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Abstract. Euler diagrams are common and user-friendly visualizations
for set relationships. Most Euler diagrams use circles, but circles do
not always yield accurate diagrams. A promising alternative is ellipses,
which, in theory, enable accurate diagrams for a wider range of input.
Elliptical diagrams, however, have not yet been implemented for more
than three sets or three-set diagrams where there are disjoint or subset
relationships. The aim of this paper is to present eulerr: a software package
for elliptical Euler diagrams for, in theory, any number of sets. It fits Euler
diagrams using numerical optimization and exact-area algorithms through
a two-step procedure, first generating an initial layout using pairwise
relationships and then finalizing this layout using all set relationships.

1 Background

The Euler diagram, first described by Leonard Euler in 1802 [1], is a generalization
of the popular Venn diagram. Venn and Euler diagrams both visualize set
relationships by mapping areas in the diagram to relationships in the data. They
differ, however, in that Venn diagrams require all intersections to be present—
even if they are empty—whilst Euler diagrams do not, which means that Euler
diagrams lend themselves well to be area-proportional.

Euler diagrams may be fashioned out of any closed shape, and have been
implemented for triangles [2], rectangles [2], ellipses [3], smooth curves [4], poly-
gons [2], and circles [5, 2]. The latter are most common, and for good reason,
being that they are easiest to interpret [6]. Circles, however, sometimes cannot
be used to produce accurate area-proportional diagrams.

With four or more sets that all intersect, for instance, exact Euler diagrams
are impossible with circles, given that we require 24 − 1 = 15 intersections but
with four circles can yield no more than 13 [7]. A solution to this problem is
offered with ellipses, which may intersect in up to four, rather than two, points,
consequently yielding the necessary 15 unique areas. Elliptical Euler diagrams
were first introduced with eulerAPE [3], which, however, only supports three
sets and prohibits empty intersections.

Fitting elliptical or circular Euler diagrams must be done numerically even in
the two-set case [7] where the separation required by the circles has no closed-form
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solution. Many algorithms accomplish this in two steps, first finding a coarse
starting layout that is finalized in a second, more thorough, algorithm. For the
initial layout, the aforementioned eulerAPE package [8], for instance, uses an
algorithm that tries to minimize the error in the three-way intersection by arrang-
ing circles representing the sets. The venneuler package [5], meanwhile, uses
multi-dimensional scaling (MDS). The javascript package venn.js [9] combines
a constrained version of the MDS algorithm from venneuler with a greedy
algorithm.

In the final layout, we need to compute the areas of the overlaps in the dia-
gram. Frederickson [9] (venn.js) and Micallef and Rodgers [3] (eulerAPE) have
developed exact-area algorithms for circles and ellipses respectively—although the
latter, as we previously covered, restricts itself to three intersecting ellipses. The
parameters of the circles or ellipses are then optimized numerically to minimize
a loss measure, which vary depending on implementation.

The R-package eulerr was created as part of a bachelor’s thesis [10] and
is the first package to support Euler diagrams for, in theory, any number of
ellipses, regardless of subset and disjoint intersections. In this paper, we aim to
demonstrate the package through a series of well-known examples from previous
literature on the subject as well as a simulation study for the three-set case.

2 Method

eulerr allows input in the form of disjoint subsets, unions and identities, a matrix
of binary or boolean indices, a list of sample spaces, or a two- or three-way table.
The Euler diagram is fit in two steps: first, an initial layout is formed with circles
using only the sets’ pairwise relationships. Second, this layout is fine-tuned taking
all intersections into consideration.

2.1 Initial layout

For our initial layout, we adopt a constrained version of multi-dimensional
scaling (MDS) that is used in venn.js [9], which in turn is a modification of an
algorithm from venneuler [5].

We begin by placing circles representing each set uniformly at random in a
square space with area

∑n
i=1 r

2
i π, where ri is the radius of the ith circle. The

circles are initialized so that their areas are proportional to the size of their
respective sets. The algorithm then moves the circles so that the separation
between each pair of circles matches their respective sets’ intersection. If the two
sets are disjoint, however, the algorithm is indifferent to the relative locations of
those circles as long as they do not intersect. The equivalent applies to subset
sets: as long as the circle representing the smaller set remains within the larger
circle, their locations are free to vary. In all other cases, the loss function (1) is
the residual sums of squares of the separation of circles, d, required to obtain
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accurate pairwise overlaps and the actual distance in the layout.

L(h, k) =
∑

1≤i<j≤N


0 if disjoint

0 if subset(
(hi − hj)2 + (ki − kj)2 − d2ij

)2
otherwise,

(1)

where h and k are the x and y coordinates of the centers of the circles respectively.
The analytic gradient follows naturally after some algebra.

We optimize (1) using the nonlinear optimizer nlm() from the R core pack-
age stats [11], which uses a set of quasi-Newton algorithms for unconstrained
minimization [12].

2.2 Final layout

The initial layout (section 2.1) will sometimes turn up perfect diagrams1, but only
reliably so when the diagram is accurately determined by its pairwise intersections.
In the final layout, we cover the remaining cases by taking each intersection into
account. We now also extend ourselves to ellipses.

To find the overlap areas, we first locate all the points of intersection of the
ellipses [13], after which we can establish the overlap areas of the ellipses. We
are interested only in the points that are contained within all of these ellipses,
which together form a shape consisting of a convex polygon, the sides of which
are made up of straight lines between consecutive points, and a set of elliptical
arcs—one for each pair of points (Fig. 1).

Fig. 1. The overlap area between
three ellipses is the sum of a convex
polygon (in grey) and 2–3 ellipse
segments (in blue).

It is trivial to find the area of the polygon section since it is always convex [14].
And because each elliptical segment is formed from the arcs that connect successive
points, it is also straightforward to establish the segments’ areas [15, 16].

Having computed the areas of all the intersections we now decompose them into
disjoint areas, wherein each area uniquely represents a subset of the input. This is
the form we need for our final optimization. We feed the initial layout computed
in section 2.1 to the optimizer—once again we employ nlm() from stats but now

1 By perfect, we refer to solutions with diagError < 10−6 (see equation (3)).
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also provide the option to use ellipses rather than circles, allowing the “circles”
to rotate and the relation between the semiaxes to vary, altogether rendering
five parameters to optimize per set and ellipse (or three if we restrict ourselves
to circles). For each iteration of the optimizer, the areas of all intersections are
analyzed and a measure of loss returned. The loss we use is the same as that in
venneuler [5], namely stress, defined as

stress =

∑n
i=1(Ai − βωi)

2∑n
i=1A

2
i

with β =

∑n
i=1Aiωi∑n
i=1 ω

2
i

, (2)

where Ai is the area representing ωi, the size of the ith disjoint intersection, and
n the number of intersections in the set configuration.

As an additional option, the user may activate a last optimization step2 that
uses a Generalized Simulated Annealing optimizer [17].

To measure the goodness of fit of the resulting diagram, we adopt two widely
used measures: the previously covered stress [5] (2) and diagError [3],

diagError = max
i=1,2,...,n

∣∣∣∣ ωi∑n
i=1 ωi

− Ai∑n
i=1Ai

∣∣∣∣ . (3)

The complete algorithm is provided in Algorithm 1.

2.3 Implementation

eulerr is primarily written in R but its backbone is implemented in C++ and make
heavy use of the linear algebra library Armadillo [18] through Rcpp [19] and Rcp-
pArmadillo [20]. The package is compatible with all major operating systems
(Linux, OS X, and Windows) and is featured on the Comprehensive R Archive
Network (CRAN) [21]. It is installed by calling install.packages("eulerr")

within R. The source code and development version are hosted at https://

github.com/jolars/eulerr. In addition, we have developed a shiny [22] web
application for eulerr, available at http://eulerr.co.

3 Results

In this section, we will study set configurations—and the diagrams fit to them—
from previous papers featuring software for Euler diagrams. The packages we
will study are eulerr 4.1.0, eulerAPE 3.0.0, and venneuler 1.1-0.

We begin with a set relationship from Wilkinson [5],

wilkinson <- c("A" = 4, "B" = 6, "C" = 3, "D" = 2, "E" = 7, "F" = 3,

"A&B" = 2, "A&F" = 2, "B&C" = 2, "B&D" = 1,

"B&F" = 2, "C&D" = 1, "D&E" = 1, "E&F" = 1,

"A&B&F" = 1, "B&C&D" = 1)

2 By default, this last-ditch optimizer kicks in for three-set combinations where the
diagError of the solution surpasses 0.001.
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Algorithm 1. The eulerr algorithm for elliptical diagrams.

Data: N sets, n intersections, ω: the required disjoint areas for an optimal
diagram, Fi: the size of the ith set, δ: a predefined tolerance threshold.

Result: N ellipses with parameters Ψ = {h, k, a, b, φ}.
for i← 1 to N do

Ai ← ωi

ri ←
√
Ai/π

xi, yi ← U
(

0,
√∑N

i=1 r
2
i π
)

foreach i < j ≤ N do

find dij that minimizes
[
Oij − (Fi ∩ Fj)

]2
, where Oij is the overlap of the

circles representing Fi and Fj

for i← 1 to 10 do obtain h(i), k(i) by minimizing (1) using a local optimizer
j ← i ∈ {1, 10} that minimizes (1)

obtain Ψfinal by minimizing (2) using a local optimizer with h = h(j), k = k(j),
a = 0, b = 0, φ = 0 as starting values

if diagError(Ψfinal) > δ then
obtain Ψlast-ditch using a global optimizer
if diagError(Ψfinal) > diagError(Ψlast-ditch) then return Ψlast-ditch

else return Ψfinal

else
return Ψfinal

specified as disjoint subsets using the &-operator such that "A&B", for instance,
are the items unique to the intersection between A and B. We fit this specification
with venneuler and eulerr, in the latter case with both circles and ellipses,
using euler(): the workhorse of eulerr.

f1 <- venneuler::venneuler(wilkinson) # fit with venneuler

f2 <- euler(wilkinson) # fit with eulerr (circles)

f3 <- euler(wilkinson, shape = "ellipse") # fit with eulerr (ellipses)

eulerr manages to fit this configuration perfectly using ellipses in addition to
producing a marginally better circular diagram. The stress values are 0.007,
0.004, and 4.687× 10−12 for venneuler, eulerr (with circles), and eulerr (with
ellipses) respectively.

Diagrams in eulerr are plotted using plot(), which allows considerable cus-
tomization of the resulting diagram. In the following code, we plot the circular
diagram using the default options and the elliptical one with a few modifica-
tions (Fig. 2).

plot(f2)

plot(f3,

fills = rainbow(6, s = 0.5, v = 1), # change fills

edges = list(lex = 3, col = "white"), # white, broader edges

labels = list(font = 3)) # italic labels
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Fig. 2. A comparison of a Euler diagram generated with venneuler (to the left) with
two generated from eulerr with circles (middle) and ellipses (right) respectively.

Micallef and Rodgers feature a diagram from Lenz et al. [23] that they remodeled
using eulerAPE [3]. We will do the same here, using eulerr, and compare the
results of the two packages. The data from the study—as disjoint subsets—is

lenz <- c("A" = 0.36, "B" = 0.03, "C" = 0,

"A&B" = 0.41, "A&C" = 0.04, "B&C" = 0, "A&B&C" = 0.11)

Because eulerAPE cannot fit set configurations with empty intersections, the
authors used 0.00001 as a proxy for ∅. Using eulerr, however, we can fit the
diagram using the original data.

plot(euler(lenz, shape = "ellipse"), legend = TRUE) # add a legend

The fits from both packages are exact (Fig. 3). Although we instructed eulerr
to allow ellipses in the fit, the algorithm stuck to circles, which, given that the
fit is exact, is the appropriate choice since circles are easier to interpret [6].
eulerAPE, in contrast, did not. It tries to keep the three shapes intersecting,
albeit marginally, which cannot be done with circles if the layout is to be exact.

A
B
C

Fig. 3. Diagrams
from eulerAPE and
eulerr based on data
from a diagram from
Lenz et al. [23]. Both
diagrams are exact.

Finally, we provide a benchmark of the accuracy of venneuler, eulerAPE,
and eulerr in reproducing 1,000 random three-set combinations sampled from
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U(10−6, 1) (Fig. 4). We use three-set combinations with all intersections present
in order to enable all tested packages to fit the diagrams.

In terms of both stress and diagError, the elliptical diagrams from eulerr
and eulerAPE perform the best, with the former coming out marginally ahead
with median stress and diagError at 3.123× 10−13 and 1.638× 10−7 respectively,
whilst the equivalent figures for eulerAPE are 7.834× 10−12 and 8.219× 10−7.

For the circular diagrams, eulerr achieves the lowest median stress at 0.022,
followed by venneuler and eulerAPE at 0.035 and 0.08 respectively. In terms
of diagError, venneuler performs best followed by eulerr and eulerAPE with
respective median diagErrors of 0.048, 0.055, and 0.067.

eulerr (circles)

eulerr (ellipses)

venneuler

eulerAPE (circles)

eulerAPE (ellipses)

0.0 0.2 0.4 0.6 0.8

stress
0.0 0.2 0.4 0.6 0.8

diagError
Fig. 4. Tukey box
plots of diagError
and stress for Euler
diagrams based on
set relationships of
three sets with every
intersection present.

4 Discussion

In this paper, we have presented an R-based software package, eulerr, for
generating elliptical Euler diagrams for any number of sets. We have examined
its performance for set relationships from previous publications of software for
Euler diagrams and shown that eulerr performs adequately for our examples
and for random three-set combinations. In general, we have also shown that
elliptical Euler diagrams have the potential to outperform circular diagrams. The
reason for this is simple: elliptical Euler diagrams feature two additional degrees
of freedom for each shape in the diagram, provided by stretch and rotation.

eulerr is the first software to feature area-proportional elliptical Euler di-
agrams for more than three sets. The only other software for elliptical Euler
diagrams, eulerAPE, is restricted to three sets. This limitation is discussed by
the authors of the package, who argue that Euler diagrams with more than three
sets often lack well-formed solutions and that their complexity make implemen-
tations difficult [8]. Whilst it is true that inputs with more than three sets do
not always reduce to adequate Euler diagrams, it is our stance that those that
do warrant a solution to find them.

The results of this paper are limited to a few cases and it is not known
whether they generalize to other set combinations. This is a topic for future
research in the field, which should examine different software for Euler diagrams
in large-scale simulation studies.
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