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Abstract. Human tutors do not simply deliver content; they pay attention to the 
cognitive and affective states of the instructed learners and use this knowledge to 
adjust their instructional strategies. Thus, a key component of human tutoring is 
the ability to recognize affect in a learner, and intelligent tutoring systems (ITS) 
which recognize and classify emotion from data collected on a group of students 
are prevalent in the literature. However, AI-based software systems that use 
group-based affective modeling face challenges -- models trained and evaluated 
with data from groups of students may not be effective for individual learners. 
An alternative to this approach is individualized models – highly customized 
models specific to each individual learner, continuously modified over time 
based on individual observations. This paper examines individualized modeling 
techniques for affective state recognition. It reports results from an initial evalu-
ation of individualized modeling techniques using data from WestPoint cadets 
interacting with a serious game for combat casualty care training.  
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1 Introduction and Motivation  

Tutoring by an expert human tutor is extraordinarily effective. There is some debate 
within the literature about how effective human tutors are, but it is commonly cited that 
tutoring yields between one and two standard deviations of improvement for learners, 
which corresponds to roughly one to two letter grades [1, 2]. Learning in ITS systems 
is typically measured in terms of “learning gains”; improved performance in equal time. 
This is a tradeoff, and could instead represent equivalent performance in less time, im-
proved retention, or other measures of learning outcomes.  

Theory indicates that learner data inform learner states which inform instructional 
strategy selection which influences learning gains [3]; adaptable and individualized tu-
toring requires automatically assessing the cognitive and affective states of individual 
learners for personalized instruction [4, 5]. As an example, extensive work has been 
performed to recognize the emotional state of a learner through incorporating behav-
ioral and physiological sensors [6-10].  The remainder of the paper discusses prior work 
in generalized modeling, the need for individualized modeling, different AI approaches 
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for individualized modeling, the successful results of their application, and recommen-
dations for industrial applications.  

2 Background  

In 2006, Mott and Lester [7] investigated the inclusion of sensors for affect detection 
in Crystal Island, an intelligent game-based learning environment that teaches middle 
school microbiology concepts. This research made use of a variety of features, includ-
ing temporal interactions, location features, intentional features, physiological response 
from blood volume pulse and galvanic skin response. These measurements were col-
lected and classified using various machine learning algorithms [7], including Naïve 
Bayes, decision trees, Support Vector Machines (SVMs), and n-grams. Each of these 
techniques showed significant predictive accuracy, when compared to baseline accu-
racy measures.  However, when the generalized models were applied in situ, they were 
found to have worse than baseline classification accuracy [11]. Their 2011 study is one 
of only two published research articles with validation results across multiple studies, 
where cross-fold validated models are placed into practice, where Sabourin et al. re-
ported data from 260 learners from two schools; representing a remarkably similar pop-
ulation, and included the injection of experimenter knowledge of student tasks into the 
models, which is undesirable for transference reasons.   

 Partially in response to this work and others [12], a new study was designed and 
conducted to investigate Kinect-based runtime affect modeling [13]. This study used 
students within a single school different from previous studies, in different semesters, 
in an attempt to apply the offline-created models to a new setting, without the injection 
of experimenter knowledge. These models failed to trigger in the operational educa-
tional settings at the appropriate times, representing another study which experienced 
difficulties in application transition.  This dataset is used for consideration of the current 
results and recommendations.  

2.1 Individualized Motivation  

To date, offline-created, group-based models of learner affect have encountered several 
challenges in real-world runtime settings. Offline-created, individual-based models pre-
sent an alternative. Individualized approaches to affective data analysis are rare in the 
ITS literature, but authors of generalized modeling publications have pointed to indi-
vidualization as a possible solution  to the problem for transferring models into produc-
tion [9]. Certain types of signals, such as electroencephalography (EEG), naturally lend 
themselves to individualized approaches (e.g. human brains are very individualistic and 
modeled as such).  

Other researchers indicate that the models are poorly fit for practice when assuming 
that the underlying concept is stationary, when in fact it is drifting across the sampling 
space [10, 14]; models should be adaptive and continuously adjusting for the reasons 
enumerated above. As such, they hypothesize that nonlinear algorithms could success-
fully deal with the dynamic nature of the signal. AlZoubi et al. empirically show this 
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success through an injection of real-time adaptive algorithmic techniques, such as win-
dowed Bayes Networks, which diminished overall classification error by 40% [10]. 
Generally speaking, the individualized modeling techniques have shown superior per-
formance in other research.  Inspired by the prior work, all of the algorithmic ap-
proaches in the current work are nonlinear and adaptive.  

3 Dataset  

There are two datasets subject to analysis in this paper, one from each of 2013 and 2016 
[13]. They were both collected from a class of United States Military Academy 
(USMA) at WestPoint cadets as they interacted with the Tactical Combat Casualty Care 
Simulation (TC3Sim), with 116 cadets from 2013 and 101 cadets from 2016. TC3Sim 
is a serious game used to train US Army combat medics and combat lifesavers on tasks 
associated with dispensing tactical field care and care under fire. Participants in both 
studies interacted with the system for approximately an hour of total protocol, while 
approximately 25 minutes were spent within the TC3Sim game. The participants were 
monitored via within-system interactions as well as via Microsoft Kinect sensor. While 
the participants interacted with the system, the BROMP protocol [15] was used in order 
to label the “ground truth” data of affective states of the learners, as observed. There 
are advantages and disadvantages to different labeling schemes [16], but in-field obser-
vations have been found to be relatively stable over time [15].  

The initial 2013 collection followed the traditional offline- and group-based model 
creations, and saw the development of various feature extraction methods, used in both 
studies to compare benchmark performance. The same features and models from the 
2013 study were used in 2016. Of the 91 vertices recorded by the Kinect sensor, only 
three are utilized for posture analysis: top_skull, head, and center_shoulder. These ver-
tices were selected based on prior work investigating postural indicators of emotion 
with Kinect data [17]. Derived statistical and windowed features were calculated over 
top of these items, including the minimum observed, maximum observed, median, var-
iance; each of these features is additionally calculated for 5/10/20 second windows. 
Further information on the dataset can be found in prior work [13, 18, 19].  78 input 
features were used, including raw data, such as CENTER_SHOULDER_DISTANCE 
reported from the Kinect, and computer features, such as the net_dist_change_20sec. 
Generally, the raw input features reflect the position and orientation of the head, skull, 
shoulders, and center of mass, while the computed input features reflect the changes, 
maximums, minimums, and variances during a 3/5/10/20 second time window. This 
represents non-extensive feature engineering.  

4 Algorithmic Implementations  

In order for models to be individualized, the models must be created as new data arrives 
and operate on under strict time constraints.  As such, only machine learning algorithms 
which have algorithmic complexity of O(1) are appropriate for the task, and the “1” 
processing requirements of the O(1) operation must be less than the frequency of data 
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per user.  The algorithms used to create models within this work are the same that have 
been implemented previously by the lead author, in identical configuration to prior 
methodologies [12, 20, 21].  They are, in short, an online incremental clustering tech-
nique, Adaptive Resonance Theory (ART), and a linear regression approach called 
Vowpal Wabbit (VW).  

5 Results  

5.1 Previous Performance Benchmarks  

The previous benchmarks for this work, using a variety of offline and generalized clas-
sification schemes are shown for the 2013 and 2016 datasets in the tables below, re-
spectively [13]. It is worth noting that the 2013 affect classifiers were applied to the 
2016 dataset, but no Kappa value above 0.00 was observed in situ – they were not 
usable in practice, as referenced in the earlier sections of this work.  Additionally, the 
reader should note that no ‘boredom’ labels were observed in the 2016 study.  The 
below table represents the best performance of a variety of offline methods given an 
unlimited amount of modeling time in a cross-validation approach.  Naturally, different 
machine learning methods had different performance, with the best-performing classi-
fication approach varying between data signals, and noted in the below table.  

Table 1. Performance of detectors of affect, 2013, 2016  

Affect  Classifier A’, 2013  A’, 2016  
Boredom  Logistic  Regression 0.528  -  
Confusion  Jrip 0.535  0.489  
Engaged  
Concentration  J48 0.532  

 

0.546  

Frustration  SVM 0.518  0.331  
Surprise  Logistic Regression 0.493  0.51  

5.2 Evaluation Methodology  

Before a discussion of the results, it is useful to consider how the algorithms operate 
and are assessed. For each individual a model is created over time in supervised, unsu-
pervised, and semi-supervised fashions. These samples of the model performance rep-
resent “best possible algorithmic performance”, “worst possible algorithmic perfor-
mance”, and “realistic performance that can be expected in practice”, respectively.  The 
semi-supervised models represent effectively unsupervised models with ~6 labeled 
points for the largest clusters and are majority-labeled – the labeled datapoints represent 
a direct user query for the label on the 6 minute time scale and are allowed to influence 
classification boundaries afterwards.  As an example, the first 6 minutes of data would 
be modeled as an unsupervised problem with the next 6 minutes of data being modeled 
as a mostly unsupervised problem (only one labeled datapoint).  Given the sparseness 
of labeling information in this work (all, none, or 6) in the different implementations, 
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overfitting is not a particular concern; 6 labels is not enough to overfit.  Further, con-
sidering that each created model is started uninitialized with standard model hyperpa-
rameters and created for a single individual, the comparing or using this model for an-
other individual wouldn’t be sensible; each model is custom to each student.  In order 
to create an evaluation metric which might be compared with the prior work (A’ metric) 
the models are evaluated over time in accordance with the assessment algorithm de-
scribed in Pseudo-Code 1, feeding an incremental amount of data in, labeling all un-
known clusters as the majority class of the true labels, making an A’ metric over all 
data seen so far, and then destroying the evaluated model, which is now polluted with 
significant labeling information. Additional metrics for the ability to model the near-
term past (last 10% of observed data) and near-term future (predictions on the next 10% 
of data) were found empirically to have within 10% of the overall error of this approach 
and to generally be measuring the same error rate in prior work [12, 20, 21].  
  

Pseudo-Code 1: Assessment Algorithm 
  
 
 
 
 
 

 
As a byproduct of the evaluation algorithm, each of the models begins with 100% 

accuracy – a single datapoint generates a single cluster and the majority-class of the 
cluster is correctly labeled. Gradually, as more data about both the user and labels 
comes available, the overall accuracy of the model decreases. This decrease represents 
coming progressively closer to the true accuracy of the approach. This paper answers 
the question of whether the individual real-time modeling approach is valid. As such, 
it is useful to see the overall effect of the model, and how useful it would have been, on 
average, for a given unit of time, and to be able to compare to prior metrics. The algo-
rithm used to assess the performance of each of the methods, per individual, is described 
below in Pseudo-Code 1. Using this assessment methodology generates 10 assessment 
points per user.  These results are averaged for the group to generate a single metric to 
compare against prior results. 

 
 
 
 
  

For x from 10-100, in increments of 10  
 Feed x% of the data to the algorithm  
 For each class created by unlabeled class 
boundaries  
      Label this class the majority label of true set  

Evaluate for AUC ROC accuracy through 
input of data for classification (next, previ-
ous, all  
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5.3 Tabular Results  

Table 2. Clustering Performance, 20131, 20162  

Affect  
Prior  
Best1  Sup1  

Un- 
Sup1  

Semi- 
Sup1  

Prior  
Best2  Sup2  UnSup2  

Semi- 
Sup2  

Boredom  0.528  0.891  0.886  0.888  0.51  -  -  -  
Confusion  0.535  0.831  0.820  0.820  0.489  0.750  0.615  0.642  

E. Concentration  0.532  0.780  0.765  0.765  0.546  0.647  0.595  0.595  
Frustration  0.518  0.936  0.936  0.939  0.331  0.851  0.851  0.851  

Surprise  0.493  0.952  0.949  0.949  0.51  0.932  0.932  0.932  
 

Table 3. ART Performance, 20131, 20162  

Affect  
Prior  
Best1  Sup1  

Un- 
Sup1  

Semi- 
Sup1  

Prior  
Best2  Sup2  UnSup2  

Semi- 
Sup2  

Boredom  0.528  0.886  0.878  0.878  0.51  -  -  -  
Confusion  0.535  0.830  0.802  0.802  0.489  0.642  0.630  0.630  

E. Concentration  0.532  0.783  0.677  0.677  0.546  0.643  0.558  0.558  
Frustration  0.518  0.941  0.939  0.939  0.331  0.851  0.851  0.851  

Surprise  0.493  0.955  0.954  0.954  0.51  0.932  0.932  0.932  
 

Table 4. VW Performance, 20131, 20162  

Affect  
Prior  
Best1  Sup1  

Un- 
Sup1  

Semi- 
Sup1  

Prior  
Best2  Sup2  UnSup2  

Semi- 
Sup2  

Boredom  0.528  0.722  0.718  0.718  0.51  -  -  -  
Confusion  0.535  0.699  0.703  0.703  0.489  0.577  0.588  0.588  

E. Concentration  0.532  0.716  0.682  0.682  0.546  0.568  0.565  0.565  
Frustration  0.518  0.719  0.733  0.733  0.331  0.664  0.655  0.655  

Surprise  0.493  0.712  0.710  0.710  0.51  0.663  0.661  0.661  
 

Table 5. Summary Best Semi-Supervised (Realistic, Industrial) Performance  

Affect  2013 Method  2013 Value  2016 Method  2016 Value  
Boredom  clustering  .888  -  -  
Confusion  clustering  .820  clustering  .642  
E. Conc.  clustering  .765  clustering  .595  

Frustration  Tie  .939  tie  .851  
Surprise  ART  .954  tie  .932  

6 Discussion and Industrial Applications  

Overall, the model performance is favorable, with the indication that the individualized 
and real-time modeling approach is effective.  Naturally, this is an unfair comparison 



35  

Back to Table of Contents 
 

to the previous models; these results are comparing an aggregate of many individual 
models to a single model which models the population.  A highlight of these results was 
previously published in another work [20], which discussed that this performance im-
provement is not a “free lunch”, and that real-time models should 1) have relatively 
stable labeling, on the order of minutes, and 2) make use of the created features from 
offline models, which are shown to help online models.  This paper finds similarly.  

Recommendations for industrial implementation, based on the above, are for a setup 
for affective state detection within an intelligent tutoring system to have the following 
features:  

• Sensors of physiological state  
• Existing feature extraction shown useful in other contexts – such as the feature ex-

traction performed in this work  
• Participant able to label affect states as they come available – a system able to request 

these items  
• Use of one of more machine learning measures, such as ART or incremental cluster-

ing, shown above to be the best-performing of the three selected.  

This type of implementation can be performed relatively easily within the confines 
of the Generalized Intelligent Framework for Tutoring (GIFT) system.  A specific im-
plementation would be for the Sensor Module to collect, filter, and feature extract the 
data as above.  This data is then sent to the Learner Module, which has the ability to 
stitch it together with survey-queried ground truth data and models which are created 
on the fly with algorithmic complexity of O(1).  The GIFT system is set up to integrate 
these types of models with only configuration parameters, rather than any significant 
module addition or re-architecting.  

References  

1. B. S. Bloom, "The 2-Sigma Problem: The search for methods of group instruction as effec-
tive as one-to-one tutoring". Educational Researcher, vol. 13, pp. 4-16, 1984.  

2. K. VanLehn, "The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, 
and Other Tutoring Systems," Educational Psychologist, vol. 46, pp. 197221, 2011.  

3. R. A. Sottilare, K. W. Brawner, B. S. Goldberg, and H. A. Holden, "The Generalized Intel-
ligent Framework for Tutoring (GIFT)," 2012.  

4. Department of the Army, "The U.S. Army Learning Concept for 2015," TRADOC2011.  
5. B. P. Woolf, "A Roadmap for Education Technology," vol. 0637190, 2010.  
6. S. K. D’Mello, R. Taylor, and A. C. Graesser, "Monitoring Affective Trajectories during 

Complex Learning," in Proceedings of the 29th Annual Cognitive Science Society, D. S. 
McNamara  and J. G. Trafton, Eds., ed Austin, TX: Cognitive Science Society, 2007, pp. 
203-208.  

7. S. McQuiggan, S. Lee, and J. Lester, "Early prediction of student frustration," Affective Com-
puting and Intelligent Interaction, pp. 698-709, 2007.  

8. S. K. D’Mello, S. D. Craig, B. Gholson, S. Franklin, R. W. Picard, and A. C. Graesser, 
"Integrating Affect Sensors in an Intelligent Tutoring System," in Affective Interactions: The 



36  

Back to Table of Contents 
 

Computer in the Affective Loop Workshop at 2005 International Conference on Intelligent 
User Interfaces, ed New York: AMC Press, 2005, pp. 7-13.  

9. R. A. Calvo and S. D'Mello, "Affect detection: An interdisciplinary review of models, meth-
ods, and their applications," Affective Computing, IEEE Transactions on, vol. 1, pp. 18-37, 
2010.  

10. O. AlZoubi, R. Calvo, and R. Stevens, "Classification of EEG for Affect Recognition: An 
Adaptive Approach," AI 2009: Advances in Artificial Intelligence, pp. 52-61, 2009.  

11. J. Sabourin, B. Mott, and J. C. Lester, "Generalizing Models of Student Affect in Game-
Based Learning Environments," in Affective Computing and Intelligent Interaction. vol. 
6975, S. D. Mello, A. Graesser, B. Schuller, and J.-C. Martin, Eds., ed Berlin Heidelberg: 
Springer-Verlag, 2011, pp. 588-597.  

12. K. W. Brawner, "Modeling Learner Mood In Realtime Through Biosensors For Intelligent 
Tutoring Improvements," Doctor of Philosophy in EECS, Department of Electrical Engi-
neering and Computer Science, University of Central Florida, 2013.  

13. J. DeFalco, J. P. Rowe, L. Paquette, V. Georgoulas-Sherry, K. Brawner, B. W. Mott, et al., 
"Detecting and Addressing Frustration in a Serious Game for Military Training," Interna-
tional Journal of Artificial Intelligence in Education 2017.  

14. G. Hulten, L. Spencer, and P. Domingos, "Mining time-changing data streams," 2001, pp. 
97-106.  

15. J. Ocumpaugh, R. S. J. d. Baker, and M. M. T. Rodrigo, "Baker-Rodrigo Observation 
Method Protocol (BROMP) 1.0. Training Manual version 1.0.," New York, NY: EdLab., 
2012.  

16. K. Brawner and M. Boyce, "Establishing ground truth on pyschophysiological models for 
training machine learning algorithms: Options for ground truth proxies," presented at the 
International Conference on Augmented Cognition a part of the Human Computer and In-
telligent Interaction (HCII) multi-conference, 2017.  

17. J. Grafsgaard, J. Wiggins, K. E. Boyer, E. Wiebe, and J. Lester, "Predicting learning and 
affect from multimodal data streams in task-oriented tutorial dialogue," in Educational Data 
Mining 2014, 2014.  

18. J. P. Rowe, B. W. Mott, and J. C. Lester, "It’s All About the Process: Building SensorDriven 
Emotion Detectors with GIFT," presented at the GIFTSym2, Pittsburgh, PA, 2014.  

19. J. Rowe, E. V. Lobene, and J. Sabourin, "Run-Time Affect Modeling in a Serious Game 
with the Generalized Intelligent Framework for Tutoring," in AIED 2013 Workshops Pro-
ceedings Volume 7, 2013, p. 95.  

20. K. Brawner, "Lessons Learned For Affective Data And Intelligent Tutoring Systems," pre-
sented at the Defense and Homeland Security Simulation, 2017.  

21. K. W. Brawner and A. J. Gonzalez, "Modelling a learner's affective state in real time to 
improve intelligent tutoring effectiveness," Theoretical Issues in Ergonomics Science, vol. 
17, pp. 183-210, 2016.  
 

  


	1 Introduction
	2 Adaptive Training Development Experience
	2.1 ITS Implementation
	2.2 VI Implementation

	3 Prototype Development
	3.1 ITS/GIFT Prototype
	3.2 Virtual Pilot Development

	4 Challenges and Future Directions
	References
	1 Dialogue-based Tutors
	1.1 General Approach
	1.2 Watson DBT

	2 Feedback system
	2.1 Collection of Annotations
	2.2 Review Process
	2.3 Automation of Changes
	2.4 Effect of Student Feedback

	3 Conclusion and Future Work
	3.1 Summary
	3.2 Challenges

	Acknowledgments
	References
	1 Towards a Method for Revolutionary Authoring of Adaptive Intelligent Tutors
	1.1 Define Training Goals
	1.2 Select Ontology
	1.3 Discover and Mediate Training Content
	1.4 Configure and Execute Training
	1.5 Evaluate Learner Performance
	1.6 Adapt and Refine Training Content

	2 TRAIT Architecture
	3 Illustrative TRAIT Application Example
	4 Summary and Benefits
	References
	1 Introduction and Motivation
	2 Background
	2.1 Individualized Motivation

	3 Dataset
	4 Algorithmic Implementations
	5 Results
	5.1 Previous Performance Benchmarks
	5.2 Evaluation Methodology
	5.3 Tabular Results

	6 Discussion and Industrial Applications
	References
	1 Introduction
	2 Research and related work
	3 Theoretical notions and application structure
	4 Implementation
	5 Conclusions
	References
	1 Introduction
	2 Workshop Purpose and Goals
	3 Guiding Questions for AIS Standardization
	3.1 What do we want our standard(s) to do?
	3.2 What do successful standards look like?
	3.3 What is the appropriate process for developing standards?

	4 Discussion on Potential AIS Standards
	5 Next Steps
	Acknowledgments
	References
	1 Introduction
	2 Toward Standardization through Design Goals
	2.1 User Management System (UMS) Module
	2.2 Learning Management System (LMS) Module
	2.3 Learner Module
	2.4 Sensor Module
	2.5 Pedagogical (Instructional) Module
	2.6 Tutor Module
	2.7 Gateway Module
	2.8 Domain Module

	3 Potential Standard Messages
	4 Discussion
	Acknowledgments
	References
	1 Introduction
	2 Intelligent Tutoring Systems
	3 Domain Models
	4 Model Constructs in Commercial Aviation
	5 Measures of Learning: Application to the Student Model
	5.1 Bayesian Networks
	5.2 Bayesian Knowledge Tracing
	5.3 Item Analysis

	6 Conclusion
	References
	1 Introduction
	2 Gap in Report of ISA Data Standards Governance
	3 IEEE LOM Conceptual Data Schema
	4 Proposal for Pedagogical Identifier in Educational Category of IEEE LOM
	4.1 Tagging learning objects to support learning designs
	4.2 IEEE LOM Interactivity Type in Educational Category
	4.3 Pedagogical identifiers for adaptive instructional systems
	4.4 Bloom’s Revised Taxonomy of 2001 in standardizing metadata tagging

	5 Conclusion
	Acknowledgements
	References

