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ABSTRACT

In recent years, Database Management System have seen
advancements in two major sectors, namely functional and
hardware support. Before, a traditional DBMS was suffi-
cient for performing a given operation, whereas a current
DBMS is required to perform complex analytical tasks like
graph analysis or OLAP. These operations require addi-
tional functions to be added to the system for processing.
Also, a similar evolution is seen in the underlying hard-
ware. This advancement in both functional and hardware
domain of DBMS requires modification of its overall archi-
tecture. Hence, it is evident that an adaptable DBMS is
necessary for supporting this highly volatile environment.
In this work, we list the challenges present for an adaptable
DBMS and propose a conceptual model for such a system
that provides interfaces to easily adapt to the software and
hardware changes.

1. INTRODUCTION

In recent years, a traditional Database Management Sys-
tem (DBMS) is required to also perform various complex
operations that are not directly supported by it. To per-
form these special analytical operations, several tailor-made
functions are integrated into the DBMS [12]. Further, the
efficiency of a DBMS depends on the throughput of the un-
derlying hardware. DBMS operations are ported to differ-
ent specialized hardware to achieve better throughput. This
heterogeneity of functionalities and hardware systems re-
quire modifications of the existing DBMS structure incur-
ring additional complexities and challenges.

In the current context, various analytical tasks such as
graph processing, or data mining are executed in DBMSs [8,
9]. These functionalities are ported to a DBMS with an
overhead of altering the overall architecture of the system.
However, modification of the complete system structure is
time consuming and also not all components are tuned for
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efficiency [12].

Further, the throughput of any software system depends
on its underlying hardware. Many specialized compute de-
vices are fabricated to perform certain specific tasks effi-
ciently. These devices trade-off higher efficiency in cer-
tain tasks for generality. They are used as additional co-
processors along with the CPU for better throughput. One
of the commonly used co-processor is a GPU, which is
mainly used for enhancing graphical processing in a sys-
tem. The parallelism in GPU has been already exploited
extensively for several DBMS operations [3, 1]. Similarly,
other devices are available such as MIC (Many Integrated
Cores), APU (Accelerated Processing Unit), FPGA (Field
Programmable Gate Array), etc., that could be exploited for
efficiently executing DBMS operations. The major challenge
in integrating this hardware, is the execution of the device
specific variant of the same DBMS operation optimized for
the given hardware.

Thus, the availability of different hardware enables a new
level of parallelism that we call cross-device parallelism. In
this level, a user given query is executed in parallel among
different devices for concurrent execution. Along with cross-
device parallelism, we also have the traditional pipeline and
data parallel execution of functions to increase the efficiency.
These dimensions of parallelism incurs additional complex-
ity of efficiently traversing them to determine the optimal
execution path for executing a given query.

Along with optimization, the heterogeneity of hardware
requires concepts for reducing the data transfer cost among
different devices. In a main memory DBMS, the device
transfer bottleneck exists between main-memory and co-
processing devices. Hence, it is also crucial to minimize
the data transfer time for improving the efficiency of DBMS
processing.

Hence, heterogeneity of functions and hardware has mul-
tiple challenges to be addressed and requires a system that
is adaptable for these changes. In this work, we provide our
insights on the challenges present in developing an adaptive
database system and the techniques on overcoming these
challenges. As there could be more functionalities and hard-
ware available in future to be integrated into DBMS, we
focus on a plug’'n’play architecture that enables addition of
these newer functions and hardware with considerably lesser
overhead than upgrading the complete architecture. This ar-
chitecture provides interfaces for integrating different func-
tionalities and hardware into DBMS with less effort.



The main contributions from our work are,

e The existing challenges for an adaptive DBMS in the
context of hardware and software heterogeneity.

e The concepts for developing an adaptable DBMS with
plug’n’play capabilities.

The subsequent paper is structured as follows. In Sec-
tion 2, we provide an overview of the different devices used
for DBMS and list out the challenges in using them. Then
in Section 3, we discuss about the various challenges present
due to functional and hardware heterogeneity in DBMS and
in Section 4, we provide our concepts on developing an
adaptable DBMS that addresses these challenges. The con-
ceptual discussion in this paper are already explored in dif-
ferent works and we detail about them in Section 7. Finally,
we provide the summary of the paper in Section 8.

2. DBMS IN HETEROGENEOUS HARD-
WARE ENVIRONMENT

Relying on CPUs as the working horse is approaching the
limits of their efficiency [2]. There are multiple works con-
ducted to port the existing database operations to different
hardware. We discuss these devices and their DBMS sup-
port below.

GPU

Single core of the GPU has a lower clock frequency com-
pared to a CPU core, a GPU features several hundreds of
them compared to several tens of cores that current CPUs
offer. However, especially memory accesses have high la-
tency that needs to be hidden by processing. To this end,
they spawn multiple threads for a given function and do
context switching to hide the latency. This massive paral-
lelism in GPU are useful in performing data intensive DBMS
operations. Some of the DBMS using GPU are, CoGaDB,
GPUDB, etc,. [3, 7].

The major open challenges in using GPU for DBMS are,

1. Cost model for determining the executable operator in
GPU during runtime

2. Combined query compilation and execution strategies
for CPU and GPU.

FPGA

Another hardware that has gained much attention in recent
years is a FPGA (Field Programmable Gate Array). They
are programmed either using RTL (Register Transfer Level)
languages (VHDL, Verilog) or via HLS (High-Level Synthe-
sis), where the circuits are extracted for example from C or
OpenCL code. This provides a platform that can be tuned
to perfection for any given domain specific operation pro-
viding higher throughput.
The open challenges in using FPGA are,

1. Selection and placement of operators for partial recon-
figurable implementations

2. Efficient pipelining between different operations at
runtime

Other Devices

There are other hardware used for DBMS are MICs (Many
Integrated Core) and APUs (Accelerated Processing Units).
In case of MIC, there are multiple CPU cores available for
processing connected with each other using an on-chip bus
system. These processors are capable of performing complex
computations. Whereas, APUs have both CPU and GPU in
a single die. Here, both both CPU and GPU have access to
the same memory space (i.e. main memory).

3. CHALLENGES IN HETEROGENEOUS
ENVIRONMENTS

To have a DBMS adaptable to both changing hardware
and software the following challenges has to be addressed.

3.1 Device Features

Adding DBMS operation to a new processing device re-
quires novel ways to exploit the device without compromis-
ing the overall system design. Hence, one of the major chal-
lenge is to reorganize the processing functions based on the
hardware features available and must also adapt the under-
lying functions for efficient execution in the device.

3.2 Abstraction Hierarchy

It is shown that speedup gains for any particular database
operation can be achieved by performing device-specific pa-
rameter tuning of the given operation [5]. Removing these
device-specific parameters aids adaptability but makes it
hard to tune for optimal execution as each device has its
own advantage. Due to this polarity in abstraction versus
specialization between functions and devices, it is required
that we find a good abstraction level for the operations that
provides both an interface to write new functions and also
exploits the hardware for optimal efficiency.

3.3 Parallelism Complexity

The growth of DBMS in both functional and hardware
level provides various parallelization opportunities. Pres-
ence of multiple devices creates an additional paradigm :
cross-device parallelization. Using this type of parallelism,
the given query is divided into granular parts based on the
level of abstraction selected and these functional primitives
are distributed among the different processing devices for
parallel processing. We detail the different types of paral-
lelization below,

Functional Parallelism

In multiple instances, the incoming queries have various sub-
operations that run independent to each other. One com-
mon example is the availability of multiple selection pred-
icates combined using logical operations. These predicates
can be executed in parallel among the different devices and
the results are combined in next steps. Thus, the other
way round: identifying and dissecting and identifying these
parallel operations provide additional capabilities for simul-
taneous execution in the form of functional parallelism. The
major challenge in this parallelism is the intermediate step
of materialization of the results to be processed in the next
operator in the pipeline. There is also a synchronization
overhead present in this parallelism due to the differences in
the execution time for different processing devices.



Data Parallelism

In contrast to functional parallelism, data parallelism does
not split an operation into to different functions but exe-
cutes same operation on different partitions of the data con-
currently. This method also has a similar synchronization
overhead of waiting for all the devices to finish processing.
The major disadvantage of this parallelism is the additional
step to merge results from different devices.

Cross-Device Parallelism

The above mentioned functional and data level parallelism
are decided after the selection of processing devices. As we
mentioned earlier, each devices have their own perks and
must be utilized to the maximum extent. Hence, it is neces-
sary to decide on the implementation details for the given de-
vice that exploits the hardware for efficient execution. More-
over, the above mentioned parallelization strategies can also
be realized in the device level. In terms of device-level func-
tional parallelism, it could be a multiple operator running in
parallel in different devices or in a pipeline with communica-
tion within the devices. Similarly, the data parallelism could
also be realized via suitable cost functions for operations on
devices.

3.4 Optimization Strategies

The different levels of parallelism for execution of a query
provide additional opportunities for fine tuning the opera-
tions but has the complexity of selecting optimal execution
path. As the decision of top level parallelism influences the
subsequent levels, selection of the right execution path for a
given query is critical. However, the important drawback of
this multi-level parallelism model is the search space explo-
sion. There are various options available for any given level
thereby having multiple combinations in total for selection.
This search space of parallelism has to be traversed for find-
ing the optimal execution path. Deciding the optimal path
of a single operation in a query can be complex (e.g, join
order optimization) which in addition with new dimensions
of multiple devices increases the complexity further. Hence,
newer methods for exploring the various optimization op-
portunities are to be determined.

4. ADAPTABLE DBMS

The mentioned challenges require a DBMS architecture
that efficiently handles the diversity in both functionality
and hardware. Based on the challenges, we have found areas
to be explored for designing an adaptive DBMS.

For a better explanation of the challenges we use the TPC-
H query6 as our motivating example. The query selects data
from multiple columns, performs multiplication of results
and outputs the aggregate. These three operations are in
turn executed using multiple granular primitive functions.
The different primitives used for processing the given query
are,

e Selection primitive selects the values from the given
column. Bitmaps are used as output format to reduce
the data transfer size, as each bit carries the selection
information of single value.

e Logical Operation primitives performs logical func-
tions on the bitmaps produced by the different selec-
tions.
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Figure 1: Optimization strategies for TPC-H Q6

e Materialize extracts the selected column values using
the given bitmap input.

e Arithmetic performs arithmetic operation over col-
umn values.

¢ Reduce performs aggregation of values.

The flow of execution of query6 using these primitives
is given in in Figure 1. The figure also illustrates different
optimizations that can be done for a simple query like in the
figure. We discuss about the various optimization strategies
in the subsequent sections.

4.1 Granularity of Operation

One of the main challenges in the proposed adaptable sys-
tem is the level of granularity required for optimized process-
ing. Based on the capabilities of the devices, we could either
run a few complex operation or split them into more gran-
ular sub-operations and then also execute those ins parallel
among multiple devices.

At the top level, each database operation acts as a
set of primitives connected together to provide a final
result. The more granular a function is split, the more
hardware sensitiveness comes into play. For example, the
access patterns in CPU and GPU are different for efficient
processing. Further, database operations are data centric
where every operation is applied to a massive amount of
data. To aid parallel data processing, we propose the use
of explicitly data parallel primitives to be combined into
complete DBMS operations. There are many works on
primitive based DBMS query processing. He et al., propose
multiple primitives such as Split, Filter, etc., for GPUs [7].
Other primitives such as prefix-sum and its variants, scatter
and gather are also proposed for efficient data parallel



execution [6]. This approach provides a fail safe: when a
newer device is added the primitives could still run on them
with minor changes to the functionality. This availability of
different granular levels provide additional benefit enabling
developer to replace the inefficient fine-granular primitives
with custom coarse-granular ones.

4.2 Code Fusion

Implementing primitives in multiple granular levels be-
comes time consuming. Hence, code could be generated
at runtime for the given granularity level of the operation.
This code for execution in an individual device is generated
by combing the primitives for the corresponding device into
single execution process. This reduces the overhead of ma-
terializing data from intermediate steps.
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For example, three selection predicates as shown in Fig-
ure 2 can be either run in different devices (left) and the
results are combined using the logical operations, or the
predicates are all combined into single execution (right).

4.3 In-Device Cache

The current data-transfer bottleneck is between the main
memory and the processing devices itself. CPU has faster
access than other devices as it is directly linked to the main
memory, whereas in case of the co-processors, data must be
transported via connections with higher latency and pos-
sibly more limited bandwidth, such as PClexpress. Thus,
even highly efficient GPUs can have sub-optimal perfor-
mance than CPUs due limited access capabilities to main
memory. Hence, using device memory as data cache is cru-
cial for high compute throughput. In contrast to this, these
external devices have limited memory. Hence, it is not al-
ways possible to store all the necessary data on the device
itself. Thus, the host system must determine the hot set of
data to be stored in the device memory using the execution
plan for the given query and monitoring the data transfer
to the device and .

4.4 Execution Variants

Each primitive selected for executing a given query can
have different characteristics to choose from based on the
executing device. For example, complex branching state-
ments are handled efficiently by CPUs, whereas GPUs are
capable of massive thread level parallelism with less control
flow. In addition, the data access pattern must be selected
the memory architecture of the given device. For example,
coalesced data access provides efficient memory access in
GPU. Finally, hardware specific vectorization of DBMS op-
erations (SIMD) is also an important parameter in database

processing to exploit the hardware capabilities.

Also in an abstract level, characteristics of the primitive
itself can affect system throughput. The choice output for-
mat and the number of intermediate steps are some of the
characteristics that influence the overall system. For exam-
ple, using bitmap results from selection in external devices
will be generally more efficient than transferring complete
column.

4.5 Device-Related Parameter Tuning

Finally, once we have decided on the device and its corre-
sponding function to execute, certain device related param-
eters like global and local work group sizes have to be tuned
for further improvement of the overall efficiency. These de-
vice related parameters are tuned for efficiency by moni-
toring the performance of execution. There is a feedback
loop from the devices, providing execution specific informa-
tionused for tuning the primitive for higher efficiency.

Other than these above mentioned challenges, one of the
major challenge is to formulate an order for using the strate-
gies to extract an efficient execution plan. Since all the
strategy mentioned above are inter-dependent, selection of
one depends on the other. In order to have a standardized
execution flow, we propose an architecture that has all the
necessary components used for using the above strategies.

5. CONCEPTUAL ARCHITECTURE

As mentioned earlier, the overall efficiency of processing a
query in a heterogeneous environment requires all the men-
tioned optimization strategies to be applied to a given query.
To aid this, we propose a DBMS architecture that provides
a structure to handle the optimization from global abstrac-
tion to local device specific levels. The structure is shown

in Figure 3.
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Figure 3: Conceptual Architecture

The given query is first subjected to the general logical
optimization and access path selection steps. Global opti-
mization is done over the resultant query from logical and
access path selection steps. This step determines the level of
granularity for the given query. once selected, these granu-
lar operations are provided to their respective device based
on decision given using hardware supervisor. Finally, lo-
cal optimization is done the granular operations to tune for
their respective devices and the kernels that always work
together are combined together. The components used for
these optimizations done are discussed below,



Global Optimizer: The global optimizer processes the
complete query and provides the best execution plan for the
whole query. It decides on the level of granularity to be
used as primitive. In addition to the different granularities,
the parallelism strategies (i.e. pipeline and data) are also
selected here.

The different schema available for executing a single query
leads to search space explosion. Traversing the whole design
space might be time consuming and hence a machine learn-
ing based cost estimation algorithm is used [4].

Hardware Supervisor: The hardware supervisor pro-
vides statistical information about the underlying devices.
This helps in improving the decisions made by the global
optimizer. It combines the characteristics of individual de-
vices into a single integrated system view. This also com-
municates with the devices and supervises execution of op-
erations in the individual devices.

Storage Manager: The storage manager provides in-
formation about the location and availability of data to be
processed. This aids in determining the transfer costs in or-
der to aid selecting the execution device. Also, it is evident
that not all devices have direct access to the main memory.
Hence, it is the task of storage manager to partition and
transfer data to the respective devices.

Device Manager: Each device manager has two sub-
components: Monitor and Local optimizer. Monitors pro-
vide device specific information and the local optimizer holds
information about the primitives implemented in the corre-
sponding device and also about the current workload. It
uses these information to perform device specific optimiza-
tions to further increase the processing efficiency of a given
operation.

6. PRELIMINARY EVALUATION

To evaluate the efficiency of different parallelism mecha-
nisms, we executed the TPC-H query 6 by combining five
different primitives namely, Bitmap, Logical, Materialize,
Arithmetic and Reduce. All these primitives are data paral-
lel and are implemented using OpenCL. The execution path
for the query is shown in Figure 1. For our evaluation, we
considered four different execution models as explained be-
low.

Baseline linear execution: In the baseline version, we
execute the linear Q6 compiled query without parallelism
or primitives. The result of this execution are used as a
benchmark to compare with other parallel implementations.

Single Device Primitives (SDP): In singular device
primitive version, the parallel primitives mentioned above
are executed in a single device. The results for complete
execution of parallel primitives in both CPU and GPU are
recorded for analysis.

Multiple Device Pipelined (MDP): In the multi-
ple device pipelined variant, we split the query into two
phases: selection and aggregation and execute them in a
pipeline. We perform selection in CPU and aggregation in
GPU (MDP - CPU + GPU) and vice versa (MDP - CPU +
GPU) recording their results.

Cross-Device Functional Parallel (CDFP): Finally,
the given query is split into functional units and the inde-
pendent units are executed concurrently in the devices.

All these models are executed on a machine running
Ubuntu OS version 16.04 and gcc version 5.4.0 with Intel
Core i5 CPU and Nvidia Geforce 1050 Ti GPU.
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Figure 4: Execution model Variants- results

From the results, we see that the single device execution
model for CPU has the lowest efficiency for processing Q6
and is even slower than the linear execution variant. This is
due to the additional materialization step to be performed.
In case of single device execution of the query in GPU, the
system is nearly 2.5x faster than the CPU variant and 2x
faster than the scalar version.

For the multi device pipelined model, we see the CPU se-
lection with GPU reduce variant is 2x slower than its coun-
terpart. The selection phase in CPU takes considerable time
for processing the select, logical and materialize primitives,
whereas GPU selection higher execution time only for ma-
terializing the values.

Finally, we see that cross-device functional parallelism
model has the highest efficiency in processing the query.
This is mainly due to the multiple selection predicates avail-
able in the query. The latency of execution is reduced by
executing the selection and materialization steps in paral-
lel. The detailed information of the execution of individual
primitives in this variant is shown in Figure 5.
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Figure 5: Cross-device parallelism - results

From the chart, we see the devices wait at multiple in-
stances for the other to finish to continue processing the
query. In case of selection and materialization, GPU waits
until CPU has processed its values before executing the next
results. Also, the CPU is idle when the GPU is computing
the results of arithmetic, logical and aggregation operations.

From these results, we infer that using functional par-
allelism enhances the efficiency of query processing. The
advantage of functional parallelism comes with the disad-
vantage of synchronization overheads due to differences in
processing speed among the different devices.



7. RELATED WORK

Karnagel et al., have explored the adaptivity in DBMS
using primitives for executing a query [10]. They group a
subset of primitives to be executed in a single device into
an execution island and process them. Their also use device
level caching to reduce transfer overhead. Once the inter-
mediate result for an island is computed, an intermediate
estimation step is done to select the subsequent devices. In
our method, the execution path is given by an optimizer and
is executed in by the devices.

In terms of granularity of operators, He et al,. have given
a comprehensive set of data parallel primitives that can be
ported into various hardwares [7]. Our research comple-
ments theirs by adding new primitives and additional func-
tionalities to the already defined ones. Similarly, Pirk et al,.
have also given an abstracted set of primitives that could be
used in various platforms [11].

8. CONCLUSION

We detailed in this paper, the need for an adaptive ar-
chitecture for DBMS that can be easily modified based on
the underlying hardware and the software functionalities.
In this adaptable DBMS the executable operations must be
generalized for high interoperability whereas, device specific
operations are needed for higher efficiency. Along with chal-
lenge in selecting the right abstraction level, there are multi-
ple challenges available for an adaptable DBMS in a hetero-
geneous environment. OQur main contribution in this work
is the framework for overcoming these challenges with the
concepts listed below,

e Granular levels for DBMS operations

e Device specific code generation

e In-device data caching techniques

e Device and functional variants of operator

e Hardware and functionality based tunable parameters

The interfacing of different components of DBMS is a chal-
lenging task in itself. A plug’n’play architecture in DBMS
removes these overheads by providing interfaces for support-
ing additional hardwares and softwares. Also, an adaptable
DBMS could additionally help in optimizing a new function-
ality that is formed by combing the given set of granular
primitives as the primitives are in itself tuned for efficiency.
Finally, this adaptive architecture of DBMS de-couples the
functional and device based execution layers thereby provid-
ing independence between the operation and its correspond-
ing execution unit.
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