
Beyond Straightforward Vectorization of Lightweight Data
Compression Algorithms for Larger Vector Sizes

Johannes Pietrzyk, Annett Ungethüm, Dirk Habich, Wolfgang Lehner
Technische Universität Dresden

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

ABSTRACT
Data as well as hardware characteristics are two key aspects for
efficient data management. This holds in particular for the field
of in-memory data processing. Aside from increasing main mem-
ory capacities, efficient in-memory processing benefits from novel
processing concepts based on lightweight compressed data. Thus,
an active research field deals with the adaptation of new hardware
features such as vectorization using SIMD instructions to speedup
lightweight data compression algorithms. Most of the vectorized
implementations have been proposed for 128-bit vector registers.
A straightforward transformation to wider vector sizes is possible.
However, this straightforward way does not exploit the capabilities
of newer SIMD extensions to the maximum extent as we will show
in this paper. On the one hand, we present a novel implementation
concept for run-length encoding using conflict-detection operations
which have been introduced in Intel’s AVX-512 SIMD extension.
On the other hand, we investigate different data layouts for vector-
ization and their impact on wider vector sizes.

1. INTRODUCTION
The continuous growth of data volumes is still a major challenge

for efficient data processing. This applies not only to database
systems [6, 16], but also to other areas, such as information re-
trieval [3, 20] or machine learning [8]. With growing capacities
of main memory, efficient analytical in-memory data processing
becomes viable [6, 16, 13]. However, the gap between CPUs com-
puting power and main memory bandwidth continuously increases
being now the main bottleneck [6]. To overcome this issue, the
mentioned application domains have a common approach: (i) en-
code values of each data attribute as a sequence of integers using
some kind of dictionary encoding [1, 5] and (ii) apply lightweight
lossless data compression to each sequence of integers. Besides re-
ducing the amount of data, operations can be directly performed on
compressed data [8, 1, 11].

For the lightweight lossless compression of a sequence of inte-
gers, a large corpus of algorithms has been developed [1, 3, 20, 27,
2, 10, 14, 18, 19]. In contrast to heavyweight algorithms, like arith-
metic coding [23], Huffman [12], or Lempel Ziv [26], lightweight

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

algorithms achieve comparable or even better compression rates [1,
3, 20, 27, 2, 10, 14, 18, 19]. Moreover, the computational effort
for (de)compression is lower than for heavyweight algorithms. To
achieve these unique properties, each lightweight compression al-
gorithm employs one or more basic compression techniques. There
are currently five basic lightweight techniques known: frame-of-
reference (FOR) [10, 27], delta coding (DELTA) [14, 18], dictio-
nary compression (DICT) [1, 27], run-length encoding (RLE) [1,
18], and null suppression (NS) [1, 18]. These five techniques ad-
dress different sub-goals. While FOR, DELTA, and DICT consider
the mapping to smaller values, the goal of RLE is to reduce the
number of values on the logical level, and NS addresses the physi-
cal level of bits or bytes to reduce the number of bits per value. This
explains why lightweight data compression algorithms are always
composed of one or more of these techniques.

In recent years, the efficient vectorized implementation of these
algorithms using SIMD (Single Instruction Multiple Data) instruc-
tions has attracted a lot of attention [20, 14, 24], since it further re-
duces the computational effort. Generally, SIMD extensions such
as Intel’s SSE (Streaming SIMD Extensions) or AVX (Advanced
Vector Extensions) have been available in modern processors for
several years. SIMD instructions apply one operation to multi-
ple elements of so-called vector registers at once. The available
operations include parallel arithmetic, logical, and shift operations
as well as permutations. Most of the developed vectorized imple-
mentations of lightweight data compression algorithms have been
developed for a fixed vector width of 128 bits (corresponding to
Intel’s SIMD extension SSE). However, hardware vendors have in-
troduced new SIMD instruction set extensions operating on wider
vector registers in recent years. For instance, Intel’s Advanced
Vector Extensions 2 (AVX2) operates on 256-bit vector registers1

and Intel’s AVX-512 uses even 512-bit vector registers. The wider
the vector registers, the more data elements can be stored and pro-
cessed in one vector. For example, while an SSE 128-bit vector reg-
ister can store four uncompressed 32-bit data elements, an AVX2
256-bit vector can store eight (2x) and an AVX-512 512-bit vector
can store 16 (4x) of such data elements. Consequently, the SIMD
instructions on these wider vector registers can also process 2x re-
spectively 4x the number of data elements in one instruction, which
promises significant speed ups.

To obtain implementations of lightweight compression algorithms
for wider vector sizes (AVX2 and AVX-512), the 128-bit imple-
mentation can be used as foundation. In a straightforward trans-
formation, the 128-bit SIMD operations can be substituted by the
corresponding operations for 256 or 512-bit vectors. This is possi-

1Note that 256-bit vector registers had already been intro-
duced with Intel’s AVX. However, most instructions relevant to
lightweight data compression were only introduced with AVX2.

1
1
2
3
4
5
5
5
6
7
9

10
10
11
12
13

1123

vec0hor

vec1hor

4555

...

53 52 51 41

vec2hor vec1hor= vec0hor

53

52

51 41aggregation:

...

...

x0

d = 4

1
1
2
3
4
5
5
5
6
7
9

10
10
11
12
13

1123

vec0hor

vec1hor

1234

...

43 32 21 11

vec2hor vec1hor= vec0hor

43

32

21 11aggregation:

...

...

x0

d = 1

(b) Horizontal layout using overlapping loads(a) Horizontal layout using aligned loads

Figure 1: Example for loading and processing data using 128-
bit vector registers alongside a horizontal layout.

ble in almost all cases, since many instructions offered by SSE are
also offered by AVX2 and AVX-512 on wider vectors. However,
this straightforward transformation does not exploit the capabili-
ties of newer SIMD extensions to the maximum extent. To show
that, we make the following contributions in this paper:

1. We propose a novel vectorization approach for run-length en-
coding using new instructions which are available in AVX-
512 in Section 2. Additionally, we compare our novel ap-
proach with the state-of-the-art vectorization and present the
benefits of our novel approach.

2. We investigate different data layouts for vectorization, i.e.
the horizontal and vertical layout, and their impact on differ-
ent data sizes in Section 3.

Finally, we review related work in Section 5. Then, we conclude
the paper by summarizing our lesson learned and present future
work in Section 4 and 6.

2. VECTOR PROCESSING AND NOVEL IN-
STRUCTIONS IN AVX-512

To use vector instructions for a sequence of data elements, data
needs to be transferred from memory into vector registers. This
can be done using an aligned load of consecutive data as illustrated
in Figure 1(a). Afterwards the registers can be processed using a
specific vector instruction. Every element within the first operand
vector register is processed with the corresponding element from
the second operand vector register. Thus, the nth element from a
sequence of data is processed with the (n + d)th element, while
the distance d equals the number of values that fit into the used
vector register. This approach is not well suitable for algorithms
which need to process given data with respect to the surrounding
data elements. Nevertheless, most vectorized lightweight compres-
sion algorithms are based on this horizontal data layout [7].

A way to reduce the processable distance d is to use a combi-
nation of an aligned load starting with the nth element followed
by an unaligned load starting with the (n+ 1)th element (see Fig-
ure 1(b)) [7, 21]. While this method allows to process consecu-
tive data, it needs fairly expensive unaligned loads and doubles the
amount of load operations per element. To avoid that, a redesign
by considering new vector instructions could be beneficial.

2.1 Novel Instructions
Intel’s latest version of their vectorization extension is AVX-512.

In addition to an increased vector width of 512-bit (16 x 32-bit),
AVX-512 also offers a variety of new instructions. One of the new
instruction feature sets is called Conflict Detection (AVX-512 CD)
which allows the vectorization of loops with possible address con-
flicts. Some key features of AVX-512 CD are (i) the generation of
conflict free subsets, i.e. subsets which contain no equal elements,
and (ii) the count of leading zeros of the elements in a vector.

… A A C B A

Read direction

Input register

… b4 b3 b2 b1 b0 Output register

4 3 2 1 0

C B A Previous
elements

0 0 1filled
with 0’s

A C B A Previous
elements

1 0 0 1

No equal previous elements à bitmasks are zero

b3b4filled
with 0’s

…

= "= " ≠ " ≠ " = "≠ " ≠ "

_mm512_conflict
_epi32(...)

Vector Position

Figure 2: Example for the _mm512_conflict_epi32 intrinsic.

For example, the intrinsic _mm512_conflict_epi32 cre-
ates a vector register containing a conflict free subset of a given
source register. An example for this is shown in Figure 2. In other
words and as depicted, this intrinsic transforms a vector register
with 16 32-bit elements (illustrated by A,B and C) in a new vec-
tor register with 16 bitmasks (each represented by 32-bit values).
Each bitmask encodes the positions of equal previous elements in
the vector. The bitmasks for the first three elements A, B, and C
are zero in our example, because there are no equal previous ele-
ments. The A element at the third position in the input register is
in conflict (equal to) with the element at position 0 in the input reg-
ister. Thus, the least significant bit of the corresponding bitmask
is set to 1, the rest of the bitmask is filled with zeros. The ele-
ment A at position 4 is in conflict with the previous elements at
positions 3 and 0 (equal previous elements). Therefore, the corre-
sponding bits in the bitmask are set to 1, all other bits are zero. An-
other CD-feature is the intrinsic _mm512_lzcnt_epi32, which
counts leading zeros. Given a vector of 16 values, this intrinsic
counts the number of leading zeros for all values at once and writes
the results in a vector register with 16 values.

To show the impact of these novel instructions, we redesigned
Run-Length Encoding (RLE), a well-known lightweight compres-
sion technique [1, 18], to use the innovations of AVX-512 in an
appropriate way [22]. RLE is the only compression technique tack-
ling uninterrupted sequences of occurrences of the same value, so
called runs. In its compressed format, each run is represented by
its value and length. Thus, the compressed data is a sequence of
such pairs. Our new approach, called RLE512CD, differs signifi-
cantly from the state-of-the-art vectorized RLE. However, in both
cases, there are 4 steps, which are repeated until all elements are
processed:
Loading Step: In this first step, the input elements are loaded into

a vector register.
Run Detection Step: In the second step, we detect if there are any

runs beginning in this register and where they begin or end.
Run Length Detection Step: The run length of the finished runs has

to be determined in the third step.
Storage Step: The determined runs are written to memory.

However, there is a plethora of possibilities for the implementa-
tion these steps. First, we describe the state-of the-art comparison-
based approach. Then, we present our novel CD-based approach.

2.2 State-of-the-Art Vectorization of RLE
Generally, to compress a sequence of integers, the correspond-

ing runs have to be determined and this can be done by comparing
each element with its predecessor. If they are equal, a run contin-
ues. If they are not equal, a new run starts. These comparisons
can be done for more than one element at once using SIMD in-
structions as shown in [7, 21]. In detail, this state-of-the-art RLE
comparison-based vectorization works as follows, whereby the au-

Figure 3: Run detection using conflict detection instructions.

thors used 128-bit vector registers (RLE128):
Loading Step 1: One 128-bit vector register v1 is loaded with four

copies of the current input element.
Loading Step 2: The next four input elements are loaded into a

vector register v2.
Run and Run Length Detection Step 1: The intrinsic

_mm_cmpeq_epi32() is employed for a parallel compar-
ison, so that the four elements in v1 and v2 are pair-wise
compared at once. The result is stored in a vector register.

Run and Run Length Detection Step 2: Next, a 4-bit comparison
mask is obtained using the intrinsic _mm_movemask_ps().
Each bit in the mask indicates the (non-)equality of two cor-
responding vector elements. The number of trailing one-bits
in this mask is the number of elements for which the run
continues. If this number is 4, then a run’s end has not been
reached and the execution continues at Loading Step 2 (new
iteration). Otherwise, a run’s end is reached that means that
run value and run length are appended to the output during
the Storage Step. The execution continues with Loading Step
1 at the next element after the run’s end (new iteration).

Since only common intrinsics are used, this comparison-based
implementation can easily be adapted to 256 and 512 bit-wide reg-
isters by loading more elements in wider registers and by using the
appropriate intrinsics of AVX2 (256 bit) or AVX-512. Additionally,
the Run and Run Length Detection Steps can be merged into one
step in AVX-512, because there is an intrinsic producing a bitmask
directly from the comparison. The corresponding implementations
are denoted as RLE256 and RLE512.

2.3 Conflict Detection-based Vectorized RLE
Our novel approach processes every input element only once.

Hence, the Loading Step always loads 16 new input elements into
a 512-bit vector register. The Run Detection and Run Length De-
tection Steps are less trivial and are explained in more detail below.

Run Detection In the first sub-step, we create a new vector reg-
ister containing a conflict free subset (cfss) of the given source reg-
ister with the 16 loaded elements using the _mm512_conflict_
epi32 intrinsic. The example in Figure 3 shows the first 7 values
of a vector register containing two different values spread over 3
runs. As described above, the newly created vector register con-
sists of 16 bitmasks, where each bitmask shows the equality to all
previous elements. However, for detecting a run, it is sufficient to
know if the direct predecessor of an element is equal because all el-
ements are either the beginning of a new run or the continuation of
another run. If an element is equal to its direct predecessor, the ele-
ment continues a run. If they are not equal, a new run starts. Hence,
only one bit in every bitmask of cfss is of interest, i.e. the bit which
indicates the equality with the direct predecessor. To find this bit
for all elements in parallel, two more operations are necessary:

Figure 4: Run length determination using conflict detection in-
structions.

First (second sub-step), we count the leading zeros of all bit-
masks in cfss (lzcnt). The number of leading zeros should decrease
with every element if a run is continued because there is always one
more bit set in the subsequent element, e.g. the bitmask at position
1 should have 32 − 1 = 31 leading zeros, the bitmask at position
2 should have 32− 2 = 30 leading zeros and so on. If a run is not
continued, the next bit is not set and the number of leading zeros
does not decrease. To find out, if the number of leading zeros is
decreasing, we compare lzcnt with a predefined vector, containing
decreasing numbers, for inequality (third sub-step). As shown in
Figure 3, this comparison returns 0 for every element which con-
tinues a run. Thus, the position of the ones in the final bitmask
indicates the position of the start of all runs in this register. Note
that the first element always starts a new run.

Run Length Detection Fundamentally, the run length is already
encoded in the results of the conflict detection (cfss) operation, be-
cause each continuous sequence of 1s in the bitmasks indicates a
subsequent occurrence of equal numbers. Hence, the number of
the most significant subsequent 1s in the bitmask of every last el-
ement of a run indicates the length of the run. To get this number,
at first the position of the last element of every run has to be de-
termined. This can be done by using the bitmask generated as the
result of the run detection (cfss). Since every 1 in this bitmask in-
dicates the beginning of a new run, we can get the end of the runs
by shifting this mask one bit to the right. Now every 1 indicates the
end of a run. Then, the bitmasks at these end positions in the output
of the conflict detection (in cfss) are selected. In Figure 4, which
continues the example from Figure 3, one bitmask is selected as
an example. To retrieve the number of subsequent set bits in this
bitmask, 3 sub-steps are executed:

1. Shift the elements in the result of _mm512_conflict_
epi32 by the number of leading zeros (leading zeros were
derived during run detection). In Figure 4 we shift by 28 bits.
Now, the sequence is at the beginning of the bitvector.

2. There is no intrinsic for counting leading 1s, so the result
from the previous sub-step is inverted.

3. Then, the leading zeros are counted in the third sub-step. In
the example, there are two leading zeros.

Since the bit for the first element of a run is always set to 0 during
conflict detection, the result has to be increased by 1. Hence, the
run length for the second run is 2 + 1 = 3. In our implementa-
tion, these steps are executed in parallel for all runs by using the
intrinsics shown in Figure 4. Before storing the results, it must
be checked whether the first run of a register is a continuation of
the last run of the previous register. If it is a continuation, the run
lengths are added and the run is stored once.

Storage Step Finally, the run values and run lengths must be
written back to main memory. For this, there are two possible cases:
(a) per integer or (b) per vector. Case (a) represents the output

Figure 5: (a) The number of loaded integer as a percentage of
the integers in the data set. Only RLE512CD shows a constant
behavior. (b) The number of vector instructions per million
loaded integers (excluding loading and storing) is significantly
higher for RLE512CD compared to RLE512 and RLE256.
format proposed by the state-of-the-art implementation [7], where
a sequence of (value, run length)-tuples is stored. An advantage of
option (a) is that the output is independent from the vector word
size. The disadvantage is that the values and run lengths cannot be
loaded sequentially into a vector register again for processing the
compressed values, e.g. for aggregating. Case (b) stores sequences
of values and run lengths which are as long as a vector word, e.g. 16
values followed by 16 run lengths. Option (b) requires the vector
word width as necessary meta data but it is also ideal for processing
the compressed data with vector instructions.

2.4 Evaluation
The state-of-the-art implementation includes branches during the

loading steps, i.e. depending on the properties of the input data, a
different amount of vector loads is executed. Additionally, some
input elements are processed more than once, e.g. if a run ends
after the first element in Run and Run Length Detection Step 2, the
remaining 3 elements are loaded again in Loading Step 1. To an-
alyze the magnitude of this redundant processing, we counted the
load instructions for different average run lengths and all possible
variances for each average run length, whereby we used an input se-
quence with 100 million integers in all experiments. For instance,
the maximal variance for an average run length of 5 is±4 resulting
in the interval [1, 9] for the possible run lengths. Then, we selected
the minimal and the maximal number of load instructions and vi-
sualized them in Figure 5(a) for RLE128, RLE256, and RLE512.
The x-axis shows the average run length and the y-axis shows the
number of loaded elements as a percentage of the elements in the
input sequence, e.g. 200% means that on average every element is
loaded twice. For comparison, we also show the number of neces-
sary vector operations in Figure5(b).

From these experiments, we can conclude that the state-of-the-
art RLE uses a significantly higher number of load operations than
our novel approach. This effect increases when the bit-width in-
creases and when the run length decreases. Additionally, this over-
head is not constant and depends heavily on the data properties. In
contrast, the total number of vector operations is lower for the state-
of-the-art RLE. Thus, it comes down to the number of loaded and
processed integers versus the amount of executed instructions. De-
pending on the system, this can have different effects on the com-
pression speed. We evaluated our approach on an Intel Xeon Phi
KNL 7250. Figure 6 shows the compression speed and the speed-
up for our approach with vectorwise (RLE512CDAligned) and tra-
ditional storing (RLE512CD), and for the state-of-the-art RLE512.

The first obvious finding is that RLE512CD shows an almost
constant compression speed as expected. However, the scatter store
used in RLE512CD is too slow to compete with RLE512. For
RLE512CDAligned, there are 3 different regions: (1) RLE512CDAligned

Figure 6: (a) The compression speed for RLE512 varies de-
pending on the run length and the variance of the run length,
while our novel implementation shows a constant compres-
sion speed. The costs of the scatter store for RLE512CD are
clearly visible. (b) The minimum and maximum speedup for
RLE512CDAligned compared to RLE512.

always outperforms RLE512 for very small run lengths (<12). (2)
Between the run lengths of 11 and 40, there is no binary deci-
sion possible between RLE512 and RLE512CDAligned. RLE512
shows the highest peak performance but also the lowest possible
performance. RLE512CDAligned does not reach the peak perfor-
mance but guarantees a constant compression speed, i.e. it is ro-
bust. (3) For run lengths greater than 40, the state-of-the-art imple-
mentation always shows the highest compression speed. Hence, at
the transitions of these regions, the applied implementation should
be changed. Additionally, a decision between maximal peak per-
formance and robustness must be made in region (2). The same
regions as for the compression speed can be shown for the speed
up in Figure 6(b).

3. DATA LAYOUT CONSIDERATIONS
Generally, the processing of consecutive data elements can be

considered as a great challenge to optimize existing or even new
algorithms using SIMD. In the context of compression, single data
elements are often processed with respect to the surrounding el-
ements, meaning that the distance d should equal one. As men-
tioned in Section 2, this can be achieved by combining aligned an
unaligned loads using a horizontal data layout, ending up in an in-
crease of load operations. However, another challenge using the
horizontal data layout exists when it comes to inter-register aggre-
gations. Frame-Of-Reference Encoding (FOR) is a prominent ex-
ample which uses that kind of operation [10, 27]. FOR encodes the
difference per element within a fixed size frame with respect to the
minimum value of that frame. Thus, the performance of FOR relies
on fast aggregation, namely a minimum operation, for a sequence
of data. While the latest vector extension AVX512-F supports this
kind of operations natively within one vector register, other vec-
tor extensions need additional scalar computations. The discussed
method utilizing overlapping loads cannot handle that kind of chal-
lenge in an efficient way.

To tackle both challenges, a different memory layout seems nec-
essary. Within this layout, consecutive data elements are distributed
to the same lane of different vector registers (see Figure 7a) using
existing vector operations (see Secction 3.2). We used a nxn ma-
trix where n is the vector size, which holds n vector registers with
the corresponding data elements. This approach facilitates a per-
element processing within a given frame while preserving data par-
allelism enabled through SIMD. If the frame size equals the vector
size, even stream based processing can be realized.

3.1 Evaluation
The horizontal FOR algorithm reads a fixed amount of data into

multiple vector registers, performs the vector operation min on all

1
1
2
3
4
5
5
5
6
7
9

10
10
11
12
13

14610

vec0trans

vec1trans

15711

vec2trans vec1trans= vec0trans

1110 76 54 11

...

aggregation:

x0x1x2x3

d = 1

11 67
45 1011
23 910
55 1213

_mm_unpacklo_epi32([0], [2])
_mm_unpacklo_epi32([1], [3])
_mm_unpackhi_epi32([0], [2])
_mm_unpackhi_epi32([1], [3])

[0]'
[1]'
[2]'
[3]'

1123
4555
67910

10111213

[0]
[1]
[2]
[3]

data:

16 410
17 511
29 512
310 513

_mm_unpacklo([0]', [1]')
_mm_unpackhi([0]', [1]')
_mm_unpacklo([2]', [3]')
_mm_unpackhi([2]', [3]')

[0]''
[1]''
[2]''
[3]''

result:

(a) Vertical Layout (b) Transformation steps from Horizontal Vertical layout

Figure 7: (a) In-vector data organization using a vertical lay-
out (SSE). (b) Transformation from horizontal layout (data[0]
- data[3]) to vertical layout (result[0]” - result[3]”) using SSE
instructions. unpacklo interleaves the low two elements of two
given vector registers, unpackhi interleaves the upper two ele-
ments respectively.

vector registers resulting in one register containing n explicit min-
ima of the given data. To get the overall minimum the resulting
register is transferred to memory and a scalar minimum operation is
applied to that memory location. The global minimum of the corre-
sponding frame is broadcasted to a vector register afterwards. The
data is loaded into vector registers again and the register contain-
ing the global minimum is subtracted from the data. The resulting
vectors are stored to memory in a continuous manner.

The vertical FOR algorithm basically performs the same oper-
ations until the global minimum has to be retrieved. Instead of
transferring the data into a temporary memory location, the global
minimum for a corresponding frame is already present within every
lane. Thus, the resulting vector register is used to apply the subtrac-
tion. Afterwards, the results are stored aligned and continuously to
memory.

Comparing the effective throughput of the horizontal and ver-
tical FOR implementation, the performance increases with bigger
SIMD registers through the improvement in data parallelism (see
Figure 8(a)). The algorithm working with horizontal layouted data
needs additional store operations for transferring the processed data
from a vector register to an intermediate memory location and a
subsequent scalar aggregation. The number of scalar operations
grows to the same extent as the vector register size, leading to a
lower performance for AVX512 compared to AVX2. An imple-
mentation taking advantage of new instructions offered by AVX512
like __mm512_reduce_min is considered to be faster than the
AVX2 version, but the reduce operations where not supported
by the used compiler (gcc 7.0.1). The additional overhead from
scalar operations is eliminated by an algorithm using vertical lay-
outed data. As a consequence, the vertical algorithm performs bet-
ter than the horizontal and can even utilize bigger vector registers
for improved throughput. From the experiment, we can conclude
that a vertical layout can be used to avoid additional scalar opera-
tions and increase the performance of certain algorithms. However,
most vectorized lightweight data compression algorithms use the
horizontal data layout [7].

To evaluate the applicability of the introduced memory layouts,
we implemented two FOR algorithm using the horizontal and ver-
tical memory layout respectively. We assume that the input data
already has the appropriate layout and the resulting layout corre-
spond with the input layout.

3.2 Integration
Within the field of (column store) in-memory databases, scan and

lookup operations are crucial. Previous research has shown that the
horizontal layout fits good for lookup operations while a vertical

Figure 8: Evaluation of FOR with different variants. (a) FOR
using different memory layouts without transformation. (b)
FOR transforming the memory layout.

layout should be applied for scans [15]. Typically data is organized
either horizontally or vertically within the input and output respec-
tively, leading to an intermediate pre- and postprocessing step for
rearranging that data to match the specific layout format. If both
layouts should be used side by side, the costs for a transformation
between the layouts has to be evaluated. We implemented the al-
ready evaluated FOR algorithm in two more variants, performing a
straightforward transformation from a horizontal layout (input) to
a vertical layout (output) and vice versa.

Variant I (Horizontal → Vertical) reads horizontal layouted
data, transforms the data layout within the nxn matrix and stores
the result in a vertical format. While the transformation of a given
sequence of consecutive data elements (horizontal layout) into the
vertical layout is natively supported by AVX2 and AVX512-F
(_mm[256|512]_i32gather), SSE needs some additional ef-
fort. We used 4 aligned loads alongside 4 times _mm_unpacklo
and _mm_unpackhi respectively (see Figure 7b). To store the
data an aligned store of the transformed vector registers takes place.

Variant II (Vertical→Horizontal) reads vertical layouted data
through an aligned load, processes it and stores the result horizontal
layouted. Thus, an element wise random access store from an ex-
isting vector register (scatter store) into memory is only supported
by AVX512-F, we performed the transformation from the vertical
to the horizontal layout completely within vector registers for SSE
and AVX2. The SSE implementation uses 4 unaligned stores and 6
times _mm_unpacklo and _mm_unpackhi respectively. AVX2
operates on two 128-bit vector registers leading to an additional
need of 2 _mm_unpacklo and _mm_unpackhi operations per
vector register.

As shown in Figure 8b, Variant I, which uses aligned load and
store operation while the transformation overhead take place within
vector registers, outperforms Variant II. In general it can be as-
sumed that continuous load and store operations are faster than
random access memory operations. This can be seen through the
performance penalty for the scatter store (AVX512) of Variant II.

4. FUTURE WORK
The vertical layout meet its limits when it comes to non structure-

preserving algorithms like RLE or NS. To apply the vertical layout
to this class of algorithms, a selective random access store has to be
supported by the underlying vector hardware to transfer discontinu-
ous values into memory. This functionality is only available within
the AVX512-F instruction set. Further investigations to evaluate
the benefits of a vertical layout for non structure-preserving algo-
rithms seems promising.

5. RELATED WORK
The efficient utilization of SIMD (Single Instruction Multiple

Data) instructions in database systems is a very active research
field [17, 25]. On the one hand, these instructions are frequently
applied in lightweight data compression algorithms [24]. In this
domain, null suppression (NS) is the most studied lightweight com-
pression approach, whereby the basic idea is the omission of lead-
ing zeros in the bit representation of integers [14]. However, none
of these approaches uses the leading zero count intrinsic of the Con-
flict Detection feature set of AVX-512. The application would be
very interesting and should be definitely investigated. On the other
hand, SIMD instructions are also used in other database operations
like scans [9], aggregations [25] or joins [4]. To best of our knowl-
edge, none of these approaches uses AVX-512 CD, although the
operations could benefit from CD.

6. CONCLUSION
In this paper, we showed that the further development of exist-

ing vector extensions should be investigated in detail to utilize the
opportunities to a maximum extent. Thus, we discussed two dif-
ferent approaches, namely the usage of new operations offered by
novel instruction sets and different memory layouts depending on
the algorithmic task. As an example for the possibilities of new
instruction sets we propose an RLE compression algorithm which
uses the newly introduced conflict detection instruction set which
is available in Intel’s AVX-512 vector extension. The performance
of our RLE implementation outperforms the state-of-the-art RLE
compression algorithm for small run lengths. Furthermore, the per-
formance is constant due the nature of the processed data. How-
ever, our new algorithm is not efficient suitable for sequences with
long run lengths because too many instructions have to be executed
in comparison to the state-of-the-art approach. To deal with con-
cerns arising from wider vector registers like performance penalties
of inter-vector aggregations or distances between processed data,
we demonstrated a lightweight adaptable vertical memory layout
approach to work with consecutive data and even continuous data
streams within the given vector registers. Our approach works with
state-of-the-art vector extensions, also enabling new possibilities
for algorithms from a conceptual point of view. Furthermore we
showed, that a transformation from the common horizontal to the
vertical layout can be realized completely within given vector reg-
isters.

7. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In SIGMOD, 2006.

[2] V. N. Anh and A. Moffat. Index compression using 64-bit
words. Softw., Pract. Exper., 40(2), 2010.

[3] D. Arroyuelo, S. González, M. Oyarzún, and V. Sepulveda.
Document identifier reassignment and
run-length-compressed inverted indexes for improved search
performance. In SIGIR, 2013.

[4] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash revisited.
PVLDB, 7(1):85–96, 2013.

[5] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory
column stores. In SIGMOD, pages 283–296, 2009.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the
memory wall in monetdb. Commun. ACM, 51(12):77–85,
2008.

[7] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner.
Lightweight data compression algorithms: An experimental
survey. In EDBT, pages 72–83, 2017.

[8] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and
B. Reinwald. Compressed linear algebra for large-scale
machine learning. PVLDB, 9(12), 2016.

[9] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing the
envelop of main memory data processing with a new storage
layout. In SIGMOD, pages 31–46, 2015.

[10] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. In ICDE, 1998.

[11] J. Hildebrandt, D. Habich, P. Damme, and W. Lehner.
Compression-aware in-memory query processing: Vision,
system design and beyond. In IMDM@VLDB, pages 40–56,
2016.

[12] D. A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers, 40(9), 1952.

[13] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich, D. Molka,
and W. Lehner. ERIS: A numa-aware in-memory storage
engine for analytical workloads. In ADMS, 2014.

[14] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. Softw., Pract. Exper., 45(1),
2015.

[15] Y. Li and J. M. Patel. BitWeaving: Fast Scans for Main
Memory Data Processing.

[16] H. Plattner. A common database approach for OLTP and
OLAP using an in-memory column database. In SIGMOD,
pages 1–2, 2009.

[17] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking
SIMD vectorization for in-memory databases. In SIGMOD,
pages 1493–1508, 2015.

[18] M. A. Roth and S. J. Van Horn. Database compression.
SIGMOD Rec., 22(3), 1993.

[19] F. Silvestri and R. Venturini. Vsencoding: Efficient coding
and fast decoding of integer lists via dynamic programming.
In CIKM, 2010.

[20] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and
P. S. Oberoi. Simd-based decoding of posting lists. In CIKM,
2011.

[21] A. Ungethüm, P. Damme, J. Pietrzyk, A. Krause, D. Habich,
and W. Lehner. Balancing performance and energy for
lightweight data compression algorithms. In ADBIS Short
Papers, pages 37–44, 2017.

[22] A. Ungethüm, J. Pietrzyk, P. Damme, D. Habich, and
W. Lehner. Conflict detection-based run-length encoding —
avx512-cd instruction set in action. In HardBD-Active
Workshop, co-located to ICDE, 2018.

[23] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding
for data compression. Commun. ACM, 30(6), 1987.

[24] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan,
and J. Wen. A general simd-based approach to accelerating
compression algorithms. ACM Trans. Inf. Syst., 33(3), 2015.

[25] J. Zhou and K. A. Ross. Implementing database operations
using simd instructions. In SIGMOD, pages 145–156, 2002.

[26] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Trans. Inf. Theor., 23(3), 1977.

[27] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE, 2006.

