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Abstract. As the subjects of representation learning and generative
adversarial networks become increasingly attractive to the scientific com-
munity, they also bring an exciting perspective towards their application
in the digital medical imaging domain. In particular, the ImageCLEF
caption challenge is focused on automatic medical image understanding.
This paper describes a set of feature learning approaches for the concept
detection sub-task of ImageCLEFcaption 2018. The first approach consists
on a traditional bag of words algorithm, using ORB keypoint descrip-
tors. The remaining two methods are based on a variant of generative
adversarial networks with an auto-encoding process. Subsequently, two
kinds of classification algorithms were employed for concept detection
over the feature spaces learned. Test results showed a best mean F1 score
of 0.110176 for linear classifiers, by using the features of the adversarial
autoencoder.
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1 Introduction

The ImageCLEF initiative [1] has launched the second edition of the caption
challenge [2], aiming for the automatic information extraction from medical
images. This challenge is divided into two sub-tasks: concept detection and
caption prediction. The concept detection sub-task is the first part of the caption
prediction task, in which the goal is to automatically recognize certain concepts
from the UMLS vocabulary [3] in biomedical images. The obtained list of concepts
would then be used in the caption prediction sub-task, where a small human-
readable description of the image is generated.

For this challenge, we reiterate on the lessons learned from the ImageCLEF 2017
concept detection task [4], by experimenting with new representation learning
methods, through which other machine learning tasks can be employed more effi-
ciently, including biomedical concept detection. This is also part of a wider vision



of improving a system’s information retrieval capabilities over non-annotated
data.

This paper presents our solution proposal for the concept detection sub-task, and
describes our methods of image feature extraction for the purpose of biomedical
concept recognition, followed by their evaluation under the ImageCLEF 2018
challenge.

2 Materials and Methods

This task was accompanied with two data sets containing various images from
biomedical literature: the training set, comprising 223,859 images, included the
list of concepts from the UMLS dictionary associated to each image. The testing
set, composed of 9938 images, had its annotations hidden from the participants.

We have addressed the concept detection task in two phases. First, mid-level
representations of the images were chosen and built:

– In Section 2.1, as a classical approach, bags of visual words were used as
image descriptors, obtained from the clustering of visual keypoints;

– In Section 2.2, two kinds of deep neural networks for unsupervised feature
learning were designed and trained for the purpose of visual feature extraction.

Afterwards, as described in Section 2.4, the concept detection problem were
treated as a multi-label classification problem: the three representations were
validated by training classifiers of low complexity over the new representations.

2.1 Bags of Visual Words

After converting the images to grayscale, without resizing, visual keypoint de-
scriptors were extracted using Oriented FAST and Rotated BRIEF (ORB) [5].
The implementation in OpenCV [6] was used for ORB keypoint extraction and
descriptor computation. Each image would yield a variable number of descriptors
of size 64. In cases where the ORB algorithm did not retrieve any keypoints, the
algorithm’s parameters were adjusted to loosen edge detection criteria. As a last
resort, images without any meaningful features (e.g. images of solid or gradiented
color) were given an empty bag of words.

From the training set, five thousand files were randomly chosen and their respec-
tive keypoints collected to serve as a template keypoint set. A visual vocabulary
(codebook) of size k = 4096 was then obtained by performing k-means clustering
on all template keypoints and retrieving the centroids of each cluster, yielding a
list V = {Vi}, of 4096 64-dimensional vectors. We used the k-means clustering
implementation from the Faiss library [7].



Once a visual vocabulary was available, each image’s bag of visual words (BoW)
was constructed by determining the closest visual vocabulary point and increment-
ing the corresponding position in the BoW for each image keypoint descriptor. In
other words, for an image’s BoW B = {oi}, for each image keypoint descriptor dj ,
oi is incremented when the smallest Euclidean distance from dj to all other visual
vocabulary points in V is the distance to Vi. Finally, each BoW was normalized
so that the maximum value of the elements in each BoW equals 1. The visual
BoWs method has been widely experimented in content based image retrieval
(CBIR) for representing visual content, including medical images [8]. From our
prior experience in visual BoWs, we deem ORB as a competitive, open, and faster
alternative to more frequently employed keypoint detection algorithms, such as
Scale Invariant Feature Transform (SIFT) [9].

2.2 Adversarial Auto-encoding networks for feature learning

Generative adversarial networks (GANs) [10] are a strong target of research
nowadays. These adversarial networks are primarily composed of a generator
which learns to produce samples from a distribution, and a discriminator that
learns to distinguish real samples from generated ones. Well trained GANs for
images can produce visually appealing samples, sometimes unrecognizable from
real content. This breakthrough led the scientific community into devising new
GAN variants and applications to this adversarial loss, including for unsupervised
representation learning [11].

One of the shortcomings of the traditional GAN schematic is the lack of a
function mapping the sample distribution to the code feature space. One of the
possible solutions in literature to this issue is the expansion of the GAN to hybrid
architectures with an auto-encoding procedure. The following sections describe
two GAN-based deep neural network models for the unsupervised extraction
of visual features from biomedical images. Both architectures will result in an
encoder of samples into a latent code z, which is subsequently used as a global
descriptor.

2.2.1 Encoder / Decoder Specification The networks presented here abide
to similar specifications: encoders and discriminators were built according to
Table 1. The code discriminator is an exception to these two forms, and is
instead specified and explained in Section 2.2.2. Both architectures are composed
of a sequence of blocks of convolutional layers, where each are followed by a
normalization procedure and leaky Rectified Linear Unit (LReLU) activations
with a leakiness factor of 0.2. All convolutional layers relied on a kernel of size
3x3. The encoding network ends with a fully connected layer, where h is equal to
the size of z for the encoder, and 1 for the discriminator.



Tbl. 1: A tabular representation of the sequential composition of the encoders
and discriminators in the networks.

Layer
kernel

size/stride Output shape
conv(nb = 64, LReLU) 3x3 /2 32x32x64
conv(nb = 128, LReLU) 3x3 /1 32x32x128
conv(nb = 128, LReLU) 3x3 /2 16x16x128
conv(nb = 256, LReLU) 3x3 /1 16x16x256
conv(nb = 256, LReLU) 3x3 /2 8x8x256
conv(nb = 512, LReLU) 3x3 /1 8x8x512
conv(nb = 512, LReLU) 3x3 /2 4x4x256
conv(nb = 512, LReLU) 3x3 /1 4x4x512

flatten N/A 8192
fc(nb=h) N/A h

The decoding network, which is used for decoders and generators, replicate the
encoding process in inverse order (Table 2). It starts with a mapping of the
prior (or latent) code features to a feature space of dimensions 4x4x512 using
a fully connected network. Each 2-layer block is composed by a convolutional
layer, followed by a transposed convolution of stride 2 (also called fractionally-
strided convolution). Each block doubles the height and width of the output,
as a consequence of the strided convolution, until the intended image output
dimensions are reached. The last convolution maps these activations to the RGB
pixel value domain.

Tbl. 2: A tabular representation of the sequential composition of the decoders
and generators in the networks.

layer kernel size/stride output shape
fc(nb = 8192, LRelU) N/A 8192

reshape(4x4) N/A 4x4x512
conv(nb = 512, LRelU) 3x3 /1 4x4x512
dconv(nb = 512, LRelU) 3x3 /2 8x8x512
conv(nb = 256, LReLU) 3x3 /1 8x8x256
dconv(nb = 256, LReLU) 3x3 /2 16x16x256
conv(nb = 128, LReLU) 3x3 /1 16x16x128
dconv(nb = 128, LReLU) 3x3 /2 32x32x128
conv(nb = 64, LReLU) 3x3 /1 32x32x64
dconv(nb = 64, LReLU) 3x3 /2 64x64x64
conv(nb = 32, LReLU) 3x3 /1 64x64x64
conv(nb = 3, tanh) 1x1 /1 64x64x3
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Fig. 1: Architecture of the adversarial autoencoder.

2.2.2 Adversarial Autoencoder The adversarial autoencoder makes use of
the same loss function in GAN training, but to the latent vector space instead
of the sample distribution [12]. As an autoencoder, its reconstruction criterion
is to learn the pair of functions (E,D) so that x′ = E(G(x)) is closest to the
original sample x. In practice, this translated into a loss function for minimizing
the mean squared error (MSE) between the original image and the generated
one:

Lrec(E,G) = 1
2N

N∑
i

(xi − x′i)2 (1)

Additionally, the bottleneck vector is regularized with an additional code discrim-
inator network. The adversarial loss function is similar to the original solution
to the min-max game [10], where the value function V (E,D) is solved instead:
the discriminated distribution learns to distinguish the distribution q(z ∼ E(x))
from a prior distribution p(z).

V (E,D) = min
E

max
D

Ez∼pz [logD(z)] + Ex∼p(x)[log 1−D(E(x))] (2)

Instead of convolutional layers, the code discriminator is composed of 3 fully
connected networks of 1024 neurons each, with layer normalization [13] and
LReLU after each one. The fourth layer, as in the remaining discriminators, ends
with a single output neuron.



2.2.3 Flipped Adversarial Autoencoder When the mappings of the AAE
are inverted, this results in the flipped adversarial autoencoder (F-AAE) [14]. In
this architecture, a basic GAN is augmented with an encoding network E(x′) = z′,
which learns to reconstruct the original prior code leading to the given generated
sample (Figure 2). As a means of stabilizing the the GAN training process, the
architecture was adjusted to handle two levels of samples at different levels of
the network. The generator produces two images x′ and x′small, the latter 4
times smaller in side (16x16), whereas the discriminator receives both images
for discriminating the sample as a whole. The adversarial training formula is
equivalent to the original GAN’s:

V (G,D) = min
G

max
D

Ex∼px [logD(x)] + Ez∼p(z)[log 1−D(G(z))] (3)

Fig. 2: Architecture of the flipped adversarial autoencoder with two image levels.

This two-level GAN is influenced by the progressive GAN [15]. After two convolu-
tional blocks of the generator, a 1x1/1 convolution of 3 kernels is used to convert
the feature maps into a smaller RGB image. The network progresses as usual
to the other two blocks in order to produce the 64x64 image. At the two-level
discriminator, the smaller image is mapped to a 64-channel feature map with
another 1x1 convolution, and concatenated with the features after the second



convolutional block. Unlike the progressive GAN, the two levels are generated
and updated simultaneously.

This idea has been reiterated in literature: the original work on GANs [10] hints
towards an approximate inference component for predicting the prior code from
a sample. A very similar concept was also presented by Donahue et al [16] when
proposing a latent regressor between the prior z and an encoder network’s output
E(G(z)), while also exposing it as a major drawback in feature learning. In this
architecture, the encoder never gets to see real data, and the generated samples,
while potentially making great approximations of the intended distribution, will
usually not achieve a perfect result. The application of the F-AAE in this task
was not envisioned as a potentially competitive solution to feature learning, but
rather as a means to obtain quantitative results in contrast to the AAE.

2.2.4 Image Preprocessing and Augmentation Training samples were
preprocessed in the following fashion: images were resized to the square resolution
of 96 pixels. Afterwards, each incoming sample was cropped to a random square
of size 64x64, yielding the final real samples. Images in the testing set, on the
other hand, were only resized to fit the 64x64 dimensions. For all cases, the
images’ pixel RGB values were normalized with the formula n(v) = v/127.5 − 1,
thus sitting in the range [-1, 1].

2.2.5 Network Training Details The GANs were trained with sequential
3-step iterations of stochastic gradient descent: (1) reconstruction, (2) generator
training, and (3) discriminator training. The prior codes were sampled from a
1024-dimensional surface of a hypersphere. The parameters were initialized with
a random Gaussian distribution with a standard deviation of 0.002. Training
took place through stochastic gradient descent, using the Adam optimizer [17]
with a learning rate of 10−4 and the hyperparameters β1 = 0.5 and β2 = 0.99
for all three optimization steps. The AAE was trained for 140000 iterations, the
F-AAE for 210000 iterations, with a mini-batch size of 32. This is approximately
20 epochs over the training data for the AAE and 30 epochs for the F-AAE.

Depending on its purpose, specific regularizers and stabilization methods were
also added to the network:

– In the (convolutional) discriminator, batch normalization [18] was employed
after every convolutional layer of the encoding blocks. As a technique devised
in [15] to prevent mode collapse, the across-minibatch standard deviation of
the last convolutional layer activations was injected into the same activations
as an additional feature map, yielding a new tensor of output 4x4x513 (and
a flattened layer of 8208 features). Moreover, we included an auxiliary loss
component 0.001×E[D(x)2] to prevent the output from drifting too far away
from zero [15].



– In the final activations of the encoder, a regularization loss was employed
so that the codes would approach a unit norm, which is an invariant in the
hypersphere distribution: εsphere × |‖z‖2 − 1|, where εsphere was set to the
constant 0.001.

– In the generators of samples, pixelwise feature vector normalization [15] was
added immediately after every convolutional layer in the decoding blocks
(before the leaky ReLU): bx,y = ax,y/

√
1
N

∑N−1
j=0 (aj

x,y)2 + ε, where ε = 10−8.
– The introduction of some noise in GANs is known to stabilize the training

process and contribute to an easier convergence [19]. We added drop-out
layers [20] with a 50% drop rate at the second to last layer of the discriminator,
and after the fully connected layer in the generator (25% drop rate).

TensorFlow [21] with GPU support was used to train both neural networks, as
well as to retrieve the final features of each image in the two datasets.

2.3 Qualitative GAN Results

The original concept of GAN shows ground-breaking results in the field of data
synthesis: as the generator learns to create realistic samples (in this case, images
in the biomedical domain), retrieving new content from a trained generator can
be done by feeding it with prior codes. The F-AAE benefits from this perk, as it is
an extension to the original GAN. The AAE, on the other hand, presents blurrier
images as a consequence of mean squared error being used as the reconstruction
loss. This can be seen in Figure 3, where a few samples were retrieved nearly at
the end of training.

Fig. 3: An example of samples produced by the AAE and the F-AAE during the
training process.

Other patterns of the learned representation can be obtained with an observation
of samples in a close manifold. Figure 4 show one generated sample of the trained
F-AAE which has been moved in its own latent space around one of the circles



of the hypersphere. This exploration of the feature space does not ensure that
the images to stay in the same modality or retain semantic concepts, but unlike
an interpolation in pixel space, intermediate positions still exhibit sharp visual
features, and can be considered as “real-looking” as the starting image, within
the capabilities of this GAN.

Fig. 4: A sequence of generated samples from the F-AAE by moving the prior
code around a circle in the hypersphere, column-first (from left to right, then
top to bottom).

2.4 Multi-label Classification

For each of the three representations learned, a multi-label classifier was applied
to the resulting features, where the concepts of the image associated to the feature
vector were treated as labels. With the purpose of evaluating the descriptiveness
of these features, algorithms of low complexity were chosen. We experimented
with logistic regression and a variant of k-nearest neighbors.

2.4.1 Logistic regression After mapping all images in the training and
testing sets into the latent feature space, the training set was split to create a
fine-tuning (or validation) set containing approximately 10% of the data points.
Afterwards, linear classifiers were built for multi-label classification of biomedical
concepts. As the number of possibly existing concepts in the images is very high,
only the 500 terms most frequently occurring in the training set were considered.
The label vectors were built based on a direct mapping from the UMLS term
identifier to an index in the vector. The reverse mapping was kept for producing
the textual list of concepts.

The linear classifiers were trained for each of the three representations, using
FTRL-Proximal optimization [22] with a base learning rate of 0.05, L1- and



L2-norm of 0.01, and a batch size of 64. After each epoch, the classifiers were
evaluated based on their precision, recall, and mean F1 score averaged against the
samples in the separate fine-tuning set, with respect to multiple fixed operating
point thresholds: 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, and 0.2. Classifiers were
trained until the best score among these thresholds would no longer improve, and
the model with the maximizing threshold was then used to predict the concepts
in the testing set. These procedures were implemented in TensorFlow.

After the classifiers were experimented for all three representations, an attempt
to recognize more concepts was made with the AAE representation: a set of new
linear classifiers were trained, as above, but for the following 1000 most frequent
concepts (after the 500), with even lower thresholds: 0.01, 0.0124, 0.025, 0.0375,
0.05, 0.075, and 0.1. The same procedure was performed again, for the 1000
most frequent concepts following the other 1500. The three prediction files were
merged with a concatenation of the concept lists to form this final submission.

2.4.2 Similarity search In this classification method, the images’ features
were placed in a dense feature index, and the k most similar points were used to
determine which concepts are present in each sample. While the use of similarity
searching techniques is a naive approach to classification, it enables a rough
assessment of whether the representation would fare well in retrieval tasks where
similarity metrics were not previously learned, which is the case for the Euclidean
distance between features.

Like in logistic regression, the training set was split into two portions 90%/10%,
leaving the latter for fine tuning and validation. The Euclidean (L2) distance
was mainly used for determining the similarity between data points. However, as
an attempt to exploit the hyperspherical vector space in the features emerging
from the AAE and the F-AAE, we have also tested cosine similarity for these
representations. For this particular metric, features were linearly normalized to
unit norm, so that the internal product could be employed by the index. Faiss
[7] was used for the vector similarity search.

A modified form of the k-nearest neighbors (k-NN) algorithm was used: a positive
prediction for a given label was made when at least one of the captured neighbors
is positive for that label, and false otherwise. This tweak makes the algorithm
much more sensitive to very sparse classification labels. The hyperparameter k
was exhaustively searched in 1.2, 3, 4, 5 to yield the highest F1score against the
validation set. Analogous to the threshold in logistic regression, the optimal k
was used to build the predictions on the testing set.

3 Results

The methods described were combined into a total of 9 official submissions from
the team, as listed in Table 3. Additional details regarding each run are provided



further below, as separate tables. Rank is the final position out of all graded
runs from this year’s participations in the task. The Kind of representation
and classifier type is specified. Kind corresponds to the feature extractor used.
Classifier is either linear(C) for logistic regression on the C most frequent
concepts, or k-NN(M) for similarity search with the given metric. All F1 scores
stated are the micro F1 scores of each sample averaged across the corresponding
set (validation or testing).

Tbl. 3: List of submitted runs from the UA.PT Bioinformatics research group to
the concept detection challenge.

Rank Run file name Kind Classifier
Test
F1

1 aae-500-o0-2018-04-30_1217 AAE linear(500) 0.110176
2 aae-2500-merge-2018-04-30_1812 AAE linear(2500) 0.108229
3 lin-orb-500-o0-2018-04-30_1142 ORB linear(500) 0.097769
9 faae-500-o0-2018-04-27_1744 F-AAE linear(500) 0.082475
11 knn-ip-aae-train-2018-04-27_1259 AAE k-NN(cosine) 0.056958
12 knn-aae-all-2018-04-26-1233 AAE k-NN(L2) 0.055936
19 knn-orb-all-2018-04-24_1620 ORB k-NN(L2) 0.031376
21 knn-ip-faae-all-2018-04-27_1512 F-AAE k-NN(cosine) 0.027978
22 knn-faae-all-2018-04-26_0933 F-AAE k-NN(L2) 0.027188

Table 4 shows the validation metrics and accompanying final score of the runs
based on logistic regression, including which of the tested thresholds yielded the
highest score. The validation F1 score, which was obtained from evaluating the
model against the validation set, only assumes the existence of the respective
target concepts (i.e. the 500 most frequent in most runs). Nonetheless, these
metrics were assumed to be acceptable for an objective comparison among local
runs, and have indeed defined the same ranking order as the final Test F1 score.

The adversarial auto-encoder resulted in better quality features than the ORB
bags of words or the flipped adversarial auto-encoder. Although the optimal
thresholds were low, representations with more descriptive power required less
threshold lowering. The second row shows the final outcome of merging the three
portions of the multi-label classifiers together (500 + 1000 + 1000). Locally,
they were evaluated independently. The extended label set classifiers in this case,
albeit covering more biomedical concepts, were less informative on the rarer
labels, which ended up crippling the final score.

The work by Lipton et al [23] provide some relevant insights on classifiers aiming
to maximize F1 score. First, that the optimal threshold in a probabilistic classifier
which maximizes the score s will be maxEp(y|s)[ F1

2 ]. Notably, the thresholds
identified in our experiments would usually be slightly lower than half the
obtained validation F1 score. The same work presents an algorithm to further



fine-tune these thresholds to attain a more ideal operating point. However, given
the higher risks of batch observation (since the thresholds are fitting a portion of
the data) and uninformative classifier observation (from the difficuly of classifying
rare concepts), we chose to avoid overfitting the validation set by selecting a few
thresholds within the interval known to contain the optimal threshold.

Tbl. 4: Results obtained from the submissions to the ImageCLEF 2018 concept
detection task with logistic regression.

Kind
Target
Concepts

Optimal
Thres.

Val.
Precision

Val.
Recall Val. F1 Test F1

AAE 500 0.1 0.216225 0.291748 0.248372 0.110176
AAE 2500 - - - - 0.108229
ˆ 1000 0.05 0.107612 0.100736 0.104060 -
ˆ 1000 0.025 0.079174 0.089273 0.083921 -

ORB 500 0.1 0.213660 0.254010 0.232094 0.097769
F-AAE 500 0.075 0.182600 0.147899 0.163428 0.082475

With the k-nearest neighbors algorithm, five runs were submitted Table 5. It
is understandable that logistic regression has a strong vantage point over this
method, since it learns a linear vector space that is more ideal for classification,
whereas k −NN is restricted to a set of fixed metrics. The resulting scores were
significantly lower, but were closed to the final score against the testing set. It is
also worth emphasizing that cosine similarity over the features of the AAE and
the F-AAE resulted in slightly better metrics.

Tbl. 5: Results obtained from the submissions to the ImageCLEF 2018 concept
detection task with similarity search.

Kind Metric k
Val.

Precision
Val.

Recall Val. F1 Test F1

AAE cosine 2 0.065085 0.120610 0.073711 0.056958
AAE L2 2 0.062775 0.116644 0.071168 0.055936
ORB L2 4 0.023813 0.080327 0.032593 0.031376
F-AAE cosine 3 0.065085 0.069767 0.031575 0.027978
F-AAE L2 3 0.021505 0.062078 0.028007 0.027188

The low performance obtained with the F-AAE in both classification algorithms
was empirically justified in Section 2.2.3. However, these results were as low
as to suggest that the model would still greatly benefit from better training.
From observing generated samples side by side with real images, we have noticed
that certain image categories were very underrepresented to non-existent in the



generated samples. Mode collapse is one of the major issues that may arise in
GAN training, and is still heavily tackled in recent literature.

4 Conclusion

This paper presents the methods used to obtain unsupervised representations
for medical images in literature. We show that the use of deep learning methods
can surpass more traditional representations, such as the bags of visual words,
in terms of descriptive power. These representations were evaluated by treating
the concept detection as a multi-label classification problem, and attained a best
mean F1 score of 0.110176 with logistic regression, ranking first in this year’s
edition of the concept detection task. A score of 0.056958 was also attained with
parameterless vector searching alone. No external sources of evidence were used
for any of the presented methods.

On the other hand, these results may not seem to provide a substantial jump
when compared to the initial iteration of the ImageCLEF caption challenge. For
instance, the best run of the 2017 concept detection task which did not rely
on any external resources had a mean F1 score of 0.1436 [24], and the use of a
pre-trained neural network had achieved a score of 0.1583 [25]. Granted, the scores
are not directly comparable due to a variety of factors which could influence the
performance of concept detection. As a new and disjoint set of medical images
and concepts, the quality of the latest data set was slightly improved with the
exclusion of multi-figures, and the overall size of the training set was increased
by roughly 28%. On the other hand, the number of different concept identifiers
presented in the training set’s ground truth increased significantly, which may
also make the detection task more difficult. The sample-averaged F1 score for
evaluating these solutions is certainly preferable over the macro F1 score, which
would have skewn the scores heavily due to the excessive weight applied to the
rare labels [23]. Nevertheless, we find that most concepts in the set do not have
enough images with a positive label for a valuable classifier, and that the obtained
performance measurements are within the expected range of scores in this task,
as the classified labels are very varied and scarce.

Multiple roads to future work can be outlined from this year’s participation:

– Generative adversarial networks still make a hot topic, but it is likely to
bring remarkable breakthroughs in feature learning. With the emergence
of promising techniques for improving the quality and training process of
GANs to this purpose, they should likewise be considered for this task and
potentially other similar problems.

– There is an open opportunity to learn richer representations with semi-
supervised learning, by taking advantage of the concepts availble in the
training set. The original paper on the adversarial auto-encoder contemplates
one form of incorporating label information in the regularization process [12],



but the currently known approaches to semi-supervised GANs are much more
diverse at the time of writing [26, 27].

– We do not exclude the possibility of attaining better scores with other
classification algorithms, potentially those which are more adapted to an
extreme multi-label classification scenario. The decisions made in this work
were based on the desire to test the representation’s descriptiveness without
learning another complex feature space.

Finally, we find of significant importance that past efforts in the ImageCLEF
challenges make a smooth transition to future editions, so as to obtain more
competitive baselines and enable new research groups to join in with less technical
debt. Delivering the necessary software components to reproduce the results as
open source software would contribute to this cause.
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