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Abstract. Building accurate knowledge of the identity, the geographic
distribution and the evolution of organisms is essential for biodiversity
conservation. Automatic prediction of list of species is useful for many
scenarios in biodiversity informatics. In this work, we propose a hybrid
model to predict the species that are most probable to be observed at
a given location, using environmental features and taxonomy of the or-
ganism. These environmental features are represented as k-dimensional
image patches, where each dimension represents the value of an environ-
mental variable, in the neighborhood of the occurrence of the species.
The hybrid model Convolutional Long Short-Term Memory Neural Net-
works henceforth called as CLNN, is a combination of Convolutional Neu-
ral Networks(CNNs) and Long Short-Term Memory Networks(LSTMs),
where the CNN forms the spatial feature generator while the LSTM
focuses on finding the taxonomy. Using the dataset provided by Geo
LifeCLEF 2018, the proposed method helped achieve a Mean Reciprocal
Rank (MRR) score of 0.003 during the test phase.
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1 Introduction

Environmental niche models have been used by biologists and environmentalists
to understand the species distribution in geographic space. These models help
reduce resources expended in data collection and analysis, thus giving space for
research in analyzing impacts of global phenomenon like climate change, habitat
loss, species invasion and evolutionary trends that could help in translocation of
species.

Considering the overwhelming uses of species prediction modeling, CLEF or-
ganizers posed the Geo LifeCLEF 2018 challenge [5]. The aim of the challenge is
to develop a location-based species recommendation system using image-based



representation of environmental features of the immediate surroundings. The
main focus was to substitute environmental feature vectors at a given location
with image-based representation of the features containing details of the neigh-
borhood. The inclusion of features of the neighborhood better portrays the dis-
tribution of species in a region as compared to other niche modeling techniques.

Modeling image-based environmental features involves complex convolutions over
multiple filters/channels. Moreover, the impact caused by each feature in deter-
mining the likelihood of a particular species can’t be analyzed by visualizing the
spatial rasters provided. The high number of target classes may lead to vanish-
ing probabilities, an issue where the model’s predicted probabilities are low and
uniformly distributed across the target classes, thus making the learning process
error-prone.

To overcome these challenges, we propose the use of Convolutional Long Short-
Term Memory Neural Networks (CLNN) architecture shown in Fig. 4, to model
the species distribution given their spatial environmental features along with
the species taxonomy. The introduction of taxonomy addresses the vanishing
probabilities by reducing the target classes.

2 Methodology

The proposed CLNN model is a hybrid pipeline of CNN and LSTM layers.
Both CNN’s and LSTM’s are brainchildren of Deep Learning Techniques. Deep
Learning (DL) is a broader type of machine learning algorithms, drawing inspi-
rations from the biological nervous system. In DL, a cascade of multiple layers of
non-linear processing is used for feature extraction and transformation. Convo-
lutional Neural Networks(CNNs) [2] are a class of deep neural networks that are
used for Computer Vision or analyzing visual imagery. CNN makes use of a set
of learnable filters, which are used to detect the presence of specific features or
patterns present in the original image. Different filters which detect different fea-
tures are convolved and a set of activation maps are produced. These maps are
then flattened i.e. reduced to a n-dimensional vector, and fed into the LSTM.
Long Short-Term Memory Networks(LSTMs) [4] are a class of deep learning
techniques that are constructed based on recurrent concepts in neural networks.
The LSTM cells have 3 gates namely input, output and forget that helps it to ar-
bitrarily remember some input thus giving it memory. They are usually used for
modeling sequences and to predict the change in patterns with respect to some
fixed variable. The LSTM layers used here, get the flattened features from CNN
and find the taxonomy of the species as a sequence. The taxonomy of organ-
isms was used to capture the intra rank similarities and also reduce the search
space for species prediction. Embeddings were added to represent the labels in
k-dimensional space and to maintain their taxonomic context.



2.1 Use of taxonomic nomenclature

Taxonomy of organisms was introduced in Biology, to group species based on
their common ancestral characteristics. According to Darwins Common Descent
theory [1], the process of speciation occurs due to the adaptation of organ-
isms/species to environmental changes. This results in different species with a
common ancestor, that share common characteristics and requirements. This
fact has been exploited in our species prediction model by making use of taxo-
nomic hierarchy. The Fig. 1 shows the radial tree of taxonomic hierarchy, where
the center of the diagram is the root node ”NULL” and the leaf nodes repre-
sent the species ids. The diagram shows that many labels get eliminated as we
traverse radially outward, thus narrowing our search space greatly in reaching
the right species id. In Fig. 2, the bar plot shows that the number of class labels
at the final layer during classification, dropped from 3336 to about 72 with the
introduction of a hierarchy of 5 levels. The taxonomic ranks were contained in
the below mentioned data columns - Kingdom, Phylum, Class, Order, Family,
Genus and Species glc id. As the first 2 ranks were same for all the given in-
stances, only the last 5 levels were used in the tree structure shown in Fig. 1.

Fig. 1. Taxonomic Hierarchic Tree



Fig. 2. Bar plot showing reduction in number of species labels with taxonomic hierarchy
introduction

Fig. 3. t-SNE plot showing the Póincare Embeddings of the taxonomic labels of the
data

2.2 Embedding

Embeddings were introduced in Machine learning especially in Natural Lan-
guage Processing (NLP) WordtoVec algorithms, by Tomas Mikolov [6]. Many
embedding algorithms have since been developed, but most of them use eu-
clidean distance as the measure of similarity. However, since hierarchical vectors



form a tree structure which resembles a hyperbolic curve as seen in Fig. 1, using
hyperbolic distance as the measure of similarity embeds species vectors aptly.
Póincare embeddings [7] can be used represent hierarchical vectors. The Fig. 3
shows a t-SNE plot [9] of the Póincare embeddings created in experiments. The
named dots are the class names and the other indistinct dull spots belong to each
unique label in other lower level taxonomic ranks. The axes shown in the plot are
used to visualize the n-dimensional vectors in a 3D space but are not correlated
to any coordinate system. From the plot, it can be inferred that the class labels
are embedded far apart and the corresponding lower ranks are clustered along,
thus preserving hierarchy.

2.3 CLNN architecture

The CNN used is the state-of-art ResNext model architecture [10] that com-
bines Inception [8](parallelized convolutions) and Resnet [3](sequential layers
with residues) together. The first + symbol in the Fig. 4 shows the global av-
erage pooling of 256 parallel convolutions, while the second + represents the
concatenation of input residue to the output from that block. CNNs are used
to extract meaningful spatial features from the given tiff images. These features
are repeated over 5 time steps and passed on to the LSTM layer to predict the
taxonomic ranks. At each time step, the LSTM predicts the taxonomic ranks
namely class, order, family, genus and species as shown in Fig 5. The 3 Dense
layers containing [128,128,5] neurons respectively, follow the LSTM and are time
distributed, which ensures that the logcosh loss is calculated and the errors in
Póincare embedding predictions are back-propagated to both the LSTM and
CNN layers with equal weights for each time step. This helps the CNN work
with the LSTM, and provide features that help the LSTM improve its predic-
tions. No pre-trained weights were used and hence the model trains entirely on
the data provided.

Fig. 4. CLNN architecture



Fig. 5. LSTM time-step predictions

3 Experiments and Results

The GeoLifeCLEF 2018 dataset, consists of 2,18,000 tiff images, with each tiff
image containing 33 raster layers of environmental features. The batch size for all
experimental purposes was fixed at 32. The CLNN model proposed contains 23M
trainable parameters and 32,000 non-trainable parameters. The learning rate of
the model was set to the default value of 0.001. The codes were written in Keras
API with back-end as tensorflow. Python packages like numpy, scikit-io, tifffile,
PIL and pandas were used for data preprocessing. The resource configurations
include 4GB dedicated graphics by Nvidia GEFORCE 840M processor and 12GB
CPU memory. Different combinations of main concepts mentioned earlier were
used to make the following runs.

SSN 1 The CLNN model used the given 33 layers of spatial feature maps to
predict the taxonomic ranks of species. Every layer of each tiff image was first
center-cropped to a size of 32x32 and then fed to the model which ran for 5 time
steps classifying the image into taxonomic ranks. However the model was not
trained to classify each rank .i.e. the back-propagation algorithm ran only for
species classification and not for the other ranks. Adam optimizer was used to
find the minima of the sparse categorical cross-entropy loss function.

SSN 2 The concept of embeddings was introduced and an independent
model was used to create the embeddings of 10 dimensions between each pair of
taxonomic ranks .i.e. class labels were embedded to find order, order labels em-
bedded to find family and so on. The embedded vectors were used as identifiers
of the unique labels in the CLNN model. So the architecture was modified to
predict a 5 time-stepped sequence of 10 dimensional vector, where each vector
corresponds to its unique taxonomic rank labels. However, these embeddings
did not capture the context of hierarchy, which was not used for creating them.



The back-propagation algorithm runs only for the last time step .i.e. the species
predictions. Adam optimizer was used to find the minima of a MSE loss function.

SSN 3 The concept of Póincare embeddings was used and binarization was
used to convert each ordinal feature layer into n-1 layers, where n stands for the
number of categories it can assume. All images were fed into the model with the
original dimensions of 64x64. The CLNN model was made to learn each level
in the taxonomic hierarchy, by adding a time distributed wrapper around the
layers following the LSTM. The model predicts the Póincare embedded vector of
5 dimensions, at each time step for a particular image which is then decoded to
find the corresponding labels. The ranks of species were calculated based on the
distance between the learned embeddings and the model predicted embeddings
of the species. Since Póincare embeddings was used, the logcosh loss function
was used with Adam optimizer by the model for a batch size of 32 tiff images.

SSN 4 All images were fed into the model with the original dimensions of
64x64. A time distributed wrapper was added to the layers following the LSTM
segment of the CLNN to ensure the back propagation algorithm applied to every
time step, thus enabling the model to learn the entire taxonomic hierarchy.
Again, the concept behind binarization was applied to ordinal feature layers.
The Adam optimizer was used to find minima of sparse categorical cross-entropy
loss function, as the final outputs were one-hot encoded.

The metric used to measure model efficiency is Mean Reciprocal Rank(MRR)
which is calculated as,

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

The results are calculated for both training and testing datasets and shown
in Table 1.

Table 1. Accuracy and MRR of each run

Run Name Training set accuracy Test set MRR

SSN 1 0.15 0.0004
SSN 2 0.22 0.0013
SSN 3 0.38 0.0030
SSN 4 0.25 0.0016

4 Conclusion and Future Work

The hybrid CLNN model with the power of taxonomy resulted in low accuracies
initially but showed promising surge in the later stages(0.004 to 0.0030). The use
of Póincare embeddings along with learning taxonomy at each time step, showed
best results so far. However, these relatively low values can be attributed to some



or all the following reasons. The LSTMs need a large number of epochs to learn
the sequences but due to the processing and resource bottlenecks, the LSTM was
trained only for a few epochs. The mathematical complexity involved in incor-
porating Póincare Embeddings for the taxonomic prediction is still debatable.
Thus fine tuning the hyper parameters of the CLNN model to maximize the use
of taxonomy and embeddings can be incorporated in future. The use of embed-
dings at output levels are hard to model as they are n-dimensional float values
for each label and cannot be easily predicted by model within a few epochs thus
displaying huge errors at starting stages. To find the top n ranks of species, the
distance between model predictions and learned embeddings were compared. As
the embeddings were calculated using different functions and CLNN trained on
different loss function, the distances calculated need not belong to either coor-
dinate system thus giving curious results in some cases. Also the shuffle among
patch ids and species ids predicted by model may be attributed to bottlenecks
in CPU and GPU computations owing to the use of Sequence generator.

CLNN can be modularized in the future, by training the CNN and LSTM
separately, to avoid misleading gradient problem, wherein the errors made by
LSTM need not be reflected into CNNs feature generations. The model would
thus function like image-captioning with CNN features being fixed and LSTM
training to understand sequences from these fixed features. Yet another family
of thoughts could give rise to Branch-CNN [11] in which the coarse layers are
used to predict lower level hierarchy and finer layers to predict higher level
hierarchy. Each branch trains specifically for the corresponding taxonomic rank
thus compartmentalizing the CNN’s features generated.
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