
A Deep Learning Model with Hierarchical LSTMs and

Supervised Attention for Anti-Phishing

Minh Nguyen
Hanoi University of Science and Technology

Hanoi, Vietnam
minh.nv142950@sis.hust.edu.vn

Toan Nguyen
New York University

Brooklyn, New York, USA
toan.v.nguyen@nyu.edu

Thien Huu Nguyen
University of Oregon
Eugene, Oregon, USA
thien@cs.uoregon.edu

Abstract

Anti-phishing aims to detect phishing con-
tent/documents in a pool of textual data.
This is an important problem in cybersecu-
rity that can help to guard users from fraud-
ulent information. Natural language process-
ing (NLP) offers a natural solution for this
problem as it is capable of analyzing the tex-
tual content to perform intelligent recognition.
In this work, we investigate the state-of-the-
art techniques for text categorization in NLP
to address the problem of anti-phishing for
emails (i.e, predicting if an email is phishing
or not). These techniques are based on deep
learning models that have attracted much at-
tention from the community recently. In par-
ticular, we present a framework with hierar-
chical long short-term memory networks (H-
LSTMs) and attention mechanisms to model
the emails simultaneously at the word and
the sentence level. Our expectation is to pro-
duce an effective model for anti-phishing and
demonstrate the effectiveness of deep learning
for problems in cybersecurity.

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: R. Verma, A. Das. (eds.): Proceedings of the 1st Anti-
Phishing Shared Pilot at 4th ACM International Workshop on
Security and Privacy Analytics (IWSPA 2018), Tempe, Arizona,
USA, 21-03-2018, published at http://ceur-ws.org

1 Introduction

Despite being one of the oldest tactics, email phish-
ing remains the most common attack used by cyber-
criminals [phi17a] due to its effectiveness. Phishing
attacks exploit users’ inability to distinguish between
legitimate information from fake ones sent to them
[DTH06, SNM15, SNM17, SNG+17]. In an email
phishing campaign, attackers send emails appearing
to be from well-known enterprises or organizations di-
rectly to their victims or by spoofed emails [Sin05].
These emails try to lure victims to divulge their private
information [JJJM07, SNM15, SNG+17] or to visit an
impersonated site (i.e., a fake banking website), on
which they will be asked for passwords, credit card
numbers or other sensitive information. The recent
hack of a high profile US politician (usually referred
as “John Podesta’s hack”) is a famous example of this
type of attack. It was all started by a spoofed email
sent to the victim asking him to reset his Gmail pass-
word by clicking on a link in the email [pod16]. The
technique of email phishing may seem simple, yet the
damage it makes is huge. In the US alone, the es-
timated cost of phishing emails to business is half a
billion dollars per year [phi17b].

Numerous methods have been proposed to auto-
matically detect phishing emails [BCP+08, FST07,
ANNWN07, GTJA17]. Chandrasekaran et. al pro-
posed to use structural properties of emails and Sup-
port Vector Machines (SVM) to classify phishing
emails [CNU06]. In [ANNWN07], Abu-Nimeh et. al
evaluated six machine learning classifiers on a pub-
lic phishing email dataset using proposed 43 features.
Gupta et. al [GTJA17] presented a nice survey on
recent state-of-the-art research on phishing detection.

However, these methods mainly rely on feature engi-
neering efforts to generate characteristics (features) to
represent emails, over which machine learning meth-
ods can be applied to perform the task. Such feature
engineering is often done manually and still requires
much labor and domain expertise. This has hindered
the portability of the systems to new domains and lim-
ited the performance of the current systems.

In order to overcome this problem, our work focuses
on deep learning techniques to solve the problem of
phishing email detection. The major benefit of deep
learning is its ability to automatically induce effective
and task-specific representations from data that can
be used as features to recognize phishing emails. As
deep learning has been shown to achieve state-of-the-
art performance for many natural language processing
tasks, including text categorization [GBB11, LXLZ15],
information extraction [NG15b, NG15a, NG16], ma-
chine translation [BCB14], among others, we expect
that it would also help to build effective systems for
phishing email detection.

We present a new deep learning model to solve the
problem of email phishing prediction using hierarchi-
cal long short-term memory networks (H-LSTMs) aug-
mented with supervised attention technique. In the
hierarchical LSTM model [YYD+16], emails are con-
sidered as hierarchical architectures with words in the
lower level (the word level) and sentences in the upper
level (the sentence level). LSTM models are first im-
plemented in the word level whose results are passed to
LSTM models in the sentence level to generate a rep-
resentation vector for the entire email. The outputs
of the LSTM models in the two levels are combined
using the attention mechanism [BCB14] that assigns
contribution weights to the words and sentences in the
emails. A header network is also integrated to model
the headers of the emails if they are available. In ad-
dition, we propose a novel technique to supervise the
attention mechanism [MWI16, LUF+16, LCLZ17] at
the word level of the hierarchical LSTMs based on the
appearance rank of the words in the vocabulary. Ex-
periments on the datasets for phishing email detec-
tion in the First Security and Privacy Analytics Anti-
Phishing Shared Task (IWSPA-AP 2018) [EDB+18]
demonstrate the benefits of the proposed models, be-
ing ranked among the top positions among the par-
ticipating systems of the shared task (in term of the
performance on the unseen test data).

2 Related Work

Phishing email detection is a classic problem; however,
research on this topic often has the same limitation:
there is no official and big data set for it. Most previ-
ous works typically used a public set consists of legiti-

mate or “ham” emails1 and another public set of phish-
ing emails2 for their classification evaluation[FST07,
BCP+08, BMS08, HA11, ZY12]. Other works used
private but small data sets[CNU06, ANNWN07]. In
addition, the ratio between phishing and legitimate
emails in these data sets was typically balanced. This
is not the case in the real-world scenario where the
number of legitimate emails is much larger than that
of phishing emails. Our current work relies on larger
data sets with unbalanced distributions of phishing
and legitimate emails collected for the the First Secu-
rity and Privacy Analytics Anti-Phishing Shared Task
(IWSPA-AP 2018) [EDB+18].

Besides the limitation of small data sets, the pre-
vious work has extensively relied on feature engineer-
ing to manually find representative features for the
problem. Apart from features extracted from emails,
[LV12] also uses a blacklist of phishing webistes to
get an additional feature for urls appearing in emails.
Some neural network systems are also introduced to
detect such blacklists [MTM14, MAS+11]. This is un-
desirable because these engineered features need to be
updated once new types of phishing emails with new
content are presented. Our work differs from the pre-
vious work in this area in that we automate the fea-
ture engineering process using a deep learning model.
This allows us to automatically learn effective features
for phishing email detection from data. Deep learning
has recently been employed for feature extraction with
success on many natural language processing problems
[NG15b, NG15a].

3 Proposed Model

Phishing email detection is a binary classification
problem that can be formalized as follow.

Let e = {b, s} be an email in which b and s are
the body content and header of the email respectively.
Let y the binary variable to indicate whether e is a
phishing email or not (y = 1 if e is a phishing email and
y = 0 otherwise). In order to predict the legitimacy
of the email, our goal is to estimate the probability
P (y = 1|e) = P (y = 1|b, s). In the following, we
will describe our methods to model the body b and
header s with the body network and header network
respectively to achieve this goal.

3.1 Body Network with Hierarchical LSTMs

For the body b, we view it as a sequence of sentences
b = (u1, u2, . . . , uL) where ui is the i-th sentence and
L is the number of sentences in the email body b. Each
sentence ui is in turn a sequence of words/tokens ui =
(vi,1, vi,2, . . . , vi,K) with vi,j as the j-th token in ui and

1https://spamassassin.apache.org/old/publiccorpus
2https://monkey.org/~jose/phishing

K as the length of the sentence. Note that we set L
and K to the fixed values by padding the sentences ui
and the body b with dummy symbols.

As there are two levels of information in b (i.e,
the word level with the words vi,j and the sentence
level with the sentence ui), we consider a hierarchical
network that involves two layers of bidirectional long
short-term memory networks (LSTMs) to model such
information. In particular, the first layer consumes the
words in the sentences via the embedding module, the
bidirectional LSTM module and the attention module
to obtain representation vectors for every sentence ui
in b (the word level layer). Afterward, the second net-
work layer combines the representation vectors from
the first layer with another bidirectional LSTM and
attention module, leading to a representation vector
for the whole body email b (the sentence level layer).
This body representation vector would then be used as
features to estimate P (y|b, s) and make the prediction
for the initial email e.

3.1.1 The Word Level Layer

Embedding

In the word level layer, every word vi,j in each sentence
ui in b is first transformed into its embedding vector
wi,j . In this paper, wi,j is retrieved by taking the
corresponding column vector in the word embedding
matrix We [MSC+13] that has been pre-trained from
a large corpus: wi,j = We[vi,j] (each column in the
matrix We corresponds to a word in the vocabulary).
As the result of this embedding step, every sentence
ui = (vi,1, vi,2, . . . , vi,K) in b would be converted into a
sequence of vectors (wi,1, wi,2, . . . , wi,K), constituting
the inputs for the bidirectional LSTM model in the
next step.

Bidirectional LSTMs for the word level

This module employs two LSTMs [HS97, GS05]
that run over each input vector sequence
(wi,1, wi,2, . . . , wi,K) via two different directions,
i.e, forward (from wi,1 to wi,K) and backward
(from wi,K to wi,1). Along with their operations,
the forward LSTM generates the forward hidden
vector sequence (

−→
hi,1,
−→
hi,2, . . . ,

−−→
hi,K) while the back-

ward LSTM produce the backward hidden vector
sequence (

←−
hi,1,
←−
hi,2, . . . ,

←−−
hi,K). These two hidden

vector sequences are then concatenated at each
position, resulting in the new hidden vector sequence
(hi,1, hi,2, . . . , hi,K) for the sentence ui in b where

hi,j = [
−→
hi,j ,
←−
hi,j]. The notable characteristics of the

hidden vector hi,j is that it encodes the context
information over the whole sentence ui due to the
recurrent property of the forward and backward

LSTMs although a greater focus is put at the current
word vi,j .

Figure 1: Hierarchical LSTMs.

Attention

In this module, the vectors in the hidden vector se-
quence (hi,1, hi,j,2, . . . , hi,K) are combined to generate
a single representation vector for the initial sentence
ui. The attention mechanism [YYD+16] seeks to do
this by computing a weighted sum of the vectors in the
sequence. Each hidden vector hi,j would be assigned to
a weight αi,j to estimate its importance/contribution
in the representation vector for ui for the phishing pre-
diction of the email e. In this work, the weight αi,j for
hi,j is computed by:

αi,j =
exp(a>i,jwa)∑
j′ exp(a>i,j′wa)

(1)

in which
ai,j = tanh(Watthi,j + batt) (2)

Here, Watt, batt and wa are the model parameters that
would be learnt during the training process. Conse-
quently, the representation vector ûi for the sentence
ui in b would be:

ûi =
∑
j

αi,jhi,j (3)

After the word level layer completes its operation
on every sentence of b = (u1, u2, . . . , uL), we obtain a
corresponding sequence of sentence representation vec-
tors (û1, û2, . . . , ûL). This vector sequence would be
combined in the next sentence level layer to generate
a single vector to represent b for phishing prediction.

3.1.2 The Sentence Level Layer

The sentence level layer processes the vector se-
quence (û1, û2, . . . , ûL) in the same way that the

word level layer has employed for the vector sequence
(wi,1, wi,2, . . . , wi,K) for each sentence ui. Specifi-
cally, (û1, û2, . . . , ûL) is also first fed into a bidirec-
tional LSTM module (i.e, with a forward and back-
ward LSTM) whose results are concatenated at each
position to produce the corresponding hidden vector
sequence (ĥ1, ĥ2, . . . , ĥL). In the next step with the

attention module, the vectors in (ĥ1, ĥ2, . . . , ĥL) are
weighted and summed to finally generate the repre-
sentation vector rb for the email body b of e. As-
suming the attention weights for (ĥ1, ĥ2, . . . , ĥL) are
(β1, β2, . . . , βL) respectively. the body vector rb is then
computed by:

rb =
∑
i

βiĥi (4)

Note that the model parameters of the bidirectional
LSTM modules (and the attention modules) in the
word level layer and the sentence level layer are sepa-
rate and they are both learnt in a single training pro-
cess. Figure 1 shows the overview of the body network
with hierarchical LSTMs and attention.

Once the body vector rb has been computed, we can
use it as features to estimate the phishing probability
via:

P (y = 1|b, s) = σ(Woutr
b + bout) (5)

where Wout and bout are the model parameters and
σ is the logistic function.

3.2 Header Network

The probability estimation in Equation 5 does not con-
sider the headers of the emails. For the email datasets
with headers available, we can model the headers with
a separate network and use the resulting representa-
tion as additional features to estimate the phishing
probability. In this work, we consider the header s
of the initial email e as a sequence of words/tokens:
(xi, x2, . . . , xH) where xi is the i-th word in the header
and H is the length of the header. In order to compute
the representation vector rs for s, we also employ the
same network architecture as the word level layer in
the body network using separate modules for embed-
ding module, bidirectional LSTM, and attention (i.e,
Section 3.1.1). An overview of this header network is
presented in Figure 2.

Once the header representation vector rs is gener-
ated, we concatenate it with the body representation
vector rb obtained from the body network, leading to
the final representation vector r = [rb, rs] to compute
the probability P (y = 1|b, s) = σ(Wsubr+ bsub) (Wsub

and bsub are model parameters).
In order to train the models in this work, we min-

imize the negative log-likelihood of the models on a

Figure 2: Hierarchical LSTMs with header network.

training dataset in which the negative log-likelihood
for the email e is computed by:

Lc = − log(P (y = 1|e)) (6)

The model we have described so far is called H-
LSTMs for convenience.

3.3 Supervised Attention

The attention mechanism in the body and header net-
works is expected to assign high weights for the in-
formative words/sentences and downgrade the irrel-
evant words/sentences for phishing detection in the
emails. However, this ideal operation can only be
achieved when an enormous training dataset is pro-
vided to train the models. In our case of phishing
email detection, the size of the training dataset is
not large enough and we might not be able to ex-
ploit the full advantages of the attention. In this
work, we seek for useful heuristics for the problem and
inject them into the models to facilitate the opera-
tion of the attention mechanism. In particular, we
would first heuristically decide a score for every word
in the sentences so that the words with higher scores
are considered as being more important for phishing
detection than those with lower scores. Afterward,
the models would be encouraged to produce attention
weights for words that are close to their heuristic im-
portance scores. The expectation is that this mecha-
nism would help to introduce our intuition into the at-
tention weights to compensate for the small scale of the
training dataset, potentially leading to a better perfor-
mance of the models. Assuming the importance scores
for the words in the sentence (vi,1, vi,2, . . . , vi,K) be
(gi,1, gi,2, . . . , gi,K) respectively, we force the attention
weights (αi,1, αi,2, . . . , αi,K) (Equation 1) to be close
to the importance scores by penalizing the models that
render large square difference between the attention
weights and the importance scores. This amounts to
adding the square difference into the objective function
in Equation 6:

Le = Lc + λ
∑
i,j

(gi,j − αi,j)
2 (7)

where λ is a trade-off constant.

Importance Score Computation

In order to compute the importance scores, our intu-
ition is that a word is important for phishing detection
if it appears frequently in phishing emails and less fre-
quently in legitimate emails. The fact that an impor-
tant word does not appear in many legitimate emails
helps to eliminate the common words that are used
in most documents. Consequently, the frequent words
that are specific to the phishing emails would receive
higher importance scores in our method. Note that
our method to find the important words for phishing
emails is different from the prior work that has only
considered the most frequent words in the phishing
emails and ignored their appearance in the legitimate
emails.

We compute the importance scores as follow. For
every word v in the vocabulary, we count the num-
ber of the phishing and legitimate emails in a train-
ing dataset that contain the word. We call the re-
sults as the phishing email frequency and the le-
gitimate email frequency respectively for v. In the
next step, we sort the words in the vocabulary based
on its phishing and legitimate email frequencies in
the descending order. After that, a word v would
have a phishing rank (phishingRank(v)) and a legit-
imate rank (legitimateRank(v)) in the sorted word
sequences based on the phishing and legitimate fre-
quencies (the higher the rank is, the less the frequency
is). Given these ranks, the unnormalized importance
score for v is computed by:3

score[v] =
legitimateRank[v]

phishingRank[v]
(8)

The rationale for this formula is that a word would
have a high importance score for phishing prediction
if its legitimate rank is high and its phishing rank is
low. Note that we use the ranks of the words instead
of the frequencies because the frequencies are affected
by the size of the training dataset, potentially making
the scores unstable. The ranks are less affected by the
dataset size and provide a more stable measure. Ta-
ble 1 demonstrates the top 20 words with the highest
unnormalized importance scores in our vocabulary.

The H-LSTMs model augmented with the su-
pervised attention mechanism above is called H-
LSTM+supervised in the experiments.

3The actual important scores of the words we use in Equation
7 are normalized for each sentence.

account 21.45
your 15.00
click 14.11
mailbox 9.59
cornell 9.58
link 9.37
verify 8.83
customer 8.63
access 8.50
reserved 8.03
dear 7.85
log 7.70
accounts 7.61
paypal 7.52
complete 7.37
service 7.15
protect 6.95
secure 6.94
mail 6.70
clicking 6.63

Table 1: Top 20 words with the highest scores.

3.3.1 Training

We train the models in this work with stochastic gra-
dient descent, shuffled mini-batches, Adam update
rules [KB14]. The gradients are computed via back-
propagation while dropout is used for regularization
[SHK+14]. We also implement gradient clipping to
rescale the Frobenius norms of the non-embedding
weights if they exceed a predefined threshold.

4 Evaluation

4.1 Datasets and Preprocessing

The models in this work are developed to participate in
the First Security and Privacy Analytics Anti-Phishing
Shared Task (IWSPA-AP 2018) [EDB+18]. The or-
ganizers provide two datasets to train the models for
email phishing recognition. The first dataset involves
emails that only have the body part (called data-
no-header) while the second dataset contains emails
with both bodies and headers (called data-full-header.
These two datasets translate into two shared tasks to
be solved by the participants. The statistics of the
training data for these two datasets are shown in Ta-
ble 2.

Datasets #legit #phish
data-no-header 5092 629
data-full-header 4082 503

Table 2: Statistics of the data-no-header and data-full-
header datasets. #legit and #phish are the numbers
of legitimate and phishing emails respectively.

The raw test data (i.e, without labels) for these
datasets are released to the participants at a speci-
fied time. The participants would have one week to
run their systems on such raw test data and submit
the results to the organizers for evaluation.

Regarding the preprocessing procedure for the
datasets, we notice that a large part of the text in
the email bodies is quite unstructured. The sentences
are often short and/or not clearly separated by the
ending-sentence symbols (i.e, {. ! ?}). In order to
split the bodies of the emails into sentences for our
models, we develope an in-house sentence splitter spe-
cially designed for the datasets. In particular, we de-
termine the beginning of a sentence by considering if
the first word of a new line is capitalized or not, or
if a capitalized word is immediately followed by an
ending-sentence symbol. The sentences whose lengths
(numbers of words) are less than 3 are combined to
create a longer sentence. This reduces the number
of sentences significantly and expands the context for
the words in the sentences as they are processed by
the models. Figure 3 shows a phishing email from the
datasets.

Figure 3: A case in which splitting body into sentences
cannot be done as usual. (Phishing email: 28.txt in
data-no-header).

4.2 Baselines

In order to see how well the proposed deep learn-
ing models (i.e, H-LSTMs and H-LSTMs+supervised)
perform with respect to the traditional methods for
email phishing detection, we compare the proposed
models with a baseline model based on Support Vector
Machines (SVM) [CNU06]. We use the tf-idf scores
of the words in the vocabulary as the features for this
baseline [CNU06]. Note that since the email addresses
and urls in the provided datasets have been mostly
hidden to protect personal information, we cannot use
them as features in our SVM baselines as do the previ-
ous systems. In addition, we examine the performance
of this baseline when the pre-trained word embeddings
are included in its feature set. This allows a fairer com-
parison of SVM with the deep learning models in this
work that take pre-trained word embeddings as the
input.

We employ the implementation of linear and nonlin-

ear (kernel) SVM from the sklearn library [PVG+11]
for which the tf-idf representations of the emails are
obtained via the gensim toolkit [ŘS10]. The word em-
bedding features are computed by taking the mean
vector of the pre-trained embeddings of the words in
the emails [NPG15].

4.3 Hyper-parameter Selection

As the size of the provided datasets is small and no
development data is included, we use a 5-fold stratified
cross validation on the training data of the provided
datasets to search for the best hyper-parameters for
the models. The hyper-parameters we found are as
follows.

The size of word embedding vector is 300 while the
cell sizes are set to 60 for all the LSTMs in the body
and header networks. The size of attention vectors at
the attention modules for the body and header net-
works are also set to 60. The λ coefficient for super-
vised attention is set to 0.1, the threshold for gradi-
ent clipping is 0.3 and the drop rate for drop-out is
0.5. For the Adam update rule, we use the learning
rate of 0.0025. Finally, we set C = 10.0 for the lin-
ear SVM baseline. The nonlinear version of SVM we
use is C-SVC with radial basis function kernel and
(C, γ) = (50.0, 0.1).

4.4 Results

In the experiments below, we employ the precision,
recall and F1-score to evaluate the performance of the
models for detecting phishing emails. In addition, the
proposed models H-LSTMs and H-LSTMs+supervised
only utilize the header network in the evaluation on
data-full-header.

Data without header

In the first experiment, we focus on the first shared
task where email headers are not considered. We com-
pare the proposed deep learning models with the SVM
baselines. In particular, in the first setting, we use
data-no-header as the training data and perform a 5-
fold stratified cross-validation to evaluate the models.
In the second setting, data-no-header is also utilized
as the training data, but the bodies extracted from
data-full-header (along with the corresponding labels)
are employed as the test data. The results of the first
setting are shown in Table 3 while the results of the
second setting are presented in Table 4. Note that we
report the performance of the SVM baselines when dif-
ferent combinations of the two types of features (i.e,
tf-idf and word embeddings) are employed in these
tables.

The first observation from the tables is that the
effect of the word embedding features for the SVM

Models Precision Recall F1

H-LSTMs+supervised 0.9784 0.9466 0.9621
H-LSTMs 0.9638 0.9448 0.9542

Linear SVM

+tfidf 0.9824 0.8856 0.9313
+emb 0.9529 0.9206 0.9364
+tfidf+emb 0.9837 0.9253 0.9536

Kernel SVM

+tfidf 0.9684 0.8730 0.9180
+emb 0.9408 0.9141 0.9273
+tfidf+emb 0.9714 0.9174 0.9436

Table 3: Performance comparison between the pro-
posed models H-LSTMs and H-LSTMs+supervised
with the baseline models Linear and Kernel SVM. tfidf
indicates tf-idf features while emb denotes features
obtained from the pre-trained word embeddings.

Models Precision Recall F1

H-LSTMs+supervised 0.8892 0.7395 0.8075
H-LSTMs 0.8934 0.7054 0.7883

Linear SVM

+tfidf 0.8864 0.6978 0.7809
+emb 0.8112 0.6918 0.7468
+tfidf+emb 0.8695 0.7018 0.7767

Kernel SVM

+tfidf 0.8698 0.7038 0.7780
+emb 0.8216 0.6501 0.7259
+tfidf+emb 0.8564 0.6937 0.7665

Table 4: Performance of all models on the test data
(data-full-headers).

models are quite mixed. It improves the SVM mod-
els with just tf-idf features significantly in the first
experiment setting while the effectiveness is somewhat
negative in the second experiment setting. Second,
we see that the two versions of hierarchical LSTMs
(i.e, H-LSTMs and H-LSTMs+supervised) outperform
the baseline SVM models in both experiment set-
tings. The performance improvement is significant
with large margins (up to 2.7% improvement on the
absolute F1 score) in the second experiment setting
(i.e, Table 4). The main gain is due to the recall,
demonstrating the generalization advantages of the
proposed deep learning models over the traditional
methods for phishing detection with SVM. Compar-
ing H-LSTMs+supervised and H-LSTMs, we see that
H-LSTMs+supervised is consistently better than H-
LSTMs with significant improvement in the second
setting. This shows the benefits of supervised atten-
tion for hierarchical LSTM models for email phishing
detection. Finally, we see that the performance in the
first setting is in general much better than those in the
second setting. We attribute this to the fact that text
data in data-no-header and data-full-header is quite
different, leading to the mismatch between data dis-

tributions of the training data and test data in the
second experiment setting.

In the final submission for the first shared task (i.e,
without email headers), we combine the training data
from data-no-header with the extracted bodies (along
with the corresponding labels) from the training data
of data-full-header to generate a new training set. As
H-LSTM+supervised is the best model in this devel-
opment experiment, we train it on the new training
set and use the trained model to make predictions for
the actual test set of the first shared task.

Data with full header

In this experiment, we aim to evaluate if the header
network can help to improve the performance of H-
LSTMs. We take the training dataset from data-full-
header to perform a 5-fold cross-validation evaluation.
The performance of H-LSTMs when the header net-
work is included or excluded is shown in Table 5.

Models Precision Recall F1

H-LSTMs (only body) 0.9732 0.9534 0.9631

H-LSTMs + headers 0.9816 0.9596 0.9705

Table 5: Cross-validation performance of H-LSTMs
with using headers compared to the original version.

From the table, we see that the header network is
also helpful for H-LSTMs as it helps to improve the
performance of H-LSTMs for the dataset with email
headers (an 0.7% improvement on the F1 score).

In the final submission for the second shared task
(i.e, with email headers), we simply train our best
model in this setting (i.e, H-LSTM+supervised) on the
training dataset of data-full-header.

The time for the training and test process of the
proposed (and submitted) models is shown in Table 6.
Note that the training time of H-LSTMs+supervised
(for the first shared task) is longer than that of H-
LSTMs+headers+supervised (for the second shared
task) since the training data of the former model
includes both the original training data of the first
task and the extracted bodies from the training
data of the second task. The test data of the
first shared task with H-LSTMs+supervised is also
larger than that of the second shared task with H-
LSTMs+headers+supervised.

Models Training Test
Time Time

H-LSTMs+supervised 3.7 hours 4 minutes

H-LSTMs+headers+supervised 1.5 hours 1 minute

Table 6: Training and test times of the submitted mod-
els. The experiments are run on a single NVIDIA Tesla
K80 GPU.

Comparision with the participating systems on
the actual test sets

Tables 7 and 8 show the best performance on the ac-
tual test data of all the teams that participate in the
shared tasks. Table 7 reports the performance for the
first shared task (i.e, without email headers) while Ta-
ble 8 presents the performance for the second shared
task (i.e, with email headers). These performance is
measured and released by the organizers. The perfor-
mance of the systems we submitted is shown in the
rows with our team name (i.e, TripleN).

Teams Precision Recall F1

TripleN (our team) 0.981 0.978 0.979

Security-CEN@Amrita 0.962 0.989 0.975

Amrita-NLP 0.972 0.974 0.973

CEN-DeepSpam 0.951 0.964 0.958

CENSec@Amrita 0.914 0.998 0.954

CEN-SecureNLP 0.890 1.000 0.942

CEN-AISecurity 0.936 0.910 0.923

Crypt Coyotes 0.936 0.910 0.923

Table 7: The best performance of all the participating
teams in the first shared task with no email headers.

Teams Precision Recall F1

Amrita-NLP 0.998 0.994 0.996

TripleN (our team) 0.990 0.992 0.991

CEN-DeepSpam 1.000 0.978 0.989

Security-CEN@Amrita 0.998 0.976 0.987

CENSec@Amrita 0.882 1.000 0.937

CEN-AISecurity 0.957 0.900 0.928

CEN-SecureNLP 0.880 0.971 0.924

Crypt Coyotes 0.960 0.863 0.909

Table 8: The best performance of all the participating
teams in the second shared task with email headers.

As we can see from the tables, our systems achieve
the best performance for the first shared task and the
second best performance for the second shared task.
These results are very promising and demonstrate the
advantages of the proposed methods in particular and
deep learning in general for the problem of email phish-
ing recognition.

5 Conclusions

We present a deep learning model to detect phish-
ing emails. Our model employs hierarchical attentive
LSTMs to model the email bodies at both the word
level and the sentence level. A header network with
attentive LSTMs is also incorporated to model the
headers of the emails. In the models, we propose a
novel supervised attention technique to improve the
performance using the email frequency ranking of the
words in the vocabulary. Several experiments are con-

ducted to demonstrate the benefits of the proposed
deep learning models.

References

[ANNWN07] Saeed Abu-Nimeh, Dario Nappa, Xin-
lei Wang, and Suku Nair. A compar-
ison of machine learning techniques for
phishing detection. In Proceedings of the
anti-phishing working groups 2nd annual
eCrime researchers summit, pages 60–
69. ACM, 2007.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho,
and Yoshua Bengio. Neural ma-
chine translation by jointly learning to
align and translate. In arXiv preprint
arXiv:1409.0473, 2014.

[BCP+08] Andre Bergholz, Jeong Ho Chang,
Gerhard Paass, Frank Reichartz, and
Siehyun Strobel. Improved phishing de-
tection using model-based features. In
CEAS, 2008.

[BMS08] Ram Basnet, Srinivas Mukkamala, and
Andrew H Sung. Detection of phishing
attacks: A machine learning approach.
In Soft Computing Applications in In-
dustry, pages 373–383. Springer, 2008.

[CNU06] Madhusudhanan Chandrasekaran, Kr-
ishnan Narayanan, and Shambhu Upad-
hyaya. Phishing email detection based
on structural properties. In NYS Cyber
Security Conference, volume 3, 2006.

[DTH06] Rachna Dhamija, J Doug Tygar, and
Marti Hearst. Why phishing works. In
Proceedings of the SIGCHI conference
on Human Factors in computing sys-
tems, pages 581–590. ACM, 2006.

[EDB+18] Ayman Elaassal, Avisha Das, Shahryar
Baki, Luis De Moraes, and Rakesh
Verma. Iwspa-ap: Anti-phising shared
task at acm international workshop on
security and privacy analytics. In
Proceedings of the 1st IWSPA Anti-
Phishing Shared Task. CEUR, 2018.

[FST07] Ian Fette, Norman Sadeh, and Anthony
Tomasic. Learning to detect phishing
emails. pages 649–656. ACM, 2007.

[GBB11] Xavier Glorot, Antoine Bordes, and
Yoshua Bengio. Domain adaptation for
large-scale sentiment classification: A

deep learning approach. In Proceed-
ings of the 28th international conference
on machine learning (ICML-11), pages
513–520, 2011.

[GS05] Alex Graves and Jürgen Schmidhuber.
Framewise phoneme classification with
bidirectional lstm and other neural net-
work architectures. Neural Networks,
18(5-6):602–610, 2005.

[GTJA17] BB Gupta, Aakanksha Tewari,
Ankit Kumar Jain, and Dharma P
Agrawal. Fighting against phishing
attacks: state of the art and future
challenges. Neural Computing and
Applications, 28(12):3629–3654, 2017.

[HA11] Isredza Rahmi A Hamid and Jemal
Abawajy. Hybrid feature selection for
phishing email detection. In Interna-
tional Conference on Algorithms and
Architectures for Parallel Processing,
pages 266–275. Springer, 2011.

[HS97] Sepp Hochreiter and Jurgen Schmidhu-
ber. Long short-term memory. In Neural
Computation, 1997.

[JJJM07] Tom N Jagatic, Nathaniel A John-
son, Markus Jakobsson, and Filippo
Menczer. Social phishing. Communica-
tions of the ACM, 50(10):94–100, 2007.

[KB14] Diederik P. Kingma and Jimmy. Ba.
Adam: A method for stochastic opti-
mization. In arXiv: 1412.6980, 2014.

[LCLZ17] Shulin Liu, Yubo Chen, Kang Liu, and
Jun Zhao. Exploiting argument informa-
tion to improve event detection via su-
pervised attention mechanisms. In Pro-
ceedings of the 55th Annual Meeting of
the Association for Computational Lin-
guistics (Volume 1: Long Papers), vol-
ume 1, pages 1789–1798, 2017.

[LUF+16] Lemao Liu, LemLiu, Masao Utiyama,
Andrew Finch, ao Sumita, Masao
Utiyama, Andrew Finch, and Eiichiro
Sumita. Neural machine transla-
tion with supervised attention. arXiv
preprint arXiv:1609.04186, 2016.

[LV12] V Santhana Lakshmi and MS Vijaya.
Efficient prediction of phishing websites
using supervised learning algorithms.
Procedia Engineering, 30:798–805, 2012.

[LXLZ15] Siwei Lai, Liheng Xu, Kang Liu, and
Jun Zhao. Recurrent convolutional neu-
ral networks for text classification. In
AAAI, volume 333, pages 2267–2273,
2015.

[MAS+11] Anutthamaa Martin, Na Anutthamaa,
M Sathyavathy, Marie Manjari Saint
Francois, Dr V Prasanna Venkatesan,
et al. A framework for predicting
phishing websites using neural networks.
arXiv preprint arXiv:1109.1074, 2011.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words
and phrases and their compositionality.
In Advances in neural information pro-
cessing systems, pages 3111–3119, 2013.

[MTM14] Rami M Mohammad, Fadi Thabtah,
and Lee McCluskey. Predicting phishing
websites based on self-structuring neural
network. Neural Computing and Appli-
cations, 25(2):443–458, 2014.

[MWI16] Haitao Mi, Zhiguo Wang, and Abe Itty-
cheriah. Supervised attentions for neu-
ral machine translation. arXiv preprint
arXiv:1608.00112, 2016.

[NG15a] Thien Huu Nguyen and Ralph Grish-
man. Event detection and domain adap-
tation with convolutional neural net-
works. In Proceedings of the 53rd Annual
Meeting of the Association for Compu-
tational Linguistics and the 7th Interna-
tional Joint Conference on Natural Lan-
guage Processing, pages 365–371, 2015.

[NG15b] Thien Huu Nguyen and Ralph Grish-
man. Relation extraction: Perspec-
tive from convolutional neural networks.
In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Lan-
guage Processing, pages 39–48, 2015.

[NG16] Thien Huu Nguyen and Ralph Grish-
man. Modeling skip-grams for event de-
tection with convolutional neural net-
works. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural
Language Processing, 2016.

[NPG15] Thien Huu Nguyen, Barbara Plank, and
Ralph Grishman. Semantic represen-
tations for domain adaptation: A case
study on the tree kernel-based method

for relation extraction. In Proceedings of
the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and
the 7th International Joint Conference
on Natural Language Processing, 2015.

[phi17a] 2017 data breach report finds phish-
ing, email attacks still potent. In
https://digitalguardian.com/blog/2017-
data-breach-report-finds-phishing-email-
attacks-still-potent, 2017.

[phi17b] Phishing scams cost american businesses
half a billion dollars a year. In Forbes:
Phishing Scams Cost American Busi-
nesses Half a Billion Dollars a Year,
2017.

[pod16] How john podesta’s emails were hacked.
In Forbes: How John Podestas Emails
Were Hacked and How to Prevent it
from Happening to You, 2016.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gram-
fort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal
of Machine Learning Research, 12:2825–
2830, 2011.

[ŘS10] Radim Řeh̊uřek and Petr Sojka. Soft-
ware Framework for Topic Modelling
with Large Corpora. In Proceedings of
the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, 2010.

[SHK+14] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, Rus-
lan Salakhutdinov, and Yoshua Bengio.
Dropout: A simple way to prevent neu-
ral networks from overfitting. In The
Journal of Machine Learning Research,
2014.

[Sin05] David Singer. Identification of spoofed
email. Google Patents, August 25 2005.
US Patent App. 10/754,220.

[SNG+17] Hossein Siadati, Toan Nguyen, Payas
Gupta, Markus Jakobsson, and Nasir
Memon. Mind your smses: Mitigat-
ing social engineering in second factor
authentication. Computers & Security,
65:14–28, 2017.

[SNM15] Hossein Siadati, Toan Nguyen, and
Nasir Memon. Verification code for-
warding attack (short paper). In In-
ternational Conference on Passwords,
pages 65–71. Springer, 2015.

[SNM17] Hossein Siadati, Toan Nguyen, and
Nasir Memon. X-platform phishing:
Abusing trust for targeted attacks short
paper. In International Conference on
Financial Cryptography and Data Secu-
rity, pages 587–596. Springer, 2017.

[YYD+16] Zichao Yang, Diyi Yang, Chris Dyer,
Xiaodong He, Alex Smola, and Eduard
Hovy. Hierarchical attention networks
for document classification. In Pro-
ceedings of the 2016 Conference of the
North American Chapter of the Asso-
ciation for Computational Linguistics:
Human Language Technologies, pages
1480–1489, 2016.

[ZY12] Ningxia Zhang and Yongqing Yuan.
Phishing detection using neural net-
work. CS229 lecture notes, 2012.

