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Abstract. For more than a decade, Boeing has had an ongoing program of re-
search focused on user-centered adaptive learning.  These efforts have been con-
centrated on the development of two different flavors of adaptive learning. Our 
Intelligent Tutoring System (ITS) provides a rich personalized student-centered 
learning experience through the modeling of system knowledge, problem-solving 
rules, and real-time assessment of student performance.  The learning experience 
provides dynamic scenario sequencing, tailored student feedback and student per-
formance summary based on the perceived student strengths and weaknesses.  In 
the second implementation, we have extended the adaptive learning capability to 
simulation-based instruction with the Virtual Instructor (VI).  The VI provides 
adaptive simulation- or game-based instruction by monitoring student actions and 
simulation events, evaluating student performance in real time for a complex set 
of behaviors, providing information, hints, learning feedback and recommenda-
tions to the student and/or instructor.  In this paper, we will discuss two specific 
prototypes of adaptive learning leveraging those implementations.  In the first, 
we have been working with the U.S. Army Research Laboratory (ARL) to inte-
grate our adaptive learning capability with the ARL’s Generalized Intelligent 
Framework for Tutoring (GIFT).  The product is an integrated adaptive prototype 
that we plan to evaluate as part of an effectiveness study this coming year.  In the 
second implementation, we are developing an intelligent virtual reality-based 
teammate to enable training of individual technical and teamwork tasks within an 
intelligent tutoring environment.  This synthetic teammate will be integrated with 
the VI capability to respond to the student in real time to support team training 
objectives.  We will discuss the successes and challenges encountered as we have 
developed these prototype capabilities.  

Keywords: Intelligent Tutoring, Adaptive Learning, Performance Assessment.  

1 Introduction  

Each person is unique.  People come from different backgrounds, different beliefs, dif-
ferent experiences and they have different goals.  As a result, people learn at different 
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rates in different ways.  Adaptivity is the ability of a system to alter (change) itself to 
better fit or function in a given situation. In order to optimize the learning experience 
for a unique person, a learning system should adapt to the individual learner or team 
for the specific situation.  The notion that instruction should adapt to the learner is not 
new.  Effective instructors and mentors have adapted to a specific learner’s needs since 
humans started teaching other humans.  The goal of an Intelligent Tutoring System 
(ITS) then is to provide automated instruction equivalent to that of a skilled human 
tutor.  Automating instructional adaptivity is also not new, but has been somewhat elu-
sive and various techniques have been tried.  As early as 1958, the famed psychologist, 
B.F. Skinner experimented with Artificial Intelligence and Behaviorism.  ITS develop-
ment has gained momentum since the 1980’s, with numerous automated tutors being 
developed and applied in both university and Department of Defense settings [1, 2, 3, 
4, 5, 6].  While there is much to learn in this area, many approaches have been success-
ful.  A meta-analysis [7] of 50 controlled experiments showed:  

• Students who received intelligent tutoring outperformed students from conventional 
classes in 92% of the controlled evaluations.  

• Improvement in performance was substantive in 78% of the controlled evaluations.  
• The median effect size was considered moderate-to-large effect for studies in the 

social sciences.  

Developing expertise is time-consuming and difficult.  So how do we optimize a 
person’s performance to most efficiently develop expertise?  In his book, Flow: The 
Psychology of Optimal Experience, Csíkszentmihályi [8] described the state of flow as 
the ultimate experience in learning and performing.  World-class experts describe flow 
as a state of hyper-efficiency in performing a task, as if there was a current of water 
carrying them along.  Flow theory postulates three conditions that must be met to 
achieve a flow state:  

• One must be involved in an activity with a clear set of goals and progress.   
• The task at hand must have clear and immediate feedback.   
• One must have a good balance between the perceived challenges of the task at hand 

and his or her own perceived skills.   

Thus, our approach to ITS development has been on building tools and techniques 
to place and keep students in the flow of optimal learning.  Studies by Boeing [9] and 
others [10] show that adaptive training that provides structured practice and assessment 
with feedback can provide highly effective results.  This paper describes our approach 
to adaptive training development, and describes experience we have had in creating 
adaptive learning prototypes.    

2 Adaptive Training Development Experience  

Boeing’s approach to a learner-centered adaptive training implementation has evolved 
over the course of the past few years.  Initial implementations focused on creation of 
an architecture and authoring solution in support of intelligent tutoring.  The product of 

http://en.wikipedia.org/wiki/Mihaly_Csikszentmihalyi
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http://en.wikipedia.org/wiki/Learning


5  

Back to Table of Contents 
 

this effort was Web-based, SCORM®-conformant computer-based training.  More re-
cent efforts focused on development of simulation-based instruction that monitors stu-
dent performance in real time and adapts the scenario accordingly.  More details of both 
approaches are provided below.   

2.1 ITS Implementation  

Figure 1 is an overview of our implementation of the ITS.  The design features 3 com-
ponents:  a Student Model, an Instructional Model, and an Expert Model.  The student 
model implements a profile of dynamically maintained variables, each corresponding 
to one learning objective.  These variables are evaluated over a number of observations.  
As a result, changes due to learning are reflected across exercises, as the score increases 
due to correct performance, or decreases as errors are made.  The amount that scores 
are changed can be weighted according to the degree to which the action reflects mas-
tery of the learning objective.  Amount of change is also adjusted according to the de-
gree of support provided to the student by the ITS in selecting this action.  

  

  
Fig. 1. Overview of ITS modeling approach 

The instructional model responds to student requests for help or student errors with 
information on problem-solving strategies.  The specificity of the information increases 
as additional requests are made or additional errors occur.  The instructional model is 
also tasked with providing within-scenario feedback to guide the student, as well as 
performance summaries across all learning objectives at the end of the lesson scenario.  

Our implementation of the expert model is based on a cognitive task analysis tech-
nique known as PARI, for Precursor, Action, Results, and Interpretation [11].  PARI 
provides methods to elicit detailed information from experts on how they represent a 
given state of a solution (what issues have been resolved and what issues remain), op-
timal and alternative paths to a solution, and their strategies for selecting actions at each 
step along those paths.  The expert model directly encodes these solution paths.  For 
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each path, the model also encodes the expert’s summary of the situation (representation 
of the problem) and the rationales for the possible next steps.  We have published details 
of the ITS architecture and implementation elsewhere [12].   

2.2 VI Implementation  

Extending the ITS adaptive training approach to the more dynamic simulation-based 
training environment is the goal of the VI implementation.  Whether it be a desktop or 
networked simulation, or even a game-based simulation environment, there are a num-
ber of challenges related to the real-time assessment of student performance and sce-
nario adaptation within this fast-paced environment.  Similar to our ITS approach, our 
basic architecture involves a student, expert and instructional model.  

Inferring student intent can be more complex in these dynamic environments where 
even a large variance from the expert over a period of time is a reasonable alternative 
and not necessarily a “mistake”.  The VI implementations use interpretation based on 
multiple student actions within the scenario context.  Contrasted to the ITS, where a 
single response to a question was the norm, in the VI students may complete any num-
ber of actions.  Often times, multiple action sequences are equally correct.  Our ap-
proach to student modeling utilized behavior trees, where an action is interpreted within 
the context of a given branching structure.  A tree can be activated as behaviors are 
recognized, and multiple trees may be active in parallel.  Performance is assessed 
against detailed learning objectives and feedback is provided based on the interpretation 
of performance and in a format that is compatible with the particular simulation.  Net-
working capabilities are employed to report performance to any number of data logging 
or learning records capabilities.  

The VI is set up to run as an independent instructional tool to assess performance 
and provide student feedback in the absence of a human instructor, or may be employed 
to enhance instructor-based learning through objective metrics tracking, real-time noti-
fications to the instructor and enhanced after-action review.  

3 Prototype Development  

3.1 ITS/GIFT Prototype  

The Generalized Intelligent Framework for Tutoring (GIFT) program is a U.S. Army 
Research Laboratory (ARL) effort to develop a framework for personalized, on-de-
mand, computer based instruction to improve the speed and quality of Soldier training 
[13].  As part of a three-year cooperative research and development agreement, we have 
been working with ARL to develop an integrated adaptive prototype in which we com-
bine the Army’s GIFT adaptive learning framework with our ITS and VI capabilities.  

The prototype uses an aircraft maintenance scenario with aspects of troubleshooting 
and part replacement.  It uses the knowledge assessment functionality and individual 
difference categorization within GIFT to sequence course content to the student and to 
adapt course content based on ongoing student parameter characterization.  Our ITS 
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capability provides lesson content for required learning, and adapts within-lesson con-
tent to maximize a student’s ability to successfully pass lesson modules on the initial 
attempt.  The final evaluated practice module is completed using our virtual mainte-
nance capability known as Advanced Deployable Accelerated Personalized Training 
(ADAPT) [14].  As part of the final practice assessment, students don a virtual reality 
(VR) headset, and using two 3D VR hand controllers, they are able to navigate to vari-
ous places on the aircraft, perform the required troubleshooting tasks while adhering to 
required safety protocols, diagnose the fault and replace the faulty part (Figure 2).  The 
VI within the ADAPT system scores the student on targeted learning objectives, pro-
vides on-demand student assistance to help locate components, and provides scoring to 
determine whether the student passes or fails the practical assessment.  
  

  
Fig. 2.   Maintenance trainee performing a task in the virtual maintenance trainer.  

The first iteration of the integrated prototype has been completed.  Current efforts 
are focused on development of a test plan for the conduct of an adaptive training effec-
tiveness study.  Once the design is complete, any required modifications will be made 
to the adaptive training prototype in support of the effectiveness study and we will 
collect data to evaluate which adaptive training implementations resulted in reduced 
time to competence, improved performance outcomes, more effective training transfer 
and knowledge retention.  Findings from the effectiveness study will be used to modify 
the framework for GIFT, as well as our adaptive training approach.  
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3.2 Virtual Pilot Development  

Training to develop flight crew coordination skill is gaining focus in the commercial 
aviation community.  Currently, flight crew coordination is embedded within flight sce-
narios performed in large full flight simulators (FFS).  Additionally, there are times 
when an airline is not able to send two pilots to train together, requiring an instructor to 
play the role of the other pilot.  Consequently, there are limited opportunities to hone 
these competencies.  To address this need, we are developing a Virtual Pilot to enable 
student pilots to conduct flight crew coordination training on their own, without need-
ing a second pilot, instructor or even the use of a FFS.    

The Virtual Pilot can be used in an Augmented Reality (AR) or VR environment.  
The AR use case is to support crew coordination training when the student is in a tra-
ditional training device such as a FFS or flat panel trainer, but another pilot is not avail-
able to train.  In this case the student interacts with the Virtual Pilot wearing AR gog-
gles.  In VR mode, the Virtual Pilot is integrated with a VR flight deck environment 
and the student interacts using a VR headset.  In both cases, the student’s speech, inputs 
to the flight deck, and movements are used by the Virtual Pilot to determine how to 
respond.  To support cases in which an instructor is not available, the Virtual Pilot is 
integrated with a version of the VI called the VR Instructor that will guide training, 
monitor progress, provide feedback and interject events or scenarios into training for 
the purpose of challenging the student or addressing an identified training need.  

When integrated with the VI, the Virtual Pilot is capable of performing assigned 
flight tasks (e.g., role of the Captain) and interact with the student pilot through speech 
and gestures.  The VI will receive the same data inputs from the student as the Virtual 
Pilot – speech, flight deck interaction and gestures/head movement – and use this data 
to evaluate the student’s performance against pre-defined performance measures, as 
described previously.  The VI may provide feedback in terms of verbal or textual com-
ments, or by highlighting areas in the cockpit visually, or even providing a vibration or 
other tactile indicator, such as in the case of directing the student’s attention to a par-
ticular instrument.  Additionally, the VI may command the Virtual Pilot to perform a 
task incorrectly depending upon the teaching point to be made.  For example, if the 
student appears to not be monitoring and responding to Virtual Pilot’s actions, the VI 
may command the Virtual Pilot to perform a task incorrectly for the purpose of prompt-
ing the student pilot to speak up and intervene.  

4 Challenges and Future Directions  

This paper describes some unique approaches to creating adaptive training solutions.  
While focused on different applications, both solutions attempt to employ the same 
basic underlying concepts to develop expertise based on optimizing a learning experi-
ence by adapting to the student.  One takeaway is that with multiple approaches to 
adaptivity, each method has challenges.  We have learned through experience that there 
are strengths and weaknesses of different approaches to modeling students, providing 
feedback, and adapting content.  By integrating the Boeing adaptive learning ap-
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proaches with GIFT, we have identified certain communication and software compati-
bility challenges.  These will be mitigated as we continue to work on a mutual joint 
solution.  

Adaptive learning within simulated training environments can be challenging if ac-
cess to information for assessing performance have not been built into the simulator or 
gaming engine.  Many times, simulators communicate performance at the mission level, 
whereas student performance needs to be evaluated at the switch or button push level.  
Adding the capability to perform automated performance assessment within the simu-
lation proves costly and time-consuming.  However, adding access to the events and 
data at the switch or button level for evaluation by tools like the ITS and VI have proven 
to be minimal.  

Finally, adaptive training has yet to be widely accepted within the educational com-
munity.  We speculate that this is due in part to the added cost of creating multiple 
sources of adaptive content (something that is getting better with continuous improve-
ments in authoring capability), as well as a potential increased time to proficiency based 
on student performance.  While ample evidence documents improvements to student 
training performance, training transfer and long-term knowledge retention based on 
adaptive training solutions, there is reluctance to adopt these approaches given the po-
tential added complications of each student progressing at his or her own pace.    

Near-term future plans include the conduct of studies to evaluate the effectiveness 
our own adaptive training approaches.  Plans are in work to evaluate the effectiveness 
of the Boeing/GIFT prototype.  We will be using cadets at West Point to assess various 
manipulations of overall curriculum adaptation in an effort to determine which are best 
utilized to optimize student performance.  Based on the results of this study, we plan to 
modify the prototype to better meet the needs of students.  Work continues on the de-
velopment of the Virtual Pilot to integrate the adaptive lesson content and feedback 
with its physical avatar.  A study is planned to validate the effectiveness of the virtual 
adaptive learning with this implementation as well.  
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