a, possibly non-connected, transition system.

Lemma 3. Let A = (Q,E, T ) be a CETS, s0, s1, s2, s3 ∈ Q, and e1, e2, d ∈ E,
such that s0 [e1〉 s1 [e2〉 s3, s0 [e2〉 s2 [e1〉 s3, and s0 [d〉 s3. Then A and A\{d}
have the same set of regions.

Proof. Any region of A is also a region of A \ {d}, since the latter has been
obtained by removing an event. Suppose now that r is a region of A \ {d},
but not of A. This implies that there are two transitions in A, say (s1, d, s2)
and (s3, d, s4), with different crossing relations with respect to r. Suppose that
s1 ∈ r, s2, s3, s4 /∈ r (all other combinations can be dealt with in a similar way).
By hypothesis, •d = •e1 ∪ •e2, and d• = e1

• ∪ e2•. Hence, e1 and e2 are enabled
at s1 and at s3, and form two diamonds, as shown in Figure 5.

Suppose that s5 is in r. Then, e1 is orthogonal to r, and e2 ∈ •r; but this
leads to a contradiction, since s7 /∈ r, and (s7, e2, s4) does not cross the border
of r. On the other hand, e5 /∈ r contradicts the hypothesis that s3 /∈ r, because
in this case e1 should leave r. ut

This last result implies, in particular, that minimal events convey all the in-
formation regarding concurrency, all other events being steps of these. This is
formalized in the following theorem.
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Theorem 2. Let L be a rich, and regular logic. Let A = (S(L), E, T ) be the sat-
urated transition system synthesized from L. Let M be the set of minimal events
in (E,<). Then the Regional logic R(A) is isomorphic to R((S(L),M, TM )).

Proof. We reason by induction over the set of states. Starting from A, we apply
Lemma 3 to show that for any diagonal d, R(A) ' R(A \ {d}). In the inductive
step, the hypothesis will be that R(A\D) ' R(A), then for any step d in E \D,
Lemma 3 provides R(A \ (D ∪ {d})) ' R(A). Clearly, when D contains all the
steps of E, then E \D = M . ut

Theorem 3. Let M be a set of minimal events in (E,<), and let TM be the set
of all transitions carrying some label in M , then the graph representation of the
transition system (S(L),M, TM ) is connected.

Proof. By construction, the graph associated to the saturated synthesized tran-
sition system (S(L), E, T ) is a complete graph. It is therefore connected. Now
let s, s′ ∈ S(L). We proceed again by induction. Suppose [s, s′] is not a minimal
event. Then Lemma 2 shows that ∃s1/2 ∈ S(L) : s [[s, s1/2]〉 s1/2 [[s1/2, s

′]〉 s′.
For the inductive step, assume there is a path s [e1〉 s1 [e2〉 . . . [ei〉 si [ei+1〉 s′.
Now, from Lemma 2 it holds that ∀ej+1 /∈M : ∃sj1/2 such that
sj [[sj , sj1/2]〉 sj1/2 [[sj1/2, sj+1]〉 sj+1. Clearly,s [e1〉 s1 [e2〉 . . . sj [[sj , sj1/2]〉
sj1/2 [[sj1/2, sj+1]〉 sj+1 . . . [ei〉 si [ei+1〉 s′ is a path connecting s and s′. The
induction will then end with a path connecting s and s′ where all arcs correspond
to minimal events. ut

A direct consequence of this last theorem, is that the transition system depicting
only minimal events verifies the first axiom of Definition 1.

4 Conclusions and Further Research

In the synthesis of a transition system from a quantum logic, the state of the
art provides a canonical system which is saturated with events. All possible
events are considered. In this work, we have endowed this set of events with a
structure, so as to provide an alternative canonical system with less events, by
considering only the ones which do not correspond to the step firing of any other
two. We have shown that they then have the same set of regions. Together with
the connectedness of the underlying graph in the new canonical system, we have
gathered technical results which seem promising towards the main aim in this
line of research. Our goal is to show that, under suitable conditions, the regional
logic of the synthesized transition system is isomorphic to the original one.
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