Multiple Preprocessing for Systematic SAT Solvers

Anbulagan!, John Slaney'?
Logic and Computation Program, National ICT Australia Ltd.
2Computer Sciences Laboratory, Australian National University
{anbulagan, john.slaney}@nicta.com.au

Abstract

High-performance SAT solvers based on systematic search generally use either
conflict driven clause learning (CDCL) or lookahead techniques to gain efficiency.
Both styles of reasoning can gain from a preprocessing phase in which some form
of deduction is used to simplify the problem. In this paper we undertake an empir-
ical examination of the effects of several recently proposed preprocessors on both
CDCL and lookahead-based SAT solvers. One finding is that the use of multiple
preprocessors one after the other can be much more effective than using any one of
them alone, but that the order in which they are applied is significant. We intend
our results to be particularly useful to those implementing new preprocessors and
solvers.

1 Introduction

In the last decade, the propositional satisfiability (SAT) has become one of the most
interesting research problems within artificial intelligence (AI). This tendency can be
seen through the development of a number of powerful SAT solvers, based on either
systematic search or stochastic local search (SLS), for solving various hard combinato-
rial search problems such as automatic deduction, hardware and software verification,
planning, scheduling, and FPGA routing.

The power of contemporary systematic SAT solvers derives not only from the un-
derlying Davis-Putnam-Logemann-Loveland (DPLL) algorithm but also from enhance-
ments aimed at increasing the amount of unit propagation, improving the choices of
variables for splitting or making backtracking more intelligent. Two of the most impor-
tant such enhancements are conflict driven clause learning (CDCL), made practicable on
a large scale by the watched literal technique, and one-step lookahead. These two tend
to exclude each other: the most successful solvers generally incorporate one or the other
but not both. The benefits they bring are rather different too, as is clear from the results
of recent SAT competitions. For problems in the “industrial” category, CDCL, as im-
plemented in MiNiSat [ES03, SE05], siege [Rya04] and zChaff [MMZ"01, ZMMMO1] is
currently the method of choice. On random problems, however, lookahead-based solvers
such as Dew_Satz [AS05], Kenfs [DDO01] and March_dl [HvMO06] perform better.

Lookahead, of course, is expensive at every choice node, while clause learning is
expensive only at backtrack points. Since half of the nodes (plus one) in any binary
tree are leaves, this difference is significant for lookahead-based solvers which process

nodes relatively slowly and gain, if at all, by reducing the search tree size. Looking
ahead is an investment in at-node processing which can pay off only if it results in more
informed choices with an impact on the total number of nodes visited. Where learnt
clauses prune the tree at least as effectively as complex choice heuristics, CDCL must
win. This seems to be the case in many classes of highly structured problems such as the
“industrial” ones in the SAT competitions. We have no clearer definition than anyone
else of “structure”, but are interested to find ways in which lookahead-based solvers
might detect and exploit it as well as the clause learners do.

A noteworthy feature of many recent systems is a preprocessing phase, often using
inference by some variant of resolution, to transform problems prior to the search.
One suggestion we wish to make and explore is that such transformations may help
lookahead-based solvers to discover useful structure. That is, much of the reasoning done
by nogood inference might be done cheaply “up-front”, provided that the subsequent
variable choice heuristics are good enough to exploit it. In what follows, we are therefore
concerned mainly with the effects of preprocessing, including those of using multiple
preprocessors in series, on the performance of a lookahead-based solver Dew_Satz on
problems where it does poorly in comparison with a clause learning solver (MINISAT). We
also include some results and remarks on benefits to be gained in the opposite direction,
where MINISAT is helped by preprocessing to attack problems to which Dew_Satz is more
suited.

In this paper we propose a multiple preprocessing technique to boost the performance
of systematic SAT solvers. The motivation for applying multiple preprocessors prior to
the systematic search process is clear: each preprocessor uses a different strategy in
objective to simplify clause sets derived from real-world problems that exhibit a great
deal structure such as symmetries, variable dependencies, clustering, and the like. Our
initial observation showed that each strategy works well for simplifying the structure
of some problems, at most of the time, from hard to easy. When a problem exhibits
different kinds of structure, then a single preprocessor has difficulty to simplify the
structures. In this case, we need to run multiple preprocessors one after the other.

We report performance statistics for the two solvers, Dew_Satz and MINISAT, with
and without combinations of five (and for one problem set, six) of the best contemporary
SAT preprocessors when solving parity, planning, bounded model checking and FPGA
routing benchmark problems from SATLIB and the recent SAT competitions. One
finding is that the use of multiple preprocessors one after the other can be much more
effective than using any one of them alone, but that the order in which they are applied
is significant. We intend our results to be particularly useful to those implementing new
preprocessors and solvers.

The rest of the paper is organized as follows: section 2 addresses the related work.
In sections 3 and 4, we briefly describe the preprocessors and solvers examined in our
study. The main part of the paper consists of experimental results, and we conclude
with a few remarks and suggestions.

2 Related Work

Resolution-based SAT preprocessors for CNF formula simplification have a dramatic
impact on the performance of even the most efficient SAT solvers on many benchmark
problems [LMSO01]. The simplest preprocessor consists of just computing length-bounded
resolvents and deleting duplicate and subsumed clauses, as well as tautologies and any
duplicate literals in a clause.

There are two most directly related works. The first one is that of Anbulagan
et al. [APSS06] which examined the integration of five resolution-based preprocessors
alone or the combination of them with stochastic local search (SLS) solvers. Their
experimental results show that SLS solvers benefit the present of resolution-based pre-
processing and multiple preprocessing techniques. And the second one is that of Lynce
and Marques-Silva [LMS01]. They only evaluated empirically the impact of some pre-
processors developed before 2001 including 3-Resolution, without considering multiple
preprocessing, on the performance of systematic SAT solvers. In recent years, many
other preprocessors, which are sophisticated, have been applied to modern propositional
reasoners. Among them are 2-SIMPLIFY [Bra0l], the preprocessor in Lsat [OGMS02]
for recovering and exploiting Boolean gates, HyPre [Bac02, BW04], Shatter [ASMO03|
for dealing with symmetry structure, NiVER [SP05] and SatELite [EB05]. We consider
some of these preprocessors plus 3-Resolution in our study.

3 SAT Preprocessors

We describe briefly the six SAT preprocessors used in the experiments. The first
five are all based on resolution and its variants such as hyper-resolution. Resolu-
tion [Quib5, DP60, Rob65] itself is widely used as a rule of inference in first order
automated deduction, where the clauses tend to be few in number and contain few lit-
erals, and where the reasoning is primarily driven by unification. As a procedure for
propositional reasoning, however, resolution is rarely used on its own because in prac-
tice it has not been found to lead to efficient algorithms. The sixth preprocessor is a
special-purpose tool for symmetry detection, which is important for one problem class
in the experiments.

3.1 3-Resolution

k-Resolution is just saturation under resolution with the restriction that the parent
clauses are of length at most k. The special cases of 2-Resolution and 3-Resolution
are of most interest. 3-Resolution has been used in a number of SAT solvers, notably
Satz [LA97] and the SLS solver R+AdaptNovelty™ [APSS05] which won the satisfiable
random problem category in the SAT2005 competition. Since it is the preprocessor
already used by Satz, we expect it to work well with Dew_Satz.

3.2 2-SIMPLIFY

2-SIMPLIFY [Bra0l] constructs an implication graph from all binary clauses in the
problem. Where there is an implication chain from a literal X to X, X can be deduced

as a unit which can be propagated. The method also collapses strongly connected
components, propagates shared implications, or literals implied in the graph by every
literal in a clause, and removes some redundant binary clauses. Experimental results
[Bra0Ol, Bra04] show that systematic search benefits markedly from 2-SIMPLIFY on a
wide range of problems.

3.3 HyPre

HyPre [BWO04] also reasons with binary clauses, but incorporates full hyper-resolution,
making it more powerful than 2-SIMPLIFY. In addition, unit reduction and equality
reduction are incrementally applied to infer more binary clauses. It can be costly in
terms of time, but since it is based explicitly on hyper-resolution it avoids the space
explosion of computing a full transitive closure. HyPre has been used in the SAT solver,
2CLS+EQ [Bac02], and we consider it a very promising addition to many other solvers.
It is generally useful for exploiting implicational structure in large problems.

3.4 NiVER

Variable Elimination Resolution (VER) is an ancient inference method consisting of
performing all resolutions on a chosen variable and then deleting all clauses in which
that variable occurs, leaving just the resolvents. It is easy to see that this is a complete
decision procedure for SAT problems, and almost as easy to see that it is not practicable
because of exponential space complexity. Recently, Subbarayan and Pradhan [SP05]
proposed NiVER (Non increasing VER) which restricts the variable elimination to the
case in which there is no increase in the number of literals after elimination. This shows
promise as a SAT preprocessor, improving the performance of a number of solvers [SP05].

3.5 SatELite

Eén and Biere [EB05] proposed the SatELite preprocessor, which extends NiVER with
a rule of Variable Elimination by Substitution. Several additions including subsumption
detection and improved data structures further improved performance in both space and
time. SatELite was combined with MINISAT to form SatELiteGTI, the system which
dominated the SAT2005 competition on the crafted and industrial problem categories.
Since we use MINISAT for our experiments, it is obvious that SatELite should be one of
the preprocessors we consider.

3.6 Shatter

It is clear that eliminating symmetries is essential to solving realistic instances of many
problems. None of the resolution-based preprocessors does this, so for problems that
involve a high degree of symmetry we added Shatter [AMSO03] which detects symmetries
and adds symmetry-breaking clauses. These always increase the size of the clause set
and for satisfiable problems they remove some of the solutions, but they typically make
the problem easier by pruning away isomorphic copies of parts of the search space.

4 SAT Solvers

As noted in Section 1, we concentrate on just two solvers: MINISAT, which relies on
clause learning, and Dew_Satz, which uses lookahead.

4.1 MiINISAT

Sorensson and Eén [ES03, SE05] released the MINISAT solver in 2005. Its design is based
on Chaff, particularly in that it learns nogoods or “conflict clauses” and accesses them
during the search by means of two watched literals in each clause. MINISAT is quite
small (a few hundred lines of code) and easy to use either alone or as a module of a
larger system. Its speed in comparison with similar solvers such as zChaff comes from a
series of innovations of which the most important are an activity-decay schedule which
proceeds by frequent small reductions rather than occasional large ones, and an inference
rule for reducing the size of conflict clauses by introducing a restricted subsumption test.
The cited paper contains a brief but informative description of these ideas.

4.2 Dew_Satz

The solver Dew_Satz [AS05] is a recent version of the Satz solver [LA97]. Like its parent
Satz, it gains efficiency by a restricted one-step lookahead scheme which rates some of
the neighbouring variables every time a choice must be made for branching purposes. Its
lookahead is more sophisticated than the original one of Satz, adding a DEW (dynamic
equality weighting) heuristic to deal with equalities. This enables the variable selection
process to avoid duplicating the work of weighting variables detected to be equivalent
to those already examined. Thus, while the solver has no special inference mechanism
for propositional equalities, it does deal tolerably well with problems containing them.

5 Experimental Results

We present results on four benchmark problem sets chosen to present challenges for one
or other or both of the SAT solvers. The experiments were conducted on a cluster of 16
AMD Athlon 64 processors running at 2 GHz with 2 GB of RAM. Ptime in the tables
represents preprocessing time, while Stime represents solvers runtime without including
Ptime. The timebound of Stime is 15,000 seconds per problem instance. It is worth
noting that in our study the results of SatELiteGTI, the solver which dominated the
SAT2005 competition on the crafted and industrial problem categories, are represented
by the results of SatELite+MINISAT.

5.1 The 32-bit Parity Problem

The 32-bit parity problem was listed by Selman et al. [SKM97] as one of ten challenges
for research on satisfiability testing. The ten instances of the problem are satisfiable.
The first response to this challenge was by Warners and van Maaren [WvMO98] who
solved the par32-*-c problem (5 instances) using a special-purpose preprocessor to
deal with equivalency conditions. Two years later, Li [Li00] solved the ten par32x
instances by enhancing Satz’s search process with equivalency reasoning. Ostrowski et

Instance Prep. #Vars/#Cls/#Lits | Ptime Dew_Satz MINISAT
Stime [#BackT Stime [#Conflict
par32-1 | Orig 3176/10227/27501 n/a || >15,000 n/a || >15,000 n/a
3Res 2418/7463/19750 0.08 12,873 17,335,530 >15,000 n/a
Hypi3Res | 1313/6193/17203 | 0.50 9,513 | 17,391,333 || >15,000 n/a
Niv+3Res 1315/5948/16707 0.46 6,858 13,476,105 >15,000 n/a
3Res+Hyp 1313/5495/15810 0.11 9,655 | 17,335,492 >15,000 n/a
Sat+3Res 849/5245/18660 0.37 14,729 | 34,569,968 >15,000 n/a
par32-2 | Orig 3176/10253,/27405 n/a || >15,000 n/a 5,364 | 9,125,821
3Res 2392/7387/19550 0.08 5,171 9,341,185 6,205 | 10,492,612
Hyp+3Res 1301/5975/16719 | 0.36 3,831 | 8,186,883 || >15,000 n/a
Niv+3Res 1303/5730/16223 0.29 1,518 3,889,345 >15,000 n/a
par32-3 | Orig 3176/10297 /27581 n/a || >15,000 n/a || >15,000 n/a
3Res 2395/7437/19738 0.07 6,124 9,711,576 >15,000 n/a
Hyp+3Res 1323/5961/16779 0.23 3,673 9,708,520 >15,000 n/a
Niv+3Res 1325/5716/16283 0.22 4,470 9,710,552 >15,000 n/a
Sat+3Res 848/5284 /18878 0.37 3,647 2,206,369 >15,000 n/a
par32-4 | Orig 3176/10313,/27645 n/a || >15,000 n/a || >15,000 n/a
3Res 2385/7433/19762 0.08 10,425 | 10,036,154 >15,000 n/a
Sat 849/5160,/18581 0.21 12,820 18,230,746 >15,000 n/a
Hyp+3Res 1331/6055/16999 0.36 9,001 | 17,712,997 >15,000 n/a
3Res+Hyp 1331/5567/16026 0.11 5,741 | 10,036,146 >15,000 n/a
Niv+3Res 1333/5810/16503 0.34 6,099 10,036,154 >15,000 n/a
3Res+Niv 1290/5297/15481 0.10 14,003 | 25,092,756 >15,000 n/a
3Res+Sat 850/5286/18958 0.35 3,552 7,744,986 >15,000 n/a
Sat+3Res 849/5333/19052 0.38 3,563 7,744,986 >15,000 n/a
Sat+2Sim 848/5154/18565 0.26 12,862 18,230,746 >15,000 n/a
par32-5 | Orig 3176,/10325,27693 n/a || >15,000 n/a || >15,000 n/a
Niv 1978/7864,/22535 0.03 10,651 27,165,469 >15,000 n/a
par32-1-c | Orig 1315/5254,/15390 n/a || >15,000 n/a || >15,000 n/a
3Res 1315/5957/16738 0.35 11,068 | 25,920,943 >15,000 n/a
Hyp+3Res 1313/6193/17203 | 0.48 7410 | 8,931,149 || >15,000 n/a
par32-2-c | Orig 1303/5206/15246 n/a || >15,000 n/a || >15,000 n/a
3Res 1303/5739/16254 0.23 428 345,680 >15,000 n/a
Hyp+3Res 1301/5975/16719 0.32 7,402 8,166,758 >15,000 n/a
par32-3-c | Orig 1325/5204/15510 n/a || >15,000 n/a || >15,000 n/a
3Res 1325/5725/16314 0.15 4,482 9,462,205 >15,000 n/a
Hyp 1323/5589/16094 0.04 11,745 | 19,947,965 >15,000 n/a
Hyp+3Res 1323/5061/16779 | 0.22 4,375 | 9,462,245 || >15,000 n/a
Niv+3Res 1321/5708/16266 0.24 7,361 | 16,265,438 >15,000 n/a
Sat+3Res 802/5335/19335 0.33 5,407 7,280,963 >15,000 n/a
par32-d-c | Orig 1333/5326/15606 n/a || >15,000 n/a || >15,000 n/a
3Res 1333/5819/16534 0.24 7,097 8,440,212 >15,000 n/a
Hyp+3Res 1331/6055/16999 | 0.32 5175 | 9,669,012 || >15,000 n/a
Niv+3Res 1329/5802/16486 0.55 10,495 | 21,738,376 >15,000 n/a
Sat+3Res 806/5357/19443 0.32 10,110 8,013,977 >15,000 n/a
par32-5-c | Orig 1339/5350/15678 n/a 10,949 | 22,878,571 >15,000 n/a
Niv+3Res 1335/5728/16362 0.28 >15,000 n/a 7,363 | 16,189,524

Table 1: Dew_Satz and MmiSar performance, before and after preprocessing, on par32

problem.

al. [OGMS02], solved the problems with Lsat, which performs a preprocessing step to
recover and exploit the logical gates of a given CNF formula and then applies DPLL
with a Jeroslow-Wang branching rule. The challenge has now been met convincingly by
Heule et al. [HvMO04] with their March_eq solver, which combines equivalency reasoning
in a preprocessor with a lookahead-based DPLL and which solves all of the par32x*
instances in seconds. Dew_Satz is one of the few solvers to have solved any instances of
the 32-bit parity problem without special-purpose equivalency reasoning [AS05].

Table 1 shows the results of running the lookahead-based solver Dew_Satz and the
CDCL-based solver MINISAT on the ten par32 instances, with and without preprocess-
ing. As preprocessors we used 3-Resolution, HyPre, NiVER and SatELite alone and
followed by 3-Resolution for the last three. We eliminated 2-SIMPLIFY from this test
as it aborted the resolution process of the first five par32* instances presented in the
Table 1. We experimented also with all combination of two preprocessors for the prob-
lems par32-1 and par32-4. Where lines are omitted from the table (e.g. there is no
line for HyPre on par32-1 and for SatELite+3-Resolution on par32-2), this is because
no single solver produced a solution for those simplified instances.

It is evident from the table that these problems are seriously hard for both solvers.
Even with preprocessing, MINISAT times out on all of them except for par32-2 and
par32-5-c. Curiously, on par32-2 instance, preprocessing with 3-Resolution makes its
performance degrade a little. This is not a uniform effect: Table 4 below shows ex-
amples in which MINISAT benefits markedly from 3-Resolution. Without preprocessing,
Dew_Satz times out on nine of ten par32 instances, but in every case except par32-5
and par32-5-c 3-Resolution suffices to help it find a solution, and running multiple
preprocessors improves its performance.

In general, Table 1 shows that multiple preprocessing contributes significantly to
enhance the performance of Dew_Satz and the preprocessor 3-Resolution dominates the
contribution through either single or multiple preprocessing.

5.2 A Planning Benchmark Problem

The ferry planning benchmark problems, taken from SAT2005 competition, are all easy
for MINISAT, which solves all of them in about one second without needing preprocessors.
Dew _Satz, however, is challenged by them. The problems are satisfiable. We show the
Dew_Satz and MINISAT results on the problems in Table 2. Clearly the original problems
contain some structure that CDCL is able to exploit but which is uncovered by one-step
lookahead. It is therefore interesting to see which kinds of reasoning carried out in a
preprocessing phase are able to make that same structure available to Dew_Satz. Most
strikingly, reasoning with binary clauses in the manner of the 2-SIMPLIFY preprocessor
reduces runtimes by upwards of four orders of magnitude in some cases. HyPre, NiVER
and SatELite, especially HyPre, are also effective on these planning problems. In most
cases the number of backtracks reduces from million to less than 100 or even zero for
ferry8 v0Ola, ferry9 vOla, and ferryl0 ks99a instances which means that the input
formula is solved at the root node of the search tree.

Instance Prep. #Vars/#Cls/#Lits | Ptime Dew_Satz MINISAT
Stime | #BackT || Stime | #Conflict
ferry7_ks99i Orig 1946/22336,/45706 n/a 2,828 | 10,764,261 0.13 4,266
3Res 1930/22289/45621 0.09 >15,000 n/a 0.11 3,707
Hyp 1881/32855/66732 | 0.21 1,672 | 1,204,321 0.03 117
Niv 1543/21904 /45243 0.01 >15,000 n/a 0.10 3,469
Sat 1286/21601/50644 0.33 >15,000 n/a 0.07 2,763
Sat+2Sim 1279/56597/120318 0.49 0.41 28 0.05 1,096
ferry7_vO1i Orig 1329/21688/50617 n/a >15,000 n/a 0.05 1,858
3Res 1329/21681/50505 0.14 >15,000 n/a 0.05 1,858
Sat 1286/21609/50803 0.17 >15,000 n/a 0.18 6,309
Sat+2Sim+3Res 1286/64472/136299 0.95 4.28 824 0.05 1,018
Sat+2Sim+Hyp+3Res 1272/62208/131357 1.26 3.30 580 0.10 2,398
ferry8_ks99a Orig 1259/15259/31167 n/a 574 1,869,995 0.01 0
3Res 1241/15206/31071 0.08 654 2,074,794 0.01 0
Sat 813/14720/34687 0.24 810 1,040,528 0.01 381
Sat+2Sim 813/35008/75263 0.35 0.11 4 0.02 295
forry8_ks901 | Orig 2547 /3252566425 n/a || >15,000 n/a || 0.22 6,615
3Res 2529/32472/66329 0.12 >15,000 n/a 0.14 3,495
Hyp 2473/48120/97601 0.32 >15,000 n/a 0.07 1,030
Sat 1696/31589/74007 0.49 >15,000 n/a 0.41 10,551
Sat+2Sim 1683/83930/178217 0.76 9.38 3,255 0.20 5,105
ferry8_v0la Orig 854/14819/34624 n/a 13,162 | 39,153,348 0.01 277
3Res 854,/14811/34480 0.11 >15,000 n/a 0.01 277
Hyp 846/38141/81268 0.18 6.11 570 0.02 226
Hyp-+Sat 813/38044/81364 0.36 29.66 2,749 0.02 277
Hyp+Sat+3Res 813/38028/81196 0.70 0.71 15 0.02 277
Hyp+Sat+2Sim 813/36583/78442 0.50 0.17 0 0.02 233
forry8_vOLi Orig 1745/31688/73934 n/a || >15,000 n/a || 0.55 12,035
3Res 1745/31680/73790 0.20 >15,000 n/a 0.55 12,935
Sat 1696/31598/74202 0.25 >15,000 n/a 0.25 7,869
Sat+2Sim+3Res 1696,/96092/202904 1.50 268 68,681 4.06 28,690
ferry9_ks99a Orig 1598/21427/43693 n/a || >15,000 n/a 0.01 0
3Res 1578/21368,/43586 0.10 >15,000 n/a 0.01 0
Hyp 1542/29836/60522 0.21 >15,000 n/a 0.02 278
Niv 1244/21046/43264 0.01 >15,000 n/a 0.01 29
Sat 1042/20765/48878 0.33 >15,000 n/a 0.02 350
2Sim 1569/20563/41976 0.02 >15,000 n/a 0.04 1,359
Hyp+Sat 1056/26902/72553 0.88 33.73 22,929 0.03 609
Sat+2Sim 1042/50487/108322 0.50 0.18 5 0.03 261
forry9v0la | Orig 1088/20878 /48771 n/a || >15,000 n/a || 0.01 181
3Res 1088/20869,/48591 0.16 >15,000 n/a 0.01 181
Hyp 1079/55371 /117757 0.28 0.42 0 0.03 187
Hyp-+Sat 1042/55256/117861 0.49 70.83 5,080 0.03 181
Hyp+Sat+2Sim 1042/53394/114135 0.72 0.39 2 0.03 234
forry10_ks99a | Orig 1077/29041 /59135 n/a || >15,000 n/a || 0.03 710
3Res 1955/28976/59017 0.13 >15,000 n/a 0.03 827
Hyp 1015/40743/82551 | 0.20 || >15,000 n/a || 0.04 563
Niv 1544/28578/58619 0.02 >15,000 n/a 0.01 0
Sat 1200/28246/66432 | 0.44 || >15,000 n/a || 0.03 909
2Sim 1945/27992/57049 0.05 >15,000 n/a 0.05 1,565
Sat+2Sim 1299/69894,/149728 0.69 0.28 1 0.04 419
3Res+2Sim+Niv 1793/21099/43369 0.43 0.08 0 0.06 1,278
Niv+Hyp+2Sim+3Res 1532/24524 /50463 0.54 5.19 3,949 0.02 454
forryl0vOla | Orig 1350/23371,/66258 n/a || >15,000 n/a || 0.02 101
3Res 1350/28361/66038 0.23 >15,000 n/a 0.02 191
Hyp 1340/77030/163576 0.40 4.90 550 0.04 401
Hyp+Sat+3Res 1299/76874/163442 1.56 1,643 118,635 0.04 343
Hyp+Sat+2Sim 1299/74615/159134 1.00 1.78 61 0.04 459

Table 2: Dew_Satz and MimiSar performance, before and after preprocessing, on ferry
planning problem.

Instance Prep. #Vars/#Cls/#Lits | Ptime Dew_Satz MINISAT
Stime | #BackT || Stime | #Conflict
bmc-ibm-3 Orig 14930/72106/189182 n/a || >15,000 n/a || 0.39 1,738
Hyp 5429/32038/89471 3.72 113 2,327 0.06 379
Niv 10591/62966,/176261 0.47 >15,000 n/a 0.36 2,088
3Res 11940/56736,/148383 0.41 >15,000 n/a 0.37 2,374
Sat 6486,/44239/137653 1.32 >15,000 n/a 0.21 1,744
Hyp+3Res 5429/30517/79041 3.98 19.67 68 0.04 206
bme-galileo-8 | Orig 58073/294821/767187 n/a || >15,000 n/a 0.37 462
Hyp 9613/85311/202625 416 67.92 0 0.06 2
Niv 30788/240141/685499 1.06 >15,000 n/a 0.42 1,148
3Res 43962/182261/456906 5.91 >15,000 n/a 0.46 1,182
Sat 20593/135076,/414093 6.46 >15,000 n/a 0.19 762
Hyp+3Res 9613/82572,/188966 417 120 0 0.05 2
Sat+3Res 20561/134793/413048 10.12 19.00 1 0.18 799
bme-galileo-9 | Orig 63623/326999/852078 n/a >15,000 n/a 0.54 1,186
Hyp 8802/70198/170970 407 90.50 0 0.06 2
Niv 33872/267378/763037 1.17 >15,000 n/a 0.42 1,148
3Res 49400/208310/523628 6.56 >15,000 n/a 0.46 1,060
Sat 23381/155837/477951 7.47 >15,000 n/a 0.24 1,009
Hyp+3Res 8802/67042/155884 408 57.57 0 0.04 2
bmc-ibm-10 Orig 59056,/323700/854093 n/a >15,000 n/a 1.77 4,277
Hyp 2259/10831/29155 47.28 0.30 0 0.01 0
Niv 40530/285198/797443 1.19 >15,000 n/a 0.90 3,532
3Res 32377/154730/400447 4.70 >15,000 n/a 1.32 3,276
Sat 14956/116772/404199 5.53 >15,000 n/a 0.49 2,502
bmc-ibm-11 Orig 32109/150027/394770 n/a >15,000 n/a 2.01 6,422
Hyp 7342/40802/106327 13.84 4.73 1 0.05 160
Niv 22927/130058/365568 0.96 >15,000 n/a 1.33 5,607
3Res 22709/98066 /252495 1.46 >15,000 n/a 2.44 7,875
Sat 10071/62668/200137 2.58 >15,000 n/a 0.77 5,481
bmc-ibm-12 Orig 39598,/194778/515536 n/a >15,000 n/a 8.41 11,887
Hyp 12205/87082/228241 91.61 >15,000 n/a 0.74 1,513
Niv 27813/168440/476976 0.69 >15,000 n/a 4.46 8,702
3Res 32606,/160555/419341 2.77 >15,000 n/a 6.77 10,243
Sat 15176/109121/364968 4.50 >15,000 n/a 2.37 6,219
Niv+Hyp+
3Res 12001/100114/253071 85.81 106 6 0.76 1,937
bmc-ibm-13 | Orig 13215,/65728/174164 n/a || >15,000 n/a || 1.84 3,088
Hyp 5010/27243/78059 3.16 || >15,000 n/a 0.13 1,018
Niv 9226/57332/161962 0.35 >15,000 n/a 1.72 9,181
3Res 10426/49594 /129998 0.49 >15,000 n/a 13.17 30,687
Sat 4549/34273/110676 1.27 >15,000 n/a 1.25 9,324
3Res+Niv+
Hyp-+3Res 3529/22589/62633 2.90 1,575 | 4,662,067 0.03 150
bmc-alpha- Orig 663443/3065529/7845396 n/a >15,000 n/a 6.64 502
25449 Sat 12408/76025/247622 129 6.94 7 0.06 1
Sat+Hyp 9091,/61789/203593 566 7.82 2 0.10 109
Sat+Niv 12356/75709/246367 130 4.48 2 0.06 1
Sat+3Res 12404/77805/249192 130 8.84 1 0.06 1
Sat+2Sim 10457/71128/229499 131 6.37 10 0.10 133
bmc-alpha- Orig 1080015/3054591 /7395935 n/a >15,000 n/a 5,409 587,755
4408 Sat 23657/112343/364874 47.22 >15,000 n/a 1,266 820,043
Sat+Hyp 13235/88976,/263053 | 56.13 || >15,000 n/a || 8,753 | 4,916,081
Sat+Niv 22983/108603/351369 49.34 >15,000 n/a 2,137 1,294,590
Sat+3Res 23657/117795/380389 48.18 >15,000 n/a 946 618,853
Sat+2Sim 17470/129245 /375444 51.55 >15,000 n/a 804 561,529
Sat+2Sim+
3Res 16837/98726/305057 52.89 >15,000 n/a 571 510,705

Table 3: Dew_Satz and MmiSar performance, before and after preprocessing, on hard
BMC instances.

Instance | Prep. #Vars/#Cls/#Lits | Ptime Dew_Satz MINISAT
Stime | #BackT Stime | #Conflict
01-k10 Orig 9275/38802/98468 n/a 18.96 1,472 0.08 313
Hyp n/a 1.27 n/a n/a n/a n/a
Niv 6662/33394/90715 0.16 4.12 366 0.07 327
3Res 6498/27318/70158 0.24 26.38 2,860 0.07 282
Sat 3418/19648/62925 0.84 3.46 140 0.03 262
2Sim 4379/59765/133585 3.41 0.24 1 0.05 135
01-k15 Orig 11524/48585/123966 n/a >15,000 n/a 0.49 3,743
3Res+Sat+
Niv+Hyp 3382/25936/79364 4.65 1,420 130,013 0.06 682
3Res+Hyp+
Niv+3Res 4203/23731/60639 4.33 190 13,449 0.06 430
3Res+Hyp+
3Res 4732/24972/63133 4.17 262 19,701 0.04 243
Hyp 4889/27056/71819 3.94 2,937 178,245 0.06 603
Niv 8068/41368,/113317 0.19 >15,000 n/a 0.49 3,548
3Res 9403/40059/103137 0.27 >15,000 n/a 0.66 3,783
Sat 5198/30697/97961 1.13 >15,000 n/a 0.32 3,655
01-k20 | Orig 15069,/63760,/163081 n/a || >15,000 n/a 1.95 16,658
3Res+Hyp+
Niv+3Res 6382/34846,/89807 6.94 513 29,629 0.20 1,261
Hyp 7323/39150/104635 | 6.40 || >15,000 n/a 0.95 5,182
Niv 10533/54293/149192 0.25 >15,000 n/a 0.28 2,069
3Res 12948 /55490/142966 0.37 >15,000 n/a 1.58 9,341
Sat 7179/42837/136537 1.52 >15,000 n/a 1.11 8,705
2Sim 9370/93921/217635 1.91 >15,000 n/a 0.35 1,977
26-k70 Orig 346561/1752741/4579945 n/a >15,000 n/a 8,382 2,654,614
3Res 346561/1756001/4588705 150 21.32 1 1.02 10
Hyp 243461/1569549/4182061 338 >15,000 n/a 1.22 642
Niv 155221 /1354556 /4075072 479 >15,000 n/a 1.07 492
Sat 132670,/1300914/4980854 109 >15,000 n/a 2,325 1,503,271
26k75 | Orig 371091,/1877066,/4904440 n/a || >15,000 n/a 8,510 | 2,880,376
3Res 371091/1880536,/4913780 161 22.81 1 1.06 11
Hyp 260621 /1680704/4477966 364 || >15,000 n/a 1.20 654
Niv 166195/1450679/4364543 4.95 >15,000 n/a 1.41 474
Sat 141870,/1392526 /5327557 117 >15,000 n/a 3,896 2,067,948
26-k85 | Orig 120151/2125716,/5553430 n/a || >15,000 n/a || >15,000 n/a
3Res 420151/2129606 /5563930 183 25.43 1 1.21 10
Hyp 294941/1903014 /5069776 417 >15,000 n/a 1.55 747
Niv 187631/1641901/4941437 5.69 >15,000 n/a 1.37 535
Sat 160270/1576770/6039510 132 >15,000 n/a 4,472 2,308,225
26-k90 | Orig 144681/2250041 /5877925 n/a || >15,000 n/a || >15,000 n/a
Niv+3Res 198605,/2208074/6624608 121 13.21 1 1.77 5
Hyp+3Res 312101/1979389/5187311 600 46.53 1 1.39 5
3Res 444681/2254141/5889005 195 26.99 1 1.26 10
Hyp 312101/2014169/5365681 446 >15,000 n/a 1.55 583
Niv 198605,/1738024,/5230908 591 >15,000 n/a 1.38 429
Sat 169470,/1669436,/6402318 140 >15,000 n/a 8,240 3,311,629

Table 4: Dew_Satz

SAT2005 IBM-FV-* instances.

and MmiSar performance, before and after

preprocessing, on

5.3 Bounded Model Checking Problems

Another domain providing benchmark problem sets which appear to be easy for MINISAT
but sometimes hard for Dew_Satz is bounded model checking. In Table 3 we report
results on five of eleven BMC-IBM problems, two BMC-galileo problems and two of four
BMC-alpha problems. All other benchmark problems in the BMC-IBM class are easy for
both solvers and so are omitted from the table. The other two BMC-alpha instances
are harder than the two reported even for MINISAT before and after preprocessing. The
problems presented in Table 3 are satisfiable.

Each of these bounded model checking problems is brought within the range of
Dew_Satz by some form of preprocessing. In general, HyPre and 3-Resolution are the
best for this purpose, especially when used together, though on problem BMC-IBM-13
they are ineffective without the additional use of NiVER. The column showing the
number of times Dew_Satz backtracks is worthy of note. In many cases, preprocessing
reduces the problem to one that can be solved without backtracking. Solving “with-
out backtracking” has to be interpreted with care here, of course, since a nontrivial
amount of lookahead may be required in a “backtrack-free” search. The results for
BMC-galileo-9 furnish a good example of this: HyPre takes 407 seconds to refine the
problem, following which Dew_Satz spends 90 seconds on lookahead reasoning while
constructing the first (heuristic) branch of its search tree, but then that branch leads
directly to a solution. Adding 3-Resolution to the preprocessing step does not change
the number of variables, and only slightly reduces the number of clauses, but it roughly
halves the time subsequently spent on lookahead.

The instance BMC-alpha-4408 is hard for Dew_Satz even after preprocessing. While
MINISAT with multiple preprocessing solves the problem instance with an order of mag-
nitude faster. We can also observe that HyPre brings more benefit than SatELite,

Table 4 shows results for both solvers on a related problem set consisting of formal
verification problems taken from the SAT2005 competition. The IBM-FV-01 problems
are satisfiable except for the problem IBM-FV-01-k10; the IBM-FV-26 problems are
unsatisfiable. Most of these satisfiable problems are easy for MINISAT, but the unsatisfi-
able cases show that the SatELite preprocessor (with which MINISAT was paired in the
competition) is by far the least effective of the four we consider for MINISAT on these
problems. The preprocessor HyPre proved the unsatisfiability of IBM-FV-01-k10 in 1.27
seconds. 2-SIMPLIFY was not used to simplify the IBM-FV-26 problems, because it is
limited for input formula with maximum 100,000 variables. Again there are cases in
which Dew_Satz is improved from a 15,000 second timeout to a one-branch proof of un-
satisfiability. Note that the numbers of clauses in these cases are actually increased by
the preprocessor 3-Resolution, confirming that the point of such reasoning is to expose
structure rather than to reduce problem size.

5.4 A Highly Symmetrical Problem

FPGA routing problem is a higly symmetrical problem that model the routing of wires in
the channels of field-programmable integrated circuits [AMS03]. The problem instances
used in the experiment, which were artificially designed by Fadi Aloul, are taken from
SAT2002 competition.

Without preprocessing to break symmetries, many of the FPGA routing problems
are hard—harder for CDCL solvers than for lookahead-based ones. Not only do they
have many symmetries, but the clause graphs are also disconnected. Lookahead tech-
niques with neighbourhood variables ordering heuristic seem able to choose inferences
within one graph component before moving to another, whereas MINISAT jumps fre-
quently between components. Table 5 shows performances of both solvers on FPGA
routing problem set. Of 21 selected satisfiable (bart) problems, MINISAT solves 8 in
some 2 hours. It manages better with the unsatisfiable (homer) instances, solving 14 of
15 in a total time of around 6 hours. Dew_Satz solves all of the bart problems in 17.5
seconds and the homer ones in 45 minutes.

The detailed results for two of the satisfiable problems and two unsatisfiable ones
(Table 6) are interesting. The resolution-based preprocessors do not give any mod-
ification to the size of the input formula except when using SatELite. The Shatter
preprocessor, which removes certain symmetries, is tried on its own and in combination
with the five resolution-based preprocessors. It should be noted that the addition of
symmetry-breaking clauses increases the sizes of the problems, but of course it greatly
reduces the search spaces in most cases.

The performance of Dew_Satz after preprocessing is often worse in terms of time
than it was before, though there is always a decreases in the size of its search tree. This
is because of the increase in the problem size which increases the amount of lookahead
process. MINISAT, by contrast, sometimes speeds up by several orders of magnitude
after preprocessing.

Instance Dew_Satz MintSar
#Solved | Stime | #BackT [#Solved | Stime | #Conflict
| bart (21 SAT) I 21| 17.52] 1,536,966 | 8] 7,203 | 119,782,466 |
| homer (15 UNSAT) || 15 [2,662 | 109,771,200 || 14 [22,183 | 143,719,166 |

Table 5: Dew_Satz and MimniSar performance, without preprocessing, on FPGA routing
problems.

5.5 Order of Preprocessors

Table 7 illustrates the difficulty of selecting the order in which to apply multiple prepro-
cessors. It shows results on just two sample problems. The first is the bounded model
checking problem BMC-IBM-12, which Dew_Satz attempted with the three preprocessors
HyPre, NiVER and 3-Resolution in different orders. Only one order, NiVER followed by
HyPre followed by 3-Resolution, renders the problem feasible for Dew_Satz. With the
preprocessors in that order, it is solved in less than 2 minutes; with any other order it
cannot be solved in more than four hours. The second problem, ferry10 ks99a, shows
the range of different outcomes produced by varying the order of four preprocessors. If
we get it right, we get a solution in 5 seconds, but we know of no simple rule for getting
it right in such a case. Neither running NiVER first nor running 3-Resolution last is
sufficient. Even with NiVER, HyPre and 3-Resolution in the right order, putting 2-
SIMPLIFY first rather than third changes the runtime from 5 seconds to several hours.
The third experiment illustrates the efffect of alternating two preprocessors. Simplifying

Instance | Prep. #Vars/#Cls/#Lits | Ptime Dew_Satz MINISAT
Stime | #BackT Stime [#Conflict
bart28 Orig 428/2907/7929 n/a 0.00 0 >15,000 n/a
Sat 413/2892/11469 0.06 0.02 0 >15,000 n/a
Sha 1825/8407/27003 0.37 0.06 9 198 775,639
Sha+3Res 1764/7702/24400 0.46 0.04 1 2,458 7,676,459
Sha+Hyp 1764/8349/26138 0.41 0.05 20 >15,000 n/a
Sha+Niv 1781/8358/26759 0.38 0.05 6 5.46 53,683
Sha+Sat 1728/8254/30422 0.53 0.10 0 115 684,272
Sha+2Sim 1750/7892/24682 0.39 0.05 17 19.12 150,838
bart30 Orig 485/3617/9954 n/a 0.31 20,160 >15,000 n/a
Sat 468/3600/14544 0.08 0.03 0 >15,000 n/a
Sha 2017/9649/30874 0.49 0.11 96 >15,000 n/a
Sha+3Res 1945/8686,/27492 0.60 0.12 224 4,149 7,594,231
Sha+Hyp 1945/9348/29218 0.54 11,729 | 28,270,212 >15,000 n/a
Sha+Niv 1969/9599/30625 0.50 0.06 1 >15,000 n/a
Sha+Sat 1776/8830/33533 0.77 0.12 1 >15,000 n/a
Sha+2Sim 1919/8758/27287 0.51 0.05 9 >15,000 n/a
homer19 | Orig 330/2340,/4950 n/a 473 | 19,958,400 10,233 | 51,960,410
Sat 300/2310/8400 0.04 >15,000 n/a 5,621 | 54,469,568
Sha 1460/6764/20242 0.16 2,345 4,828,639 2.26 33,492
Sha+3Res 1388/5748/16914 0.23 3,231 7,189,966 1.14 21,669
Sha+Hyp 1387/6547/18%65 0.20 4,179 | 9,611,768 .90 30,418
Sha+Niv 1412/6715/19993 0.17 2,570 5,202,084 3.15 45,484
Sha+Sat 1201/5846,/19288 0.34 4,071 6,236,966 1.48 26,517
Sha+2Sim 1348/5639/16110 0.17 307 678,425 0.70 14,682
homer20 | Orig 440/4220/8800 n/a 941 | 19,958,400 >15,000 n/a
Sat 400/4180/15200 0.08 1,443 | 6,082,425 11,448 | 57,302,582
Sha 1999/10340/29988 0.28 369 350,610 1.83 22,950
Sha+3Res 1907/8793/25027 0.37 362 405,059 1.41 18,273
Sha+Hyp 1905/10527/29129 0.34 1,306 1,451,567 1.10 13,927
Sha+Niv 1941/10276/29671 0.29 379 349,842 0.91 13,543
Sha+Sat 1723/9420/30986 0.54 822 300,605 1.00 13,831
Sha+2Sim 1879/9419/26188 0.31 114 120,297 0.40 6,612

Table 6: Dew_Satz and MmniSar performance, before and after preprocessing, on selected

FPGA routing instances.

[Instance | Prep. | #Vars/#Cls/#Lits | Ptime || Stime | #BackT |
bmc-ibm-12 Hyp+3Res+Niv 10805/83643/204679 96.11 >15,000 n/a
Niv+Hyp+3Res 12001/100114/253071 | 85.81 106 6
3Res+Hyp-+Niv 10038/82632/221890 89.56 >15,000 n/a
3Res+Niv+Hyp 11107/99673/269405 58.38 >15,000 n/a
forry10_ks99a | 2Sim+NivtHypt3Res 1518/32206,/65306 | 0.43 || >15,000 n/a
Niv+3Res+25im+ Hyp 1532/25220/51873 | 0.49 11,345 | 17,778,483
3Res+2Sim+Niv+Hyp 1793/20597 /42365 0.56 907 1,172,964
Niv+Hyp+2Sim+3Res 1532/24524 /50463 0.54 5.19 3,949
forry10_ks99a | 25imfNiv 1518/27554/56565 | 0.08 || >15,000 n/a
2Sim~+Niv+2Sim 1518/18988/39433 0.27 3,197 6,066,241
2Sim+Niv+2Sim+Niv 1486/18956,/39429 0.29 129 290,871
2Sim+Niv+2Sim+Niv+2Sim 1486/23258 /48033 0.48 7,355 8,216,100

Table 7:

Dew_Satz’s performance on instances with preprocessor ordering.

with 2-SIMPLIFY followed by NiVER is insufficient to allow solution before the timeout.
Simplifying again with 2-SIMPLIFY brings the runtime down to under an hour; adding
NiVER again brings it down again to a couple of minutes; repeating 2-SIMPLIFY, far
from improving matters, causes the time to blow out to two hours.

6 Conclusions

We performed an empirical study of the effects of several recently proposed SAT prepro-
cessors on both CDCL and lookahead-based SAT solvers. We describe several outcomes
from this study as follow.

1.

6.1

High-performance SAT solvers, whether they depend on clause learning or on
lookahead, benefit greatly from preprocessing. Improvements of four orders of
magnitude in runtimes are not uncommon.

It is unlikely to equip a SAT solver with just one preprocessor of the kind con-
sidered in this paper. Very different preprocessing techniques are appropriate to
different problem classes.

There are frequently benefits to be gained from running two or more preprocessors
in series on the same problem instance.

Both clause learning and lookahead need to be enhanced with techniques specific
to reasoning with binary clauses, in order to exploit dependency chains, and with
techniques for equality reasoning.

Lookahead-based solvers also benefit greatly from resolution between longer clauses,
as in the 3-Resolution preprocessor. This seems to capture ahead of the search
some of the inferences which would be achieved during it by learning clauses.
CDCL solvers can also benefit from 3-Resolution preprocessor—dramatically in
certain instances—but the effects are far from uniform.

Future work

The following lines of research are open:

1.

It would, of course, be easy if tedious to extend the experiments to more problem
sets, more preprocessors and especially to more solvers. We shall probably look
at some more DPLL solvers, but do not expect the results to add much more
than detail to what is reported in the present paper. One of the more important
additions to the class of solvers will be a non-clausal (Boolean circuit) reasoner.
We have not yet experimented with such a solver. We have already investigated
preprocessing for several state of the art SLS (stochastic local search) solvers, but
that is such a different game that we regard it as a different experiment and do
not report it here.

The more important line of research is to investigate methods for automatically
choosing among the available preprocessors for a given problem instance, and

for automaticallly choosing the order in which to apply successive preprocessors.
Machine learning may help here, though it would be better, or at least more
insightful, to be able to base decisions on a decent theory about the interaction of
reasoning methods.

3. Another interesting project is to combine preprocessors not as a series of separate
modules but as a single reasoner. For example, it would be possible to satu-
rate under 3-Resolution and hyper-resolution together, in the manner found in
resolution-based theorem provers. Whether this would be cost-effective in terms
of time, and whether the results would differ in any worthwhile way from those
obtained by ordering separate preprocessors, are unknown at this stage.

As SAT solvers are increasingly applied to real-world problems, we expect deductive
reasoning by preprocessors to become increasingly important to them.

Acknowledgments

This work was funded by National ICT Australia (NICTA). National ICT Australia is
funded through the Australian Government’s Backing Australia’s Ability initiative, in
part through the Australian Research Council.

References

[AMS03]

[APSS05]

[APSS06]

[ASO5]

[ASMO3]

[Bac02]

Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: Effi-
cient symmetry-breaking for boolean satisfiability. In Design Automation
Conference, pages 836-839. ACM/IEEE, 2003.

Anbulagan, Duc Nghia Pham, John Slaney, and Abdul Sattar. Old reso-
lution meets modern SLS. In Proceedings of 20th AAAI pages 354-359,
2005.

Anbulagan, Duc Nghia Pham, John Slaney, and Abdul Sattar. Boosting
SLS performance by incorporating resolution-based preprocessor. In Pro-
ceedings of Third International Workshop on Local Search Techniques in
Constraint Satisfaction (LSCS), in conjunction with CP-06, pages 43-57,
2006.

Anbulagan and John Slaney. Lookahead saturation with restriction for SAT.
In Proceedings of 11th CP, pages 727-731, 2005.

Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry
breaking for boolean satisfiability. In Proceedings of 18th IJCAI, Mexico,
2003.

Fahiem Bacchus. Enhancing Davis Putnam with extended binary clause rea-
soning. In Proceedings of 18th AAAI pages 613619, Edmonton, Canada,
August 2002. AAAT Press.

[Bra01]

[Bra04]

[BW04]

[DDO1]

[DP60]

[EBO5]

[ES03]

[HvMO04]

[HvMO6]

[LA97]

[Li0O]

[LMSO01]

[MMZ*01]

[0OGMS02]

Ronen I. Brafman. A simplifier for propositional formulas with many binary
clauses. In Proceedings of 17th IJCAI pages 515-522, 2001.

Ronen I. Brafman. A simplifier for propositional formulas with many binary
clauses. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
34(1):52-59, 2004.

Fahiem Bacchus and Jonathan Winter. Effective preprocessing with hyper-
resolution and equality reduction. In Revised Selected Papers of SAT 2003,
LNCS 2919 Springer, pages 341-355, 2004.

Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient
solving of hard 3-SAT formulae. In Proceedings of 17th IJCAI, pages 248—
253, Seattle, Washington, USA, 2001.

M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, 1960.

Niklas Eén and Armin Biere. Effective preprocessing in SAT through vari-
able and clause elimination. In Proceedings of 8th SAT, LNCS Springer,
2005.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Proceedings
of 6th SAT, 2003.

Marijn Heule and Hans van Maaren. Aligning CNF- and equivalence-
reasoning. In Proceedings of 7th SAT, Vancouver, Canada, 2004.

Marijn Heule and Hans van Maaren. March_dl: Adding adaptive heuristics
and a new branching strategy. Journal on Satisfiability, Boolean Modeling
and Computation, (2):47-59, 2006.

Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfiability
problems. In Proceedings of 3rd CP, pages 341-355, Schloss Hagenberg,
Austria, 1997.

Chu Min Li. Integrating equivalency reasoning into Davis-Putnam pro-
cedure. In Proceedings of 17th AAAI pages 291-296, USA, 2000. AAAI
Press.

I. Lynce and J. Marques-Silva. The interaction between simplification and
search in propositional satisfiability. In Proceedings of CP’01 Workshop on
Modeling and Problem Formulation, 2001.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chalff:
Engineering an efficient SAT solver. In Proceedings of DAC, pages 530-535,
2001.

Richard Ostrowski, Eric Grégoire, Bertrand Magzure, and Lakhdar Sais.
Recovering and exploiting structural knowledge from CNF formulas. In
Proceedings of 8th CP, pages 185-199, 2002.

[Qui55]

[Rob65]

[Rya04]

[SE05]

[SKM97]

[SPO5]

[WvMOg]

[ZMMMO1]

W. V. Quine. A way to simplify truth functions. American Mathematical
Monthly, 62:627-631, 1955.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.

Lawrence O. Ryan. Efficient Algorithms for Clause Learning SAT Solvers.
PhD thesis, Simon Fraser University, Burnaby, Canada, 2004.

Niklas Sorensson and Niklas Eén. MINISAT v1.13 - A SAT solver with
conflict-clause minimization. In 2005 International SAT Competition
website: hitp://www.lri.fr/~simon,/contest05 /results /descriptions /solvers /minisat_static. pdf,

2005.

Bart Selman, Henry Kautz, and David McAllester. Ten challenges in propo-
sitional reasoning and search. In Proceedings of 15th IJCAI pages 50-54,
Nagoya, Aichi, Japan, 1997.

Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non increasing
variable elimination resolution for preprocessing SAT instances. In Revised
Selected Papers of SAT 2004, LNCS 3542 Springer, pages 276-291, 2005.

Joost P. Warners and Hans van Maaren. A two-phase algorithm for solving
a class of hard satisfiability problems. Operations Research Letters, 23:81—
88, 1998.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient con-
flict driven learning in a Boolean satisfiability solver. In Proceedings of
International Conference on Computer Aided Design ICCAD2001, 2001.

