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Abstract. Systematic reviews are literature reviewing processes that
aim to retrieve all relevant content based on a specific topic, in an exhaus-
tive manner. Such reviews are particularly useful in healthcare, where
decision making must take into account all possible evidence, and are
usually done by constructing a boolean query and submitting it to a
database, and then screening the retrieved documents for relevant ones.
Task 2 of CLEF 2018 eHealth lab focuses on automating this process
on two fronts: Sub-Task 1 is about bypassing the construction of the
boolean query, retrieving relevant documents and ranking them by rele-
vance based on a protocol that describes a topic, and Sub-Task 2 is about
ranking the documents retrieved by an already constructed query by
Cochrane experts. We present our approaches for both sub-tasks, which
combine a learning-to-rank model trained on multiple reviews with a
model incrementally trained on each individual review using relevance
feedback.

1 Introduction

Systematic reviews are a crucial part of Evidence-Based Medicine, which uses
any current evidence to support a decision on how a patient will be treated.
These reviews aim to find the aforementioned evidence, which should fit some
criteria in order to take part in the final decision-making. Systematic reviews
can be broken down into a 3-step process:

1. Document Retrieval: An expert builds a boolean query that describes
their review topic, which is later submitted to a medical database. Boolean
queries are queries that define if a document is relevant by the existence
(or not) of user-specified terms in the document. By using boolean logic,
complex queries with multiple rules can be constructed in order to filter
through large amounts of information.

2. Title and Abstract Screening: After the possibly relevant documents
have been retrieved, they must be screened to find the truly relevant ones.
Screening takes part in two stages: in the first stage, experts review each
retrieved document’s title and abstract, and decide if it is non-relevant, or
if it is possibly relevant and must be read in full to decide.



3. Document Screening: The second stage of screening is reading the full text
of the document that passed through the first screening stage, and deciding
if it should take part in the review.

Document screening is the most time-consuming task of this process. Med-
ical databases are expanding rapidly - PubMed counts 26,759,3991 citations as
of 2017. Boolean queries on such databases are bound to retrieve a large amount
of documents, hence the need for automation in such a task. This, however, is a
complex problem, due to the imbalance of the data (few relevant documents, too
many non-relevant documents) and the misclassification cost, where not includ-
ing a relevant document might have a great toll on the final decision making.

Task 2 [1] of CLEF 2018 eHealth lab [2] focuses on the first two parts of
the systematic review process. Our approach consists of phrase extraction and
querying for the document retrieval step, as well as a hybrid classification model
for the title and abstract screening step, which initially ranks the retrieved docu-
ments using Learning-to-Rank (LTR) features and then uses relevance feedback
to iteratively re-rank them, based on simple text representations.

The rest of this paper is organized as follows: we briefly describe Task 2 of
CLEF 2018 eHealth lab in Section 2, and in Section 3 we analyze our approaches.
Section 4 contains the results and the submitted runs, and finally Section 5
concludes and discusses future work.

2 Task Overview

This year, CLEF eHealth’s Task 2 was split into two sub-tasks. Sub-Task 1 was
about searching in PubMed for relevant documents given a piece of text, while
Sub-Task 2 was the same as last year’s CLEF eHealth Task 2.

Sub-Task 1 aims to bypass the first part of a Systematic Review - the con-
struction of the boolean query, that would later on be submitted in a database
to retrieve possibly relevant documents.

Given 40 topics as training set and 30 as test set, participants were asked
to return a ranking with a maximum of 5000 documents per topic. Each topic
contained its id, title and objective, as well as a protocol that described that
particular topic. Each topic protocol had 6 fields, with another objective field
that was slightly different than the topic’s one:

1. Objective

2. Type of Study

3. Participants

4. Index Tests

5. Target Conditions

6. Reference Standards

1 https://www.nlm.nih.gov/bsd/licensee/2017_stats/2017_LO.html

https://www.nlm.nih.gov/bsd/licensee/2017_stats/2017_LO.html


For each topic, participants were also provided with a date cut-off. This cut-off
was also used in the Boolean Queries that were constructed by Cochrane experts
to retrieve relevant documents.

Sub-Task 2 concerns the efficient ranking of the possibly relevant documents
retrieved. Given a topic, its query and the documents retrieved, the goal is to
rank the documents so that most relevant ones appear first, as well as to find a
threshold, after which no documents will be shown to the user. The training set
consisted of 42 topics, where each topic contained:

1. A unique topic ID
2. A title
3. An Ovid MEDLINE boolean query, constructed by Cochrane experts
4. The PubMed IDs as returned from the execution of the boolean query

For both tasks, the relevant document PIDs (PubMed IDs) were provided as
well, for abstract and content relevance. This enabled the use of algorithms that
requested relevance feedback from the user.

3 Our Approach

For both sub-tasks, we used last year’s model [3] with some enhancements, as
well as some modifications for Sub-Task 1. It consists of two models:

1. An inter-topic XGBoost [4] classifier that is trained on LTR features between
a topic and a document and produces an initial ranking of the documents.
This inter-topic model is trained on all the training topics.

2. An intra-topic Support Vector Machine (SVM) classifier that is iteratively
trained on TF-IDF vectors after asking feedback for documents that are
ranked the highest by the inter-topic model. This intra-topic model is trained
for each of the test topics using relevance feedback at prediction time.

Algorithm 1 describes the re-ranking algorithm employed by the intra-topic
model.

3.1 Sub-Task 1: No Boolean Search

The first step for Sub-Task 1 was to find the initial relevant documents. For each
topic, we used its title and objective to create queries that were later submitted
to PubMed. To construct the queries, we tokenized both pieces of text, removed
the stop-words, and extracted phrases from the resulting word lists. Figure 1
shows an example of this process.

The phrases we extracted were n-grams (n ∈ {2, 3, 4, 5, 6}) of the words
of each piece of text. Each phrase was then submitted to PubMed, with the
date cut-off as given for each topic, for which we retrieved a maximum of 2500
documents.

For the query construction, we also experimented with TextRank [5], an
algorithm for keyword extraction. After extracting the keywords from both the



Algorithm 1: The Iterative relevance feedback algorithm of the intra-topic
model
Input : The ranked documents R, of length n, as produced by the

inter-review model, initial training step k, initial local training step
stepinit, secondary local training step stepsecondary, step change
threshold tstep, final threshold tfinal (optional)

Output: Final ranking of documents R - finalRanking
1 finalRanking ← () ; // empty list

2 for i = 1 to k do
3 finalRankingi ← Ri

4 k′ ← k;
5 while not finalRanking contains both relevant and irrelevant documents do
6 k′ ← k′ + 1;
7 finalRankingk′ = Rk′ ;

8 while not length(finalRanking) == n OR length(finalRanking) == tfinal do
9 train(finalRanking) ; // Train a local classifier by asking for

abstract or document relevance for these documents

10 localRanking = rerank(R− finalRanking) ; // Rerank the rest of the

initial list R from the predictions of the local classifier

11 if length(finalRanking) < tstep then
12 step = stepinit;
13 else
14 step = stepsecondary;

15 for i = k′ to k′ + step do
16 finalRankingi ← localRankingi−k′ ;

17 return finalRanking;

title and the objective, we created the queries the same way as described above,
where the text of each topic was now its keywords. This process did not seem
to work well, as it decreased the total recall. We further experimented with
the number of maximum allowed documents per query, where we had to trade
between recall and number of documents retrieved. The 2500 limit proved to be a
good fit, since retrieving more documents would not increase recall significantly,
but would require our models to rank many more documents.

After retrieving the possibly relevant documents per topic, we use the inter-
topic and intra-topic models to rank them. The LTR features used for the inter-
topic model were computed using the title and abstract of each document and
the different fields of each topic protocol, as well as the topic’s title and ob-
jective. Table 1 shows the features employed by our model. For the inter-topic
model, we use an Easy Ensemble [6] of 10 XGBoost classifiers, where each clas-
sifier is trained on all the relevant documents and a subset of the non-relevant
documents, randomly sampled, sampling 5 non-relevant documents per each rel-
evant.



Fig. 1. An example of the query construction pipeline of sub-task 1.

After getting an initial ranking from the inter-topic model, we use the intra-
topic model to re-rank up to the first 20,000 documents, and keep the first 5000,
as per the task’s limit.

3.2 Sub-Task 2: Abstract and Title Screening

For the second sub-task, we also employed last year’s model with a few modifi-
cations on both the inter-topic and the intra-topic model.

Inter-Topic Model On the Inter-Topic model, we included some semantic
information using additional LTR features. Table 2 shows the features, with
which we previously experimented, along with the new semantic features. We
further advanced our model by removing the stop-words and fixed some minor
issues with the BM25 [7] features.

Features 1-24 are the same as last year’s submission. We distinguish between
two topic fields - the query, which is a list of Medical Subject Headings (MeSH)
terms extracted from the topic’s Ovid Medline query and the title. MeSH terms
are semantic annotations added manually on PubMed documents. The notation
used for the LTR features is as follows:

1. t is a topic field
2. d is a document field
3. c(ti, d) counts the number of times the term ti appears on the document field

d
4. c(mi, d) counts the number of times the MeSH (Medical Subject Headings)

term mi appears on the document field d
5. |C| is the total number of documents in the collection
6. df(ti) is the number of documents that contain the term ti



Table 1. Set of features employed by the inter-topic model for Sub-Task 1.

Features Description Topic field Document field(s)

1, 2 cos(tf-idf) Title Title, Abstract

3, 4 cos(tf-idf) Objective Title, Abstract

5, 6 cos(tf-idf) Protocol - Objective Title, Abstract

7, 8 cos(tf-idf) Protocol - Type of Study Title, Abstract

9, 10 cos(tf-idf) Protocol - Participants Title, Abstract

11, 12 cos(tf-idf) Protocol - Index Tests Title, Abstract

13, 14 cos(tf-idf) Protocol - Target Conditions Title, Abstract

15, 16 cos(tf-idf) Protocol - Reference Standards Title, Abstract

17, 18 BM25 Title Title, Abstract

19, 20 BM25 Objective Title, Abstract

21, 22 BM25 Protocol - Objective Title, Abstract

23, 24 BM25 Protocol - Type of Study Title, Abstract

25, 26 BM25 Protocol - Participants Title, Abstract

27, 28 BM25 Protocol - Index Tests Title, Abstract

29, 30 BM25 Protocol - Target Conditions Title, Abstract

31, 32 BM25 Protocol - Reference Standards Title, Abstract

33, 34 log(BM25) Title Title, Abstract

35, 36 log(BM25) Objective Title, Abstract

37, 38 log(BM25) Protocol - Objective Title, Abstract

39, 40 log(BM25) Protocol - Type of Study Title, Abstract

41, 42 log(BM25) Protocol - Participants Title, Abstract

43, 44 log(BM25) Protocol - Index Tests Title, Abstract

45, 46 log(BM25) Protocol - Target Conditions Title, Abstract

47, 48 log(BM25) Protocol - Reference Standards Title, Abstract

7. levenshtein(mi, dj) is the levenshtein distance betwen the MeSH term mi

and the term dj

For features 25 and 26, we applied Latent Semantic Analysis to the TF-IDF
vectors of the titles and the abstracts of each document, keeping 200 components.
Then for each document in a topic, we computed the cosine similarity of their
LSA vectors (topic title - document title and topic title - document abstract).

Features 27 and 28 use Word2Vec [8] vectors, obtained from the BioASQ
challenge2. These vectors were trained on 10,876,004 abstracts from PubMed,
with a vocabulary of 1,701,632 words and a dimensionality of 200. For each piece
of text, we sum up all its word vectors and average, which results in a single vec-
tor representing the document. Then, we compute the cosine similarities between
a topic and a document using these vectors.

Features 29 and 30 use the Word2Vec vectors again, this time to compute
the Word Mover’s Distance [9] between pieces of text.

2 http://bioasq.org/

http://bioasq.org/


Table 2. Set of features employed by the inter-topic model for Sub-Task 2.

ID Description Category Topic field Document field

1
∑

ti∈t∩d c(ti, d) T −D Title Title

2
∑

ti∈t∩d log(c(ti, d)) T −D Title Title

3
∑

ti∈t∩d c(ti, d) T −D Title Abstract

4
∑

ti∈t∩d log(c(ti, d)) T −D Title Abstract

5
∑

mi∈t∩d c(mi, d) T −D Query Title

6
∑

mi∈t
∑

dj∈d levenshtein(mi, dj) T −D Query Title

7
∑

mi∈t
∑

dj∈d levenshtein(mi, dj)

if levenshtein(mi, dj) < v

T −D Query Title

8
∑

mi∈t∩d log(c(mi, d)) T −D Query Title

9
∑

mi∈t∩d c(mi, d) T −D Query Abstract

10
∑

mi∈t∩d log(c(mi, d)) T −D Query Abstract

11
∑

ti∈t log( |C|
df(ti)

) T Title -

12
∑

ti∈t log(log( |C|
df(ti)

)) T Title -

13 BM25 T −D Title Title

14 BM25 T −D Title Abstract

15 BM25 T −D Query Title

16 BM25 T −D Query Abstract

17 log(BM25) T −D Title Title

18 log(BM25) T −D Title Abstract

29 log(BM25) T −D Query Title

20 log(BM25) T −D Query Abstract

21 cos(tf-idf) T −D Title Title

22 cos(tf-idf) T −D Title Abstract

23 cos(tf-idf) T −D Query Title

24 cos(tf-idf) T −D Query Abstract

Semantic Features

25 cos(LSA(tf-idf)) T −D Title Title

26 cos(LSA(tf-idf)) T −D Title Abstract

27 cos(Word2Vec) T −D Title Title

28 cos(Word2Vec) T −D Title Abstract

29 WMD(Word2Vec) T −D Title Title

30 WMD(Word2Vec) T −D Title Abstract

31 cos(Doc2Vec) T −D Title Abstract

Feature 31 uses document vector representations which we obtained by train-
ing a Doc2Vec [10] model on the documents collected from the training set. The
model was trained on each document’s title and abstract. The vectors for docu-
ments not in the model’s training set were inferred.

The new semantic features seemed to improve performance, but some of them
proved to be better than others. For the final runs, from the semantic features



we kept only 25, 26, 29 and 30, which use the Latent Semantic Analysis and the
Word Mover’s Distance.

Apart from adding new LTR features, we experimented with a variety of
other techniques. First, we tried expanding the title query with more words,
to obtain a bigger piece of text, so as to compute more accurate similarities.
For each word in the title, we found its K most similar words using cosine
similarity on the Word2Vec embeddings and added them to the title. Even for
small values of K (e.g. 2) this did not seem to improve performance. We further
tested to provide the document vectors (query title, document) from Doc2Vec
directly to the inter-topic model, either concatenated or subtracted one from
another, which still did not improve performance. Lastly, we experimented with
undersampling techniques - specifically Easy Ensemble and SMOTE [11], which
did not improve performance either. On the contrary, Easy Ensemble works well
for the first sub-task, where the number of non-relevant documents is on average
an order of magnitude larger.

Intra-Topic Model For the intra-Topic model, we relaxed the C parameter
of the SVM, which controls how ”strict” the hyperplane will be in avoiding
misclassification to allow for a bigger margin. The intuition for this came from
the fact that due to the sheer class imbalance, finding a hyperplane with a bigger
margin will probably fit the data better than finding a strict one which may lead
to overfitting. This relaxation seemed to improve the model’s predictions in our
evaluations.

Additionally, we experimented with different SVM kernels, but they proved
much slower and less efficient than the linear one. We also added n-grams (2, 3)
but they did not give better results either. Finally, we tried to use embeddings
for this task as well, by using the average Word2Vec vectors or the document
vectors from Doc2Vec as input instead of the simple TF-IDF representations, to
no avail.

4 Results

Both sub-tasks of CLEF E-health Task 2 supported both thresholded and non-
thresholded runs. Our models, however, do not apply a threshold to the final
ranking automatically - instead, we submitted thresholded runs on fixed hand-
picked thresholds.

The metrics used for evaluation were multiple and they are described in detail
in the task’s website3. The primary ones (as mentioned in the task’s website) are
the Mean Average Precision and the Recall, on which we focus below. Note that
in the official evaluation script4, which we used to produce the following results,

3 https://sites.google.com/view/clef-ehealth-2018/

task-2-technologically-assisted-reviews-in-empirical-medicine
4 https://github.com/CLEF-TAR/tar

https://sites.google.com/view/clef-ehealth-2018/task-2-technologically-assisted-reviews-in-empirical-medicine
https://sites.google.com/view/clef-ehealth-2018/task-2-technologically-assisted-reviews-in-empirical-medicine


Mean Average Precision is computed on the whole ranking, without taking the
threshold into account.

Table 3 shows our results for sub-task 1. The reranking parameters for the
intra-topic model of HybridSVM are:

k = 10, stepinitial = 1, tstep = 200, stepsecondary = 50, tfinal = 1000

The Threshold column refers to the hand-picked threshold mentioned above, and
the Train Relevance column refers to which relevances were used for training -
abstract or content. For evaluation, content relevance was used as per the com-
petition’s guideline. We submitted runs 1, 2 and 3, since we only found that
training with abstract relevance gave slightly better results after the submission
deadline. This is, however, an interesting observation - since there are more rel-
evant documents at abstract level than at content level, the class imbalance was
slightly less effective when training with the abstract relevance, thus producing
slightly better results.

Table 3. Sub-Task 1 Results

ID Average Precision Recall Threshold Train Relevance

1 0.113 0.816 5000 Content

2 0.113 0.809 2500 Content

3 0.113 0.787 1000 Content

4 0.117 0.819 5000 Abstract

5 0.117 0.812 2500 Abstract

6 0.117 0.797 1000 Abstract

Table 4 shows our results for the second sub-task. The only threshold we
used is at 1000 documents. The last 4 columns refer to the parameters of the
intra-topic’s re-ranking algorithm. From the runs shown, we submitted runs 1,
5 and 7.

Table 4. Sub-Task 2 Results

ID Average Precision Recall Threshold k stepinitial tstep stepsecondary tfinal

1 0.4 1.0 - 5 1 200 100 2000

2 0.396 1.0 - 10 1 200 50 2000

3 0.393 1.0 - 10 1 200 100 1000

4 0.396 1.0 - 10 1 300 100 2000

5 0.4 0.944 1000 5 1 200 100 2000

6 0.396 0.946 1000 10 1 200 50 2000

7 0.393 0.943 1000 10 1 200 100 1000

8 0.396 0.945 1000 10 1 300 100 2000



5 Conclusion and future work

In this paper, we described our approaches for both sub-tasks of Task 2 of CLEF
eHealth 2018. We introduced new features and tweaked last year’s models to
improve performance, with a tendency towards semantic features.

As future work, we believe that more improvements can be made in both sub-
tasks. For Sub-Task 1, the query construction stage could benefit from filtering
out words that are not medically relevant, in order to reduce the number of
queries and consequently reduce the number of retrieved documents. For the
ranking model (sub-tasks 1 and 2), more semantic features could benefit the
inter-topic model, while a better strategy for asking feedback in the intra-topic
model could boost the metrics. Finally, it would be interesting to apply deep
learning techniques to the task, and try to use word embeddings in a more
efficient way.
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