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Abstract. This work is about reasonable choice of the component al-
gorithms for the implementation of Okapi BM25. It describes important
aspects of building search engines and focuses on the efficient and imple-
mentation of Okapi BM25 for k-grams. This extended abstract should
be treated as a part of Master’s thesis in System Analysis and Control
Theory. Since Okapi BM25 requires the usage of several general-purpose
algorithms, it is important to choose the best version of the existing
algorithms in order to squeeze every bit of the hardware.

Keywords: TF-IDF, Okapi BM25, Inverted index, Information Retrieval, n-
grams

1 Introduction

It is impossible to imagine modern website without search engine. High quality
search is especially important for E-commerce websites. Since Internet-stores
contain millions of documents, it is important to choose appropriate efficient
algorithms and use available memory effectively.

Users are making mistakes in search queries and still want to get relevant
results. Also, words in a query could be written in different forms, so that bag-
of-words model does not work. So, it is important to write robust algorithms
for Information Retrieval. In large scale, if the implementation is 3 times slower,
that means you have to buy 3 times more server farms, which could cost billions
of dollars.

There is a number of probabilistic retrieval methods:

1. Binary independence model.
2. Bayesian network approaches.
3. Okapi BM25 [4].

Okapi BM25 is on of the best choices for probabilistic retrieval. It is used in
Modern Search Engines such as Solr and Elastic Search instead of traditional
TF-IDF [1].

First of all, would be shown the weaknesses of Okapi BM25 and then would be
proposed how to fix them. Then would be explained what component algorithms
should be used for the implementation of Okapi BM25 and how to improve state
of the art results for frequency counting.
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2 Problems of classical Okapi BM25

BM25 is a bag-of-words retrieval function that ranks a set of documents based
on the query terms appearing in each document.

score(D,Q) =

n∑
i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(

1− b + b · |D|
avgdl

) (1)

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
, (2)

k1 = 1.5 and b = 0.75 - parameters, |D| - length of the document in words, avgdll
- average document length in the text collection, n(qi) - number of documents
which contain term qi, f(qi, D) - term frequency in the document D [4].

document id Title Search query Score

1 Why C++ is better than Rust Why C++ is better than Rust 0.85

2 Why Rust is better than C++ Why C++ is better than Rust 0.85

3 Programming in C++ Why C++ is better than Rust 0.08

4 Programin in Rust Why C++ is better than Rust 0.07

5 Samsung 8 Why C++ is better than Rust 0

6 Good life Why C++ is better than Rust 0

Table 1. Weaknesses of classical usage of Okapi BM 25

Table 2 shows weaknesses of bag-of-words model. The relevance does not
depend on the order of words, so documents 1 and 2 have the same score, but,
clearly, the first one is more relevant than the second.

3 Improvement of Okapi BM25

3.1 Counting term frequencies

First of all, words from original Okapi BM 25 would replaced by 3-grams and
4-grams. For efficiency they could be encoded and would be encoded as 32 bit
integers.

Important algorithms for Okapi BM25:

1. sorting
2. finding frequences
3. linear search

Data structures:

1. inverted index

84



2. posting list
3. hash table

This change would decrease number of comparisons and speed up sorting and
hashing.

It is important to choose an efficient algorithm for term frequency counting
and hash table [3] is not the best option. Let’s apply the following algorithm
on sequence s, which is represented by pair of 2 iterators [first, last) and the
target is represented by output iterator out:

1. Sort sequence [first, last), go to step 2.
2. If first equals last, return out. Otherwise go to step 3.
3. Store the data from first at tmp.
4. Find the first element which is not equal to tmp.
5. Assign offset to the count, assign the position of the first element to first

which does not equal to tmp. Write pair tmp, count to the output iterator,
increment out, go to step 2.

For more information about iterators, read an article about Generic Program-
ming [6]. The whole point is to choose faster algorithm for short relatively short
sequences. Let’s compare described algorithm with hash tables on the following
configuration: Intel Core i7 7700HQ, RAM Hynix SODIMM 2 x 8GB, 2400MHz,
compiler GCC 7.3.1.

Size
Insertion into hash table Straight sort and counting
mean std mean std

50 2.63757 8.22384 0.387384 3.76955

100 6.63765 25.1815 0.903355 6.90381

200 15.129 45.2746 2.51254 22.8

2000 158.216 132.655 101.99 334.018

4000 325.473 282.319 220.108 354.548

32000 2287.54 4274.93 2240.9 935.053

64000 3843.75 5391.52 4799.71 1170.27

Table 2. Timings in milliseconds for frequency counting algorithms.

Implementation details:

1. The list of stopwords is stored as a sorted sequence of 32-bits integers.
2. Stopwords should be removed from the sequence.
3. Posting lists are encoded by varint-G8IU [5].
4. Search query is treated as a sequence of bytes. For example, phrase ”Search

query” would be treated as a sequence ”sea”, ”ear”, ”arc”, ”rch”, ”ch ”, ”
qu”, ”que”, ”uer”, ”ery”.

5. Inverted index is updated by batches.
6. Retrieval of k most relevant documents is done by selecting n ∗ k frequences

from posting lists.
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4 Conclusion

We’ve got simple robust efficient search engine. In this article, we’ve got advan-

Search query The most relevant document

Samsung Galaxy Samsung Galaxy Tab 7.7

john ernst bnson John Ernest Benson

john cole John Cole ( priest )

johny burns John Burns ( audio engineer )

Table 3. Search results on wikipedia test10k.txt [2]

tages from fast CPU operations on 32-bit integers. It allows us to use binary
search, which is faster than hash maps for certain input sizes. Since IDF is never
getting less than zero, it is possible to get use it on 3-grams for short texts.

It is important to remember that bag-of-words model, does not depend on
the order of terms. Text queries, which contain same terms, have the same scores.
Further work:

1. Compare different data structures for posting lists: arrays, b-trees, red-black
trees.

2. Compare different top K document retrieval heuristics for different structure
of posting lists.

3. Use persistant storage.
4. Combine probabalistic retrieval with topic modeling.
5. Extend search query by applying vector space model.
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