

Conceptualizing and Formalizing Requirements

for Ontology Engineering

Svitlana Moiseyenko [0000-0001-5451-6350] and Vadim Ermolayev [0000-0002-5159-254X]

Department of Computer Science, Zaporizhzhia National University,

Zhukovskogo st. 66, Zaporizhzhia, Ukraine

svitlana.moiseyenko@gmail.com, vadim@ermolayev.com

Abstract. This paper presents the PhD project, by the first author, that devel-

ops, in frame of the OntoElect methodology, the methods, techniques, and

software tools for conceptualizing and formalizing the requirements for engi-

neering an ontology in an arbitrary domain. It takes in the terms extracted from

a representative collection of high-quality textual documents written by the ex-

perts in the target domain and therefore describing this domain. It produces the

representative set of the requirements by the knowledge stakeholders as onto-

logical fragments conceptualized as UML class diagrams and formalized in

OWL+SWRL. The paper presents the vision of the solution and the plan to-

wards building it based on the background knowledge and related work in the

fields of Conceptual Modeling and Ontology Engineering. It also outlines the

plan for experimental evaluation and validation of the solution.

Keywords: Ontology, Feature Conceptualization, Semantic Relation Extrac-

tion, Ontology Concept Identification, Ontology Engineering, OntoElect.

1 Introduction

This paper presents the Ph.D. project that further develops, in frame of the OntoElect

methodology [1,2], the methods, techniques, and software tools for conceptualizing

and formalizing the requirements for developing an ontology in an arbitrary domain.

It takes in the terms extracted from a representative collection of high-quality textual

documents written by the experts in the target domain and therefore describing this

domain. The terms are extracted by the prior phase of OntoElect in a way to ensure

that these terms indicate the significant features corresponding to the prevailing sen-

timent of the knowledge stakeholders about this domain. The developed phase of

OntoElect outputs the representative set of the requirements by the knowledge stake-

holders as ontological fragments conceptualized as UML1 class diagrams and formal-

ized in OWL 22 (and additionally in SWRL3 if there is a need to use rules in the on-

1 UML 2.0: http://www.omg.org/spec/UML/2.0/About-UML/
2 OWL 2: https://www.w3.org/TR/owl2-overview/
3 SWRL: https://www.w3.org/Submission/SWRL/

35

https://orcid.org/0000-0001-5451-6350
https://orcid.org/0000-0002-5159-254X
http://www.omg.org/spec/UML/2.0/About-UML/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/Submission/SWRL/

tology). OntoElect is the basic methodological and theoretical framework for this

project.

Conceptualization and Formalization phase builds and refines the high-level con-

texts (instances) during ontology development process.

In general, knowledge stakeholders in a domain, like for example, Tourism or Fi-

nance, are clearly not knowledge engineers. Therefore, it is naive to request that they

provide their requirements using an ontology representation language, like OWL.

Moreover, it is naive to expect that they will readily provide their requirements as it is

not their business. Therefore, OntoElect solicits their requirements indirectly, relying

on the existence of a high-quality and representative collection of documents describ-

ing the domain. The documents come as texts in a natural language. Hence, the input

and any other supplementary data for conceptualization are natural language text

fragments. From the other hand, the output has to come in a formal ontology repre-

sentation language in order to enforce single interpretation and be machine processa-

ble. This is why the task of conceptualizing and formalizing requirements for ontolo-

gy development is challenging. This challenge includes several complex problems

that will be attacked in this PhD project.

The reminder of the paper is structured as follows. Section 2 Outlines these prob-

lems and offers a high-level vision of the overall solution. Section 3 looks at the relat-

ed work in the fields of Conceptual Modeling and Ontology Engineering to seek in-

sights, relevant background knowledge, and the bits of already existing technologies

that may help solve the challenge of the project. Section 4 explains how the developed

solutions will be evaluated experimentally. Finally, Section 5 concludes the paper.

2 The Vision of the Solution and the Problems to Solve

There is a problem with meaning interpretation for the different terms and contexts

which appears between people in different communities. For example, a particular

term may have a more specific interpretation by a domain expert which may well

differ from the interpretation by an ontology engineer. Regarding engineering, it can

be called as a lack of specification when different engineers have different ideas about

the particular requirement and its context. Hence, conceptualization and formalization

phase is designed to solve this problem. To overcome this mismatch in interpreta-

tions, the project bases itself on the approach of stepwise elimination of different

aspects that cause mismatches. This approach has been framed out as a part of

OntoElect methodology [2] and is outlined in Fig. 1. However, OntoElect relies on

manual performance of all these steps. The technical objective of this project is to

develop the techniques and software tools to partially automate the process and sub-

stantially lower manual effort.

The outlined sequence of steps takes in the ranked list of the terms describing the

domain. These terms are guaranteed to be significant and saturated by the Feature

Elicitation phase of OntoElect. Therefore, the input is regarded as the list of the re-

quired features. The objective is to transform this list of the required features to for-

malized ontological fragments (requirements), carrying the positive and negative

36

votes of the involved features in their aggregated significance scores. Requirements

are further used in Ontology Evaluation phase to compute the fitness of the ontology.

Conceptualization and formalization is done by a knowledge engineer, using the

suite of software instruments that will be developed in this project, through: (i) group-

ing and categorizing extracted required features; (ii) selecting the significant concepts

from the list of required features and forming the feature taxonomy; (iii) computing

the propagated scores up the concept/property hierarchies; (iv) selecting the most

significant concept features; (v) elaborating natural language definitions for the most

significant concept features and formalizing these as ontological fragments using

UML and OWL; and (vi) documenting requirements.

Fig. 1. Conceptualization and formalization workflow

Feature grouping is merging several features which are lexically different but car-

ry equivalent semantics. The relevant cases include: plural and singular forms of the

same term, for example “temporal constraints” and “temporal constraint” are the same

terms and have to be merged; the terms that had or had not lost two-letter combina-

tions due to peculiarities of their representation in PDF documents due to the differ-

ences in Adobe versions, for example “de nition” and “definition” are also the same

terms. The significance scores of the merged terms are summarized. One possible

solution to group features semi-automatically using a proper string similarity measure,

as suggested in [3]. The problem could also be attacked by applying an appropriate

clustering algorithm (a.k.a. conceptual clustering [4]) based on computing the mini-

mal threshold using string similarity (syntactic) measures to evaluate if a feature be-

longs to a group.

Analyzing the individuals (see also feature categorization below), for example tak-

en from a relevant linked open data repository or the individual features available

from the required feature list, may help receive more confidence in the relevance of a

property to a concept.

Looking at feature groups may reveal important information about their subsump-

tion or meronymy (and, possibly, other interesting properties). Indeed, the most ab-

37

stract feature in a group may be interpreted as the root in the group hierarchy. Conse-

quently, the features which are extended from the root feature by adding words most

probably subsume to the root. Meronymy hierarchies involve the features which are

either parts of a whole or the wholes for their parts. Putting together all these group

hierarchies will result in a feature taxonomy, which is the output of the Feature

Grouping step.

Building the feature taxonomy for the set of required features is important as both

types of hierarchical relationships among features influence the significance of fea-

tures through inheritance. Indeed, if a feature subsumes to another feature then it in-

herits some of its properties, so its significance is formed to a particular extent by

these inherited properties. Hence, a parent in a hierarchy may expect that it is reward-

ed by its children through the propagation of their significance scores. OntoElect sug-

gests [1] that score propagation adds one fifth of the children’ scores to their par-

ent’s score. An example of computing propagated scores is pictured in Fig. 2.

Fig. 2. An example of computing score propagation for required features, adopted

from [2]

A step which is somewhat orthogonal to grouping, as it looks into the semantic na-

ture of a feature is categorization. Feature categorization stands for deciding if a fea-

ture, due to its semantics, represents a concept, a property, or an individual. Property

features are further grouped in relevant ontological fragments to represent formalized

requirements. Individual features – by being the instances of a concept or a property

– form the corpus of evidence pointing that the concept possesses the property at the

schema level. Concept features are further used to form subsumption or meronymy

hierarchies in the concept taxonomy and form the “anchors” for ontological frag-

ments.

The most significant concept features (due to their scores in the feature taxonomy),

having the potential for high impact on the requirements, may be selected. For that,

concept features are viewed in a ranked list and the group of features covering the

desired proportion of importance is promoted.

The promoted concept features are used to form the concept taxonomy and be the

central concepts for the formalized requirements. Each of these promoted concept

features is, at the end of the workflow, conceptualized in a formalized ontological

fragment – as a conceptual model (in UML) and a piece of code in an ontology spec-

ification language (in OWL+SWRL). Conceptualization means that all the relevant

property features and features representing individuals are consolidated in the onto-

logical fragment in a harmonized way to form a coherent piece of a required descrip-

tive theory for the domain.

38

Conceptualizing a concept feature starts with elaborating its natural language

definition based on the high-impact documents describing the domain. These docu-

ments may be acquired from the document collection from which the required fea-

tures have been extracted. To ensure the relevance and high impact of these sources, a

snowball sampling in citation networks approach (e.g. [5]) may be tried. The task of a

knowledge engineer, supported by a software tool, at this step is to ensure that all the

required property features are taken into this definition and do not contradict

each other.

Based on the natural language definition, a conceptual model is developed for a

concept feature, including also its properties and relationships to the other relevant

concept features.

Currently, OntoElect does not recommend any instrumental software tool to help

transform the definition of a concept written using a natural (e.g. English) language to

a UML model. Current working practice suggests that it is a two-step process. The

first step is elaborating the model manually, using the ArgoUML editor4. Protégé

ontology editor5 is further used at the second step for manual coding the ontology in

OWL 2 with an account for DL restrictions [6]. The transformation patterns from

UML to OWL follow the recommendations by Schreiber6. There are several possible

ways to partially automate this process and hence lower the effort for these opera-

tions.

One potentially interesting idea is inspired by the works in automatic program gen-

eration. The instructions in a programming language are generated from natural lan-

guage sentences using different techniques. One of the promising approaches is to

employ machine learning approach. To do so, it is required that a set of typical sen-

tences and resulting code instructions is provided to train the model. When done, the

trained model is applied to incoming sentences and outputs code instructions. A simi-

lar approach may be used for descriptive sentences from one side and UML model

outputs from the other side – please see an example in Fig. 3. An appropriate starting

point for the training set could be the library of ontology design patterns [7, 8].

Fig. 3. An example of transforming a term to a UML model fragment

An alternative way to transform a text to a UML model is to use NLP technology

stack. For example, Stanford Core NLP 7 allows analyzing a text by applying linguis-

4 ArgoUML is an open source UML modeling tool: http://argouml.tigris.org/
5 Protégé Ontology Editor: https://protege.stanford.edu/
6 OWL Restrictions: http://www.cs.vu.nl/~guus/public/owl-restrictions/
7 Stanford CoreNLP: https://stanfordnlp.github.io/CoreNLP/

39

http://argouml.tigris.org/
https://protege.stanford.edu/
http://www.cs.vu.nl/~guus/public/owl-restrictions/
https://stanfordnlp.github.io/CoreNLP/

tic and syntactic analysis tools. It facilitates extracting dependency structures from

phrases or sentences, determining the part of speech of the words, indicating which

noun phrases refer/relate to what, etc.

The transformation of a UML model of an ontological fragment to OWL + SWRL

could also be automated. The approach could be using a rule-based technique, or a

machine-learning approach described above.

OntoElect is more specific in recommending a way for documenting the ontology

under development. It suggests that the ontology is documented in a set of Semantic

MediaWiki8 pages. Some of those pages provide the overviews of the ontology mod-

ules, but the rest, which are the majority, are dedicated to documenting the concepts –

one page per concept. A documentation wiki page of a particular concept contains:

the natural language definition of the concept; the UML class diagram of the con-

cept’s conceptual model; the description of the properties grouped according to the

property types: datatype and object properties. This sort of documentation, for re-

quirements, would be straightforwardly generated based on the results of conceptual-

ization and formalization.

3 Some Insightful Related Work

Ontology engineering is a broad field which a substantially big research community

devoting their effort to push forward the State-of-the-Art. Therefore, it is not tractable

to overview all the achievements in ontology engineering. In this paper we focus, in

our review of the related work, only on those results that gave us insights in develop-

ing our vision and circumscribing the problems to be solved, as presented in Section

2. Therefore, our concise related work review is grouped below along the problems

that need to be solved.

Feature Grouping and Taxonomy Generation. Feature grouping has been stud-

ied in the Knowledge Acquisition and Information retrieval fields. There were plenty

approaches developed by applying syntactic, semantic, and linguistics analysis (e.g.

Jaccard, Jaro, Euclidean algorithms) be revealing the degree of the measure similarity.

Using clustering algorithms like K-means, Agglomerative Hierarchical, or EM and

methods such as pattern-based extraction, conceptual clustering, concept learning,

ontology learning from instances [9], Aussenac-Gilles method [10]) significantly

enhanced the process of assigning terms into groups for discovering concepts or con-

structing hierarchy.

Feature Categorization. A lot of existing approaches are based on the predefined

tokenization or part-of-speech tagging (POS) patterns for identifying relatedness

which developed by NLP techniques. The most well-known comprehensive toolkits

for natural language processing are General Architecture for Text Engineering

(GATE), Natural Language Toolkit (NLTK), and Stanford Core NLP.

Conceptualization. Several methodologies contributed the techniques for conceptual-

ization in ontology engineering. The Klagenfurt Conceptual Pre-Design Model

8 Semantic MediaWiki: http://semantic-mediawiki.org/

40

http://semantic-mediawiki.org/

(KCPM) an intermediate phase between requirements analysis and conceptual design.

The proposed approach was targeted on harmonization the developer’s and user’s

view. The relevant part of this work for the presented project is in particular in the

modeling notions: thing and connection types, a perspective view and constraint [11].

METHONTOLOGY is an ontology engineering methodology that enables construct-

ing ontologies at the knowledge level. This methodology includes the identification of

the ontology development process, a life cycle based on evolving prototypes, and

techniques to carry out each activity in the management, development-oriented, and

support activities [12]. Special attention is paid to the ontology construction. The

methodology also provides a detailed description of how to organize and structure the

conceptual models in order to build taxonomies. OntoElect [2] offers a methodologi-

cal framework for all the necessary steps for the presented work. It also outlines the

approaches and points to some techniques relevant to develop the software solutions

for the required tools, in particular for knowledge extraction, grouping and categoriza-

tion, building concepts and taxonomies. The work on ontology design patterns, such

as Logical and Content Ontology Design Patterns aimed at solving design problems

for domain concepts and properties [7], is also relevant for the part of building onto-

logical fragments in our project.

Significance Scores Propagation and Aggregation. The topic about the compu-

ting significance scores is very specific in the ontology development process. Hence,

to the best of our knowledge, there is no published work that uses feature significance

scores for requirements (or ontology) conceptualization.

Assembling the Natural Language Definition for a Concept Feature. Lexico-

Syntactic ontology design pattern (OPs) was developed based on the linguistic struc-

tures or schemas in order to extract some conclusions about the meaning of the words

they express [7].

Text to UML model Transformation. Several publications deal with the trans-

formation of text to UML. Most of them use XML serializations and XSLT [13], [14].

Cranefield and Purvis investigated the use of UML class diagrams in order to repre-

sent ontologies and UML object diagrams for representing the knowledge instances

[15]. An interesting approach based on using machine learning techniques was pre-

sented in [16] to transform natural text sentences to programming language instruc-

tions. It would be a good point to use a similar technique in transforming stakeholder

requirements to the formalized UML models.

UML model to OWL+SWRL Code Transformation. Transformation, Reengi-

neering, Schema reengineering, and Transformation of Logical Patterns techniques

were developed for relevant transformations, for example a non-OWL DL or informal

concept models to OWL DL ontology fragments. The conceptualization activity in

METHONTOLOGY provide a full-stack guide for converting informally presented

concepts and relations into semi-formal specifications. Several tools have also been

developed for the purpose of this or similar transformation, such as LEXTER [17],

Géditerm [18], TERMINAE [19].

41

Ontology engineering methods9 were developed not only for the creating ontolo-

gy from scratch but also to be able to reuse the already existed ontologies. Here are

several purposes that they are used for: (i) building ontology from scratch, (ii) upgrad-

ing an existing ontology, (iii) acquiring knowledge for particular tasks, (iv) solving

particular problems during ontology development process. The most well-known

ontology engineering methods are alignment, merging, evaluating (e.g., Cyc, Uschold

and King’s, re-engineering (METHONTOLOGY), etc.) which allow ontology engi-

neers to build and edit ontologies using the combination of frames, description logic,

first logic order and other different approaches.

Generating Semantic Media Wiki Pages for Documentation. Wiki-based pro-

cess editor was developed to enable the ontology documenting process. This approach

is based on combining graphical process modeling techniques, wiki-based light-

weight knowledge capturing approach, and a background semantic knowledge

base [20].

4 Planned Evaluation

The envisioned approach, together with the instrumental software tools, for conceptu-

alizing and formalizing requirements in ontology engineering needs to be experimen-

tally evaluated and validated. A straightforward way to evaluate the (correctness) of

the solution is to compare its results to a Golden Standard. Consequently, a way to

validate the solution is to offer it to knowledge engineers for a trial. Further, their

impression of the usability and performance of the solution is compared to their nor-

mal mode of work – without the solution.

As a Golden Standard for evaluation, it is planned to use the available working re-

pository of the Syndicated Ontology of Time (SOT). SOT is developed using OntoE-

lect as the ontology engineering methodology. Therefore, this repository contains all

the types of intermediate and final results for the key concepts of the currently devel-

oped ontology for the Time Representation and Reasoning domain. The repository

belongs to our group and therefore is fully available as background knowledge. In

evaluation, it is planned to compare the outputs of the developed tools to the same

outputs developed by human knowledge engineers.

In validation experiments, the knowledge engineers who developed SOT manually

will do the same development for the selected key concept features [2] using the de-

veloped instrumental tool suite. Their effort spent in this activity and their subjective

assessments of the usability and usefulness of the tools will be collected by offering a

questionnaire.

After the evaluation and validation of the solution in the SOT use case, another use

case in a different domain will be elaborated. One of the potential candidate domains

is Knowledge Management. An industrial use case for this domain is framed out

9 This description has been deliberately kept concise because of the page limit. Defi-

nitely, more relevant ontology engineering methods exist, including ontology

learning, and will be reviewed in the planned survey paper.

42

based on the full text document collection of 15 journals provided by Springer Nature.

For a part of this domain the work on extracting features is in progress [21].

5 Some Conclusions

The PhD project presented in this paper is in its initial phase. So, the only preliminary

result is the vision of the solution that will help achieve the goal of the project: help

domain knowledge stakeholders and knowledge engineers be coherent in interpreting

the requirements for representing knowledge to describe the domain formally, in an

ontology.

While elaborating our vision of the research problem and possible solution to it, we

also presented a workflow that will help solve the challenge in several interrelated

steps. These steps are, in their turn, the problems that require solutions. These solu-

tions are planned to be sought in the project.

Our initial plan for evaluating and validating the solution is also presented in the

paper. We hope that the outcome of the project will be beneficial for the Ontology

Engineering community at broad and also for the experts who carry their knowledge

about various domains of interest.

References

1. Tatarintseva, O., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying ontology fitness

in OntoElect using saturation- and vote-based metrics. In: Ermolayev, V., et al. (eds.) Re-

vised Selected Papers of ICTERI 2013, CCIS, vol. 412, pp. 136–162 (2013)

2. Ermolayev, V.: OntoElecting requirements for domain ontologies: the case of time do-

main. EMISA Int J of Conceptual Modeling, 13(Sp.I.), 86–109 (2018)

3. Chugunenko, A., Kosa, V., Popov, R., Chaves-Fraga, D., Ermolayev, V.: Refining termi-

nological saturation using string similarity measures. In: Ermolayev, V. et al. (eds.) Proc.

ICTERI 2018, CEUR-WS, online (2018) – to appear

4. Michalsky, R.,: Knowledge acquisition through conceptual clustering: a theoretical

framework and algorithm for partitioning data into conjunctive concepts. International

Journal of Policy Analysis and Information Systems 4(3), 219–243 (1980)

5. Dobrovolskyi, H., Keberle, N., Todoriko, O.: Probabilistic topic modelling for controlled

snowball sampling in citation network collection. In: Różewski P., Lange, C. (eds.) KESW

2017. CCIS, vol. 786. Springer, Cham (2017)

6. Motik, B., Patel-Schneider, P. F., Parisa, B. (eds.): OWL 2 Web ontology language. Struc-

tural specification and functional-style syntax. 2nd edn. W3C recommendation, W3C

(2012) http://www.w3.org/TR/2012/REC-owl2- syntax-20121211/

7. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Hand-

book on Ontologies. International Handbooks on Information Systems. Springer, Berlin,

Heidelberg (2009)

8. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontologies with

OOPS!. In: ten Teije, A. et al. (eds.) Proc. EKAW 2012. LNCS, vol. 7603. Springer, Ber-

lin, Heidelberg (2012)

43

http://www.w3.org/TR/2012/REC-owl2-%20syntax-20121211/

9. Morik, K., Kietz, J.U.: A bootstrapping approach to conceptual clustering. In: Segre, A.M.

(ed.) Proceedings of the Sixth International Workshop on Machine Learning, Ithaca, New

York. Morgan Kaufmann Publishers, San Francisco, California, pp. 503–504 (1989)

10. Kietz, J.U., Maedche, A., Volz, R.: A method for semi-automatic ontology acquisition

from a corporate intranet. In: Aussenac-Gilles, N., Biébow, B., Szulman, S. (eds.)

EKAW’00 Workshop on Ontologies and Texts. Juan-Les-Pins, France. CEUR Workshop

Proceedings 51:4.1–4.14. Amsterdam, The Netherlands (2000) http://CEUR-WS.org/Vol-

51/

11. Kop, C., Mayr, H.C.: Conceptual predesign bridging the gap between requirements and

conceptual design. In: Proceedings of IEEE International Symposium on Requirements

Engineering: RE '98, pp. 90–98. IEEE Comput. Soc (1998)

12. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological engineering. 1st ed.,

Springer-Verlag, London (2003)

13. Cranefield, S.: Networked knowledge representation and exchange using UML and RDF.

Journal of Digital information 1(8), (2001)

14. Djuri ́c, D.: MDA-based ontology infrastructure. Computer Science and Information Sys-

tems 1(1), 91–116 (2004).

15. Cranefield, S., Purvis, M.: UML as an ontology modeling language. In: Proc. of the Work-

shop on Intelligent Information Integration, 16th Int. Joint Conference on AI (IJCAI-99),

Stockholm (1999)

16. Stehnii, A., Hryniv, R.: Generation of code from text description with syntactic parsing

and Tree2Tree model. Master thesis, Ukrainian Catholic University (2017)

17. Bourigault, D., González, I., Gros, C.: LEXTER, a natural language tool for terminology

extraction. In: Gellerstam, M., Järborg, J., Malmgren, S.G., Norén, K., Rogström, L., Pap-

mehl, C.R. (eds.) 7th EURALEX International Congress, Part II, pp. 771–779. Goteborg,

Sweden (1996)

18. Aussenac-Gilles, N.: Gediterm, un logiciel de gestion de bases de connaissances termi-

nologiques. Terminologies Nouvelles 19:111–123 (1999)

19. Aussenac-Gilles, N., Biébow, B., Szulman, S.: Modelling the travelling domain from a

NLP description with TERMINAE. In: Angele, J., Sure, Y. (eds.) EKAW’02 Workshop on

Evaluation of Ontology-based Tools (EON2002), Sigüenza, Spain. CEUR Workshop Pro-

ceedings 62:112–128. Amsterdam, The Netherlands (2002) http://CEUR-WS.org/Vol-62/

20. Dengler, F., Vrandečič, D., Simperl, E.: Comparison of wiki-based process modeling sys-

tems. In: Proceedings of the 11th International Conference on Knowledge Management

and Knowledge Technologies. i-KNOW’11, pp. 30:1–30:4. ACM, New York, NY, USA

(2011)

21. Kosa, V., Chaves-fraga, D., Naumenko, D., Yuschenko, E., Badenes-Olmedo, C., Ermola-

yev, V, Birukou, A.: Cross-evaluation of auomated term extraction tools by measuring

terminological saturation. In: Bassiliades, N., et al. (eds.) ICTERI 2017, Revised Selected

Papers,.CCIS, vol. 826, pp. 135–163, Springer, Cham (2018)

44

http://ceur-ws.org/Vol-51/
http://ceur-ws.org/Vol-51/
http://ceur-ws.org/Vol-62/

