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Abstract. We describe the winning system for the PAN@CLEF 2018
task on Style Change Detection. Given a document, the goal is to de-
termine whether it contains style change. We present our supervised ap-
proach, which combines a TF.IDF representation of the documents with
features specifically engineered for the task and which makes predictions
using an ensemble of diverse models including SVM, Random Forest,
AdaBoost, MLP and LightGBM. We further perform comparative anal-
ysis on the performance of the models on three different datasets, two of
which we have developed for the task. Moreover, we release our code in
order to enable further research.

Keywords: Multi-authorship · Stylometry · Style change · Stacking
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1 Introduction

While there has been a lot of research on authorship attribution for full-size
documents, the problem of identifying multi-authorship is much less explored.
Previous editions of the PAN competition have shown that tasks such as finding
clusters of authors inside a document or spotting the exact locations of style
change are too challenging [13, 15, 16]. Thus, the 2018 edition of PAN offered
a simplified version of these problems: given a text document, identify whether
there is style change in it or not. This formulation is related to intrinsic pla-
giarism detection, but an important difference is that multi-authorship assumes
uniform distribution of text segments by different authors.

Most previous work used features based on stylometry [6, 8, 14] and term
frequencies [4, 8], and so did we. In particular, we borrowed ideas for features
from [2, 12], but we also crafted some new ones as described in Section 3.3 below.

∗Equal contribution



2 Data

This section describes the data from the competition as well as two additional
datasets that we created and used.

2.1 PAN Dataset

The data provided by the PAN organizers was based on user posts from StackEx-
change covering different topics with 300–1,000 tokens per document. It included
a training set of 3,000 documents and a validation set of 1,500 documents. The
submissions by the participants were tested on a testing dataset of 1,500 docu-
ments. All three datasets were balanced between the two classes: style change
vs. no style change.

We found the training data too small in size, and thus we compiled and used
two additional datasets, which we describe below.

2.2 External Movie Reviews Dataset

We created an additional training dataset based on a pre-existing Amazon movie
reviews dataset [11], which consists of eight million reviews. We merged pairs
of reviews for the same movie written by different authors, making sure that
the combined length of the merged documents would be 2,800–5,500 characters.
In particular, we aimed for the character length of the merged documents to
be as close as possible to 4,150. For comparison, the training dataset provided
by the PAN organizers had an average character length of 4,300. We ended up
with 216,250 new examples with balanced classes. However, training on this new
dataset yielded poor results, possibly due to our näıve concatenation of complete
single-author statements, which often yielded locally incoherent documents.

2.3 External StackExchange Dataset

In another attempt to extend our training dataset, we collected posts from Stack-
Exchange. We used the StackExchange Data Explorer3 to execute an SQL query
against the databases of 35 sites from the StackExchange network. The query
aimed at collecting all posts with at least three answers with a character length
of 300 or more and at least one answer with a character length of at least 1,000.
We then used a script to combine some of the answers (taking length into ac-
count) for each post while maintaining the original distribution of the number of
splits from the PAN dataset. We ended up with 50,000 new examples covering
a wide range of topics. This dataset also yielded poor results, possibly for the
same reasons as above.

3https://data.stackexchange.com/



3 Method

In this section, we first describe how we pre-process the data, then we discuss
the importance of text segmentation, and we present the features we extract
from text. Finally, we describe the supervised models we use for classification.

3.1 Data Preprocessing

We pre-process the input documents in two phases. The first phase is applied
before any feature extraction takes place and replaces URLs and long numbers
with specific tokens. The second phase is applied during feature computation. It
filters the stream of words and replaces file paths, long character sequences and
very long words with special tokens. Additionally, an attempt is made to split
long hyphenated words (with three or more parts) by checking whether most
of the sub-words are present in a dictionary of common words (from the NLTK
words corpus [10]). The goal of all these steps is to reduce the impact of long
words, which could adversely affect features that take word length into account.
Such features are those from the lexical group and this pre-processing is applied
to them only since it might have unexpected effect on the rest of the features.

3.2 Text Segmentation

Style change in text documents entails that parts of the text will differ in some
respect. In an attempt to spot such differences automatically, we split the doc-
ument into three equal segments of words, we calculate the feature vectors for
each of them, and we find the maximum difference per feature between any pair
of segments. We choose the number of segments based on the prior distribution
of the number of style changes across the entire dataset. In order to obtain more
data points, we apply a sliding window for each document. We use this seg-
mentation procedure for four of the feature groups, three of which use a sliding
window. See Section 3.3 for more detail.

3.3 Text Representation

Below we describe the features we engineered specifically for the task of discov-
ering style changes.

3.3.1 Repetition Repetition can be an important feature for the task. We
account for it by looking at the average number of occurrences of unigrams, bi-
grams, ..., 5-grams in the document, and we create a vector of five features with
the respective averages.

3.3.2 Contracted Wordforms Another feature we use is based on the dis-
crepancies in spelling for words that allow contracted forms, e.g., I will (I’ll), are
not (aren’t), they are (they’re). People typically favor one of the alternatives, and
thus we use forms based on contracted apostrophes as discriminative features
for identifying whether a piece of text is single- or multi-authored.



3.3.3 Frequent Words Frequent words are known stylometric indicators for
authorship attribution, and are thus useful for the present task as well. We
include stop words (from the NLTK stopwords list [10]) and function words
(compiled from three separate lists4,5,6). We use each such frequent word as a
feature, and its frequency of occurrence in the text segment as the feature value.

3.3.4 Lexical We use as features the proportion of various types of lexical
elements per text segment, computed using a sliding window:

Character-based These include spaces, digits, commas, colons, semicolons, apos-
trophes, quotes, parentheses, number of paragraphs and punctuation in general.

Word-based We POS-tag each segment using NLTK, and we extract pronouns,
prepositions, coordinating conjunctions, adjectives, adverbs, determiners, inter-
jections, modals, nouns, personal pronouns, and verbs. Other word-based fea-
tures include words of length 2 or 3, words with over 6 characters, as well as
average word length, number of all-caps words and of capitalized words.

Sentence-based This includes question marks, periods, exclamation sentences,
short and long sentences, and average sentence length.

3.3.5 Quotation Marks Some authors may prefer either single or double
quotation marks. We use the difference between the number of single and double
quotes in a given segment as a single feature.

3.3.6 Vocabulary Richness Similarly to [2], we represent vocabulary rich-
ness as an averaged word frequency class. We use the Google Books common

words list7 to compute the frequency class of a word x as log2
f(X)
f(x) , where f

is the frequency function and X is the most frequent word in the corpus (in
our case, this is the word the). We then extract two features per segment: the
average frequency class of all words in it and the proportion of unknown word
tokens (words not present in the common words list).

3.3.7 Readability We compute the following readability features per text
segment, using the Textstat8 Python package: Flesch reading ease, SMOG grade,
Flesch-Kincaid grade, Coleman-Liau index, automated readability index, Dale-
Chall readability score, difficult words, Linsear write formula, and Gunning fog.

4https://semanticsimilarity.files.wordpress.com/2013/08/

jim-oshea-fwlist-277.pdf
5http://www.sequencepublishing.com/1/academic.html
6https://www.edu.uwo.ca/faculty-profiles/docs/other/webb/

essential-word-list.pdf
7http://norvig.com/google-books-common-words.txt
8https://github.com/shivam5992/textstat



Normalized
Word Frequency

however 1.00
one 0.96
note 0.92
edit 0.87
first 0.69
yes 0.63
also 0.60
another 0.50
finally 0.40
since 0.37
update 0.35
let 0.31

(a) beginning

Normalized
Word Frequency

etc 1.00
time 0.95
well 0.76
question 0.68
way 0.61
god 0.58
p 0.45
example 0.45
work 0.39
war 0.39
though 0.37
answer 0.37

(b) end

Table 1: The most frequent beginning and ending words, excluding stopwords.

3.3.8 Beginning and Ending of Author Statements As can be seen
in Table 1, author statements begin and end with quite different words. This
can be used to locate points in documents, where word clusters of small size
contain high concentration of beginning/ending terms, which could indicate a
change of author. We experimented with word n-grams of length 1, 2 and 3, but
we eventually found that single words, after stopword removal, yielded the best
results. We experimented with two approaches. Our first approach assigns a score
to each word type based on the number of times it appears at the beginning or at
the end of a segment by the same author (these counts are min-max normalized).
The second approach scores words based on how close they are to such a position.
It transforms the frequency using a steep half-sigmoid function (see Equation 1,
where k denoting the steepness), taking the relative position and rewarding
words that are extremely close to the beginning or to the end of a segment
by the same author. Then, each word list of position scores is averaged across
all documents. Finally, we extract a vector of features for each document by
looking at local document clusters of three words that contain multiple high-
scored words, which could indicate that there is an end of a statement by one
author immediately followed by a beginning of a statement by a different author.

x =
|statementLength

2
− (position + 1)|

statementLength

2

Score(positionstatement) =
(0 + k) ∗ x
(1 + k)− x

(1)

We did not use this document representation as part of our stacking classifier
(Section 3.6); yet, it works very well in isolation, yielding 65% accuracy.



3.3.9 Named Entity Spelling Next, we model personal preference for dif-
ferent spelling variants for the same named entity. In particular, we use the
Damerau-Levenshtein string edit distance [1, 9] to find inconsistencies in the
wording of identical named entities within an edit distance of 1. The feature
vector consists of the minimum counts between the different spellings for each
found named entity.

3.3.10 Other Features In the process of feature engineering, we explored
many other ideas, some of which performed poorly and thus were not included
in the final system. Yet, we feel some of them are worth mentioning:

Preprocessing tokens We used the normalized frequency for each token that was
used to substitute URLs and other long sequences of characters (see Section 3.1).

British/American English spelling We looked for American vs. British spelling
of 170 words,9 which could signal change of author/style.

ASCII characters Extensive non-ASCII characters use could in theory find
region-based regularities, but the short document length and the resulting infre-
quency of such cases made this useless as a feature.

3.4 Deep Learning

We experimented with deep neural networks. Note that the performance of such
networks depends on the nature of the task, the architecture of the network, and
the selection of hyper-parameters. For tasks where feature detection in text is
important, CNNs work well and can outperform RNNs [7].

We use a CNN, which consists of a layer computed over an 11-word sentence,
with 300-dimensional word embeddings, a Squeeze-and-Excitation block [3], and
two additional dense layers. We trained the embeddings from scratch. The vo-
cabulary size is the combined vocabulary size of the training and of the testing
sets: about 70,000 words.

For regularization, we used dropout on each layer with no constraint on the
L2-norms of the weight vectors. This consistently added 6–8 percentage points
in terms of accuracy. We used the ReLU activation function, 64 filters of size 11,
a dropout rate of 0.1, and a mini-batch optimization of size 256.

The Squeeze-and-Excitation convolutional block improves channel interde-
pendencies at almost no additional computational cost. It allows the network
to adaptively adjust the weighting of each feature map. We add a max pooling
layer on top of this block.

Although we did not tune the hyper-parameters extensively, this relatively
simple CNN performed remarkably well, achieving accuracy of about 86%, even
on the comparatively small training dataset.

Unfortunately, we explored and developed this CNN architecture very close
to the competition deadline, and thus we did not use it in the final submission.

9https://en.wikipedia.org/wiki/Wikipedia:List_of_spelling_variants



Classifier Hyper-parameter Value

Support Vector Machine
kernel Radial basis function
penalty C 1.0
tolerance 0.001

Random Forest
estimators 300
with replacement Yes

AdaBoost Trees
base estimator Decision tree
estimators 300

Multi-layer Perceptron

layers 1
layer size 100
activation ReLU
optimization Adam
regularization L2
regularization term 0.0001
learning rate 0.001
mini-batch size 200
maximum iterations 10000

LightGBM

learning rate 0.1
number of leaves 31
metric’ AUC
bagging fraction 0.8
feature selection 0.6
l1 regularization term 1.0
l2 regularization term 1.0
min data in leaf 100

Logistic Regression
(meta-classifier)

optimization liblinear
regularization L2
penalty C 1.0
tolerance 0.0001
maximum iterations 100

Table 2: Stacking meta and zero-level classifier hyper-parameters.



3.5 LightGBM

Our Gradient Boosting Approach is based on combining LightGBM [5] with Lo-
gistic Regression and TF.IDF, which we fit on both the testing and the training
data.10 Fitting TF.IDF on the test data gives us a way to capture some properties
and insights about the word distribution. Then, we used the SelectFromModel11

meta-transformer with a Logistic Regression estimator to select the best TF.IDF
features before passing them to the LightGBM model. We tuned the parameters
of the Logistic Regression model using cross-validation, and we selected the sag
solver and C = 2. Moreover, we only used features with weight of more than 0.3.

A simple LightGBM baseline achieved 73% accuracy on the PAN validation
set. Tuning its parameters increased the accuracy to 86%, which was supported
by a cross-validation score of 85%. The final parameters can be seen in Table 2.
Our main goal during tuning was to prevent overfitting. With that in mind, we
will look at the parameters in detail. Adjusting the learning rate was crucial
for increasing the accuracy. Throughout all our experiments, 0.1 was the best
choice for the learning rate. Robust regularization also affected accuracy: setting
both L1 and L2 regularization to 1.0 boosted it by 3–4 points absolute. Another
strategy that we used to handle overfitting was setting min data in leaf to 100,
which improved accuracy by another 3 points. Setting feature selection to 0.6
means LightGBM will select 60% of the parameters randomly in each iteration
for building trees, which increased the training time, but decreased overfitting.
The fraction of data to be used for each iteration, generally controlling the
generalization of our model, was set to 0.8, boosting it by 2–3 points.

The model was trained using bagging with five folds and we used a custom
callback to measure the relative accuracy of each bagged fold. For better mon-
itoring and another perspective to look at, we added AUC as a metric in our
LightGBM model.

3.6 Stacking

The basic idea behind our Stacking Ensemble classifier is to take into account dif-
ferent independent points of view in the context of distinguishing multi-authored
documents and to learn dependencies between them. At the bottom level, we
train four different non-linear classifiers (described in Table 2) for each feature
vector derived from the representations in Sections 3.3.1 to 3.3.7 on 75% of the
training data. Then, each classifier makes a prediction for the remaining 25% of
the data and assigns a weight, based on its confidence. These groups form a sin-
gle vector each with prediction class probabilities, based upon the weights and
the outputs of the classifiers. These vectors, together with the predictions of the
LightGBM classifier (Section 3.5), serve as an input to a simple linear Logistic
Regression meta-learner. The process of training is visualized in Figure 1.

Before predicting, each classifier is trained again on the whole dataset (except
the LightGBM model, which is trained once and not weighted across a group).

10This is not cheating, as we have no access to the gold labels for the testing dataset.
11http://scikit-learn.org/



Fig. 1: The architecture of the stacking classifier.



4 Experiments and Evaluation

Below, we discuss the setup for our experiments and the achieved results.

4.1 Setup

During the experiments and the tuning of the models, we only used the training
dataset from PAN using 5-fold cross-validation. We consulted the validation
dataset only at the end, i.e., for scoring. To make use of all the available data,
for the final submission, we trained the stacking classifier on the combination of
the training and of the validation datasets.

4.2 Results

Table 4 shows some notable results from our experiments. As mentioned in
Sections 2.2 and 2.3, training on a combination of documents from the PAN
dataset and from an external source and then testing on the PAN validation
dataset was not successful, and thus we do not report these results here.

Instead, we experimented with training and testing on the same external
dataset to validate the performance of our approaches in other domains and on
data that was collected differently. We performed experiments on subsets of our
two external datasets that match closely the setup on the original PAN dataset:
training on 3k documents and testing on 1.5k from the respective source. The
evaluation results show promising accuracy, which goes up to 95% for the movie
reviews dataset.

The confusion matrix of the Stacking with LightGBM model (Table 5) shows
that the model misses a style change more often than misclassifying a document
written by one author.

5 Conclusion

Our experiments have shown that it is possible for machine learning algorithms
to achieve good performance for this problem. We present our supervised ap-
proach, which combines a TF.IDF representation of the documents with fea-
tures specifically engineered for the task and which makes predictions using an
ensemble of diverse models including SVM, Random Forest, AdaBoost, MLP and
LightGBM. We further performed comparative analysis on the performance of
the models on three different datasets. Our LightGBM model was able to tap this
potential by utilizing feature selection and gradient boosting to learn which com-
binations of such features are most indicative of multi-authorship. Furthermore,
the features we engineered to detect style breaches, while not discriminative
enough on their own, yielded good performance when combined in our stacking
model. Finally, adding the LightGBM classifier to the stacking scheme yielded
the highest accuracy and outperformed the submissions by the other teams who
participated in the Style Change Detection task. The strength of the resulting
ensemble lies in the diversity of the combined models and it performed well on
both the PAN datasets and on the external datasets we tested it on.



6 Future Work

There are several observations we intend to follow up on. It is worth pointing
out that for the PAN dataset in particular, achieving top-notch performance
required vectorizing the documents using TF.IDF on both the training and the
testing datasets, which seems to provide additional insight and always yielded
higher accuracy. However, the improvement we see for the PAN dataset is much
larger (around 20% absolute) compared to the one achieved when testing on
the external data (<1%), which is something we intend to investigate further.
Our CNN approach is promising as well, but it is much more computationally
intensive and we were unable to run enough experiments with it. It would be
interesting to evaluate its performance more thoroughly in the future. Moreover,
we noticed that while our top model performed well when trained on part of one
of our datasets and tested on another part of the same dataset, training on one
dataset and testing on another one yielded much lower results. Indeed, we can
see in Table 3 that the top TF.IDF features learned on the datasets have very
little overlap. Another aspect not fully explored are features established on the
possibly contrasting views of text projection by the authors. Last but not least,
we have made our code available in order to facilitate further research.12

Acknowledgements. This work was supported by Project UNITe BG05M2OP001-
1.001-0004 funded by the Operational Program “Science and Education for
Smart Growth”, co-funded by the EU through the ESI Funds.

Feature Score

‘considered’ 0.5708
‘e’ 0.5571
‘answers’ 0.5168
‘?’ 0.5089
‘questions’ 0.6428
‘i have’ 0.4836
‘individuals’ 0.4816
‘class’ 0.4669
‘at all’ 0.4655
‘it for’ 0.4535
‘e ”’ 0.4344
‘i e’ 0.4336

(a) PAN

Feature Score

‘this movie’ 0.8485
‘begins’ 0.8441
‘version’ 0.8368
‘find’ 0.7964
‘reviews’ 0.7313
‘movie’ 0.7035
‘become’ 0.6797
‘young’ 0.6675
‘i was’ 0.6613
‘first’ 0.65
‘two’ 0.6474
‘saw’ 0.6458

(b) Ext. Movie Reviews

Feature Score

‘http’ 1.2028
‘com’ 1.0426
‘i would’ 0.8522
‘http www’ 0.8413
‘www’ 0.8257
‘would be’ 0.7778
‘etc’ 0.7603
‘would’ 0.7598
‘hand’ 0.7589
‘use’ 0.7557
‘most’ 0.7393
‘current’ 0.7063

(c) Ext. StackExchange

Table 3: Top 12 TF.IDF features per dataset.

12https://github.com/machinelearning-su/style-change-detection



Classifier Dataset Fit on validation Accuracy

MLP with TF-IDF (Baseline)

PAN No 67.09
PAN Yes 70.64
External StackExchange No 61.36
External StackExchange Yes 63.49
External Movie Reviews No 64.62
External Movie Reviews Yes 66.08

LightGBM

PAN No 67.16
PAN Yes 86.53
External StackExchange No 80.67
External StackExchange Yes 81.47

Stacking with LightGBM

PAN No 67.43
PAN Yes 87.00
External StackExchange No 81.33
External StackExchange Yes 81.73
External Movie Reviews No 95.00
External Movie Reviews Yes 95.13

CNN PAN Yes 85.92

Stacking
PAN No 71.11
External StackExchange No 80.47
External Movie Reviews No 94.6

Stacking with CNN PAN Yes 78.02

Stacking with CNN and LightGBM PAN Yes 86.93

Table 4: Accuracy scores of different classifiers on the validation dataset.

Actual
Value

Predicted Value

False True

False
666 80

True
114 632

Table 5: Confusion matrix for the final model on the validation dataset.
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