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ABSTRACT
Nowadays, huge data is being produced and needs to be ana-
lyzed to increase economic profits, improve civil services and
achieve furthermore objectives. Processing Big Data requi-
res multiple analysis stages represented as workflows of big
data jobs. In spite of the great evolution of big data pro-
cessing techniques, the lack of computing resources is one of
the most significant challenges, that’s why utilizing and ex-
tending on demand these resources, using hybrid clouds, is
highly required. Good workflow scheduling approaches leads
to better utilization of resources, reducing costs and meeting
deadline constraints. To achieve this goal, we are proposing
an architecture of multi-tier MapReduce jobs workflow sche-
duling in hybrid clouds with a basic cost model.
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1. INTRODUCTION
During the last years, the amount of produced data is in-

creasing dramatically. Due to the great evolution of sensing
technologies and E-commerce systems, data production is
accelerating more and more especially in astronomy, tele-
communication, social media and many other fields. Nowa-
days, the need for processing this huge amount of data is
becoming higher day after day to increase economic profits,
improve civil services and achieve furthermore objectives.
Traditional data analysis systems and infrastructures are

not sufficient to handle the Big Data processing new require-
ments like high throughput, low latency, meeting deadlines
and others. That’s why many concepts have been presen-
ted to process data in multiple machines concurrently e.g.
data partitioning and replication, query parallelization, and
resource utilization. Many frameworks and paradigms are in-
troduced to implement these concepts, Google has proposed
the most famous one named MapReduce.
Many of recent scientific applications require multiple pro-

cessing stages to handle huge streams of data, these stages
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can be represented as a workflow of tasks. To facilitate scien-
tific workflows deployment and hide infrastructure comple-
xity during executing them, cloud computing is presented as
a cost-efficient computing infrastructure. There are several
types of clouds [1]:

• Private clouds: Limited computational resources that
users own and use to run their applications.

• Public clouds: Huge collection of computational re-
sources that users rent to run their applications. Theo-
retically, these resources can be considered as unlimi-
ted ones.

• Hybrid clouds: A combination of both previous cloud
types.

Relying on MapReduce processing model and cloud com-
puting techniques, analyzing and extracting valuable infor-
mation from big data sources within a feasible time is possi-
ble. But, there are still many challenges that must be taken
into account during designing Big Data processing soluti-
ons. the most critical ones are meeting deadlines and the
lack of computational and storage resources. To come over
these challenges, good tasks scheduling in a hybrid cloud is
required. We will discuss our proposed multi-tier scientific
workflow scheduling on hybrid clouds taking into conside-
ration that each task in the workflow can be a MapReduce
job. The rest of the paper is organized in the following way.
Section 2 discusses main background concepts. Related work
and Challenges are discussed in Section 3 and 4, respectively.
The multi-tier scheduling model and architecture are propo-
sed in section 5. A conclusion is written in sections 6.

2. BACKGROUND
In this section, we will discuss main concepts required for

scheduling scientific workflows in clouds.

2.1 Cloud computing
Cloud computing is large scalable computational and sto-

rage resources that provide data processing services over the
Internet [1]. Clouds provide unlimited resources which are
relatively cheap, and let users to pay for the only used re-
sources instead of reserving them more than needed. Also,
clouds use the visualization concept, which allows users to
run their application without considering the hosting OS
requirements and configuration efforts. In addition, clouds
hide technical details like network maintenance, data back-
ups, failure recovery and others. Infrastructure as a Service



(Iaas) is one of cloud services that allows users to rent com-
putation and storage resources and run their applications.
IaaS is a suitable and cost-efficient solution for on demand
extending limited resource in private clouds.

2.2 Scientific workflows
Scientific applications require multiple data processing sta-

ges which might be executed sequentially, or in parallel when
there is no data dependency in between. Dividing the main
task into sub-tasks is required for efficient tasks scheduling
in multiprocessors clusters. Data dependencies between sub-
tasks can be represented using Direct Acyclic Graph DAG
[5]. Fig.1 Shows an example of a Directed Acyclic Graph
DAG.

Figure 1: Directed Acyclic Graph (DAG).

2.3 Big Data Processing
Big Data processing and analysis requires a processing

model (as MapReduce) and a storage platform (as HDFS).

2.3.1 MapReduce
MapReduce is a large-scale parallel data processing model

on clusters. Data is fragmented into data sets and distribut-
ed among the processing nodes where processing operations
are done in parallel. It contains the following main stages
[2]:

1. Map: Each node processes the locally stored data set
using the user-defined map function and store interme-
diate key-value results on its permanent local storage
temporarily.

2. Shuffle: Mappers send each group of key-value pairs
to its corresponding reducer. At the end, each reducer
has a list of values for each key. Shuffling process relies
on the performance of the cluster network.

3. Reduce: Processing nodes receive a list of values for
each key and run the user-defined reduce function. The
reducers output will be accumulated as a final result
and written in a pre-defined output file.

2.3.2 HDFS
HDFS is proposed by Google and a stand for Hadoop

Distributed File System. It stores huge files by fragmenting
them into blocks which are replicated and stored in multiple
machines. HDFS contains a single NameNode and multiple
DataNodes. Each DataNode stores data blocks and runs Ma-
pReduce operations. The NameNode stores data allocation
catalog and is responsible for handling users operations on
files such as create, delete and rename.

3. RELATED WORK
Many efforts has been devoted to schedule workflows of

tasks in different types of clouds. Each cloud type has its
own challenges and the proposed state of the art workflow
schedulers focuses on one or multiple objectives to come over
these challenges. Also, some workflow scheduler systems are
provided to manage MapReduce jobs.

3.1 Executing Workflow of MapReduce Jobs
Oozie is a well-known MapReduce workflow design and

management application. With its web interface, users can
design complex scientific workflows and run them on clus-
ters. In addition, users can design workflows, using other
workflow design tools, then Oozie parses the workflows de-
finition file (an XML file) and runs it.

In addition to Oozie, Azkaban (developed by Linkedin)
and Luigi are workflow management systems for MapReduce
jobs.

3.2 Workflow Scheduling in Clouds
The main objective of the workflow schedulers is to al-

locate suitable resources for all workflow tasks considering
their data dependencies. The great growing of data and the
importance of analyzing it motivate a lot of researchers to
present workflow schedulers on clouds with respect to diffe-
rent objectives.

3.2.1 Workflow Scheduling in Private Clouds
In private clouds, the resources are limited and utilizing

them is the main focus of most research studies to meet
single or multiple objectives such as:

• Increasing system throughput: Increasing the number
of accomplished workflows in a time period.

• Reducing system latency: Minimizing the makespan of
the workflow. Workflow makespan is the time when the
execution of its last node finishes.

• Meeting deadlines: Each workflow may have a dead-
line. The main task of the scheduler is to meet all
the deadlines of the submitted workflows. The challen-
ging part is that with limited resources in the private
clouds, meeting all deadlines may not be achieved even
with the best utilization of resources. That’s why an
extension of resources might be required.

3.2.2 Workflow Scheduling in Public Clouds
In public clouds, the resources are considered unlimited.

But, new challenges shall be taken into account like:

• Data confidentiality: When the analyzed data is con-
fidential, then it is not possible to upload it to pu-
blic clouds. That’s why running applications on public
cloud resources is not sufficient when there are security
aspects.

• Monetary costs: The user must pay for all the resour-
ces that are included in processing workflows. That’s
why running applications on public clouds is the most
expensive compared with private and hybrid ones.

• The speed and robustness of the internet connection:
Although the existence of unlimited computing resour-
ces speeds up workflows processing operation and mi-
nimizes their makespans, additional time required to



upload data to public clouds and downloading its re-
sults. If the internet connection is slow, then public
clouds are not suitable to run big data applications.

Minimizing monetary costs and meeting deadlines are the
main objectives for workflow schedulers in public clouds.

3.2.3 Workflow Scheduling in Hybrid Clouds
To come over private and public clouds challenges, hy-

brid clouds solutions are widely used. Workflow scheduling
in hybrid clouds plays a balancing role between deadlines
and costs constraints. Hybrid cloud optimized cost (HCOC)
algorithm [3] is one of famous workflows scheduling approa-
ches that focuses on meeting deadlines and minimizing mo-
netary costs.

3.3 Discussion
Although great effort has been devoted to study workflow

scheduling in clouds for several years, most of the studies
don’t consider scheduling workflows that consist of multiple
MapReduce jobs. In addition, although scientific workflows
are defined by domain experts, many enhancements and ope-
rations can be performed through them to utilize network
and computing resources. Additionally, most of studies assu-
me that processors are idle immediately after tasks execution
without considering that exchanging data consumes proces-
sors’ time. Moreover, many of hybrid cloud task scheduling
approaches don’t study the internet connection between pri-
vate and public clouds as a critical limited resource which
must be shared and utilized wisely Also, these approaches
don’t take into account the costs for uploading and down-
loading data volumes.

4. CHALLENGES
Scheduling workflow tasks in clusters is an NP-Complete

problem [4] Hence, reaching the global optimal solution is
not possible within a feasible time. This issue becomes more
complicated during scheduling tasks on hybrid clouds.
In addition, estimating MapReduce jobs costs is still an

open issue. It is hard to expect the output volume of each
mapper because it depends on the data context. The same
job may produce different data volumes even though input
files have the same size. Because of that, it is tricky to predict
the required budget for running a job on a public cloud.
During job execution, it might exceed the budget limits.
Moreover, during the real-time execution, some failures

might occur which cause exceeding budget and deadlines.

5. STATIC MULTI-TIER WORKFLOW SCHE-
DULING IN HYBRID CLOUDS

Our goal is to schedule workflows consisting of multiple
MapReduce jobs in hybrid cloud with respect to deadlines
and budget constraints. The proposed multi-tier static sche-
duling approach is a meta-heuristic and an iterative one.
In each iteration, it allocates tasks on private and public
cloud resources, run them on a simulation tool and evaluate
the simulation results. In addition, a cost model for running
MapReducer jobs in hybrid cloud is proposed including data
uploading and downloading costs and considering the data
connection bandwidth as a critical resource shared among
public and private clouds processors. Even after finding a
suitable allocation plan, additional iterations can be perfor-
med to minimize monetary costs and reduce execution time,

then with this added cost and time margins the impact of
system failures will be reduced.

5.1 Modeling
The DAG model is G=(V,E), where V in the set of tasks

(or nodes) and E is the set of edges between them. Each task
ti in V has a number of instructions ini and a deadline di,
which is ∞ if the task does not have a deadline constraint.
Each edge eij ∈ E represents data dependency and volume
between task ti and task tj , tj cannot be started until ti
finishes, ti called parent of tj , and tj is a child of ti. The
first node in DAG, which does not have any parent, called
the entry tasks. The last node in DAG, which does not have
children, called exit task.

Hybrid cloud model is H=(PR, PU, G, UP, DW), where
PR is the private cluster resources, PU is the public clus-
ter resources, G=(V,E) is the directed acyclic graph that
represents the submitted scientific workflows (combined in
one as we will show later), UC is the upload bandwidth and
DW is the download one. Private cloud resources are repre-
sented as PR=(P,L), where P is the set of processors and L
is the set of data transfer links between them. Also, public
cloud resources are represented as PU=(P,L). Each link lij
between pj , pj ∈ P has data transfer frequency frij (data
volume per time unit). Each processor pi has a computatio-
nal power cpi (instructions per second), network interface
speed nsi (data volume per time unit) and monetary costs
per time unit mci, which is zero for private cloud processors.

5.1.1 Local Data Transfer Costs
Transferring data between two processors in the same clus-

ter requires taking data volumes, processors’ network inter-
face speeds and the network link capabilities into considera-
tion. Exchanging data consumes processor’s time, so it is not
enough to take only tasks instruction number into account
while calculating processor occupation time. The time that
a processor pi ∈ P needs to transfer data volume v, whether
in sending and receiving, is defined as

pdtti(v) =
v

nsi
(1)

To transfer data volume v, each network link lij ∈ L bet-
ween two processors pi, pj ∈ P consumes data transfer time,
which is defined as

ldttij(v) =
v

frij
(2)

When processor pi sends data to processor pj , both pro-
cessors take the same amount of time, which is the time
taken by the slowest part in data transfer operation. The
data transfer time of each processor is defined as:

dtij(v) = max

{
pdtti(v), pdttj(v), ldttij(v)

}
(3)

5.1.2 Total Task Execution Time
When a task is allocated on a processor, the processor

needs time to receive the required input data, execute the
task and send its results. So, the total execution time of a
task ti allocated in processor pj , is defined as:



etij = dtpj(eaj) +

(
ini

cpj

)
+ dtjl(ejb) (4)

Where ta, allocated in pp, is a parent task of ti, and tb,
allocated in pl, is a child task of ti.

5.1.3 Data Transfer Costs Between Clouds
To calculate the time required for uploading and down-

loading data, the limitation of data exchanging connection
bandwidth between public and private clouds which is sha-
red among multiple processors must be taken into account.
One of the following two approaches can be selected:

• All processors share the connection bandwidth concur-
rently. Hence, the bandwidth will be distributed in a
round robin fashion among all concurrent data exchan-
ging operations. This approach is recommended when
the dta connection speed between public and priva-
te clouds is higher than processors’ network interfaces
speed.

• First coming processor reserve the whole connection
bandwidth for transferring data and the others wait
in a queue. This approach is recommended when the
public-private data connection speed is less than pro-
cessors’ network interface speed.

As highlighted previously in equation (3), The data sending
and receiving processors will be occupied for data exchange,
and if the data transfer time is slow then both processors
will not be ready to process further tasks for a long time.
If the internet connection is shared among multiple data
exchange operations that waste processors time, that’s why
the second approach (FIFO) is selected. In this case, even if
a processor shall wait for other data exchanging operations,
it can store results into its permanent storage medium and
process another task until its turn comes to send data. So,
the time required for uploading and downloading is defined
as:

up(v, t) =
DataV olumesInUpQueue(t) + v

UP
(5)

dw(v, t) =
DataV olumesInDwQueue(t) + v

DW
(6)

Where v is the volume of exchanged data, t is the timestamp
when data is ready to be exchanged, and DataVolumesIn-
UpQueue(t) and DataVolumesInDwQueue(t) is the sum of
submitted data volumes that are ready to be uploaded and
downloaded respectively.

5.2 Workflow Operations
In our approach, the workflow of the submitted MapRe-

duce job is not ready to be directly scheduled into the hy-
brid cloud resources becuase data uploading and downloa-
ding shall be reflected in the workflow and additional meta
data of the submitted MapReduce job is required, especially
the expected data sizes resulted by map and reduce opera-
tions. According to that, multiple workflow operations are
required.

5.2.1 Generating workflows
When a user submits a MapReduce job, the system shall

generate the corresponding workflow as DAG. In this case,

the user must supply additional meta data like the number
of mappers and reducers, expected computation costs for
each mapper and reducer (number of interactions) and the
expected transferred data volumes. Fig.2 shows MapReduce
job as a workflow.

Figure 2: MapReduce job as workflow.

To simplify later explanations, let us assume the use case
of scheduling the two MapReduce jobs shown in fig.3, where
R1 and R2 tasks will be allocated later in the public cloud
and the rest are allocated in the private one.

Figure 3: The usecase submitted MapReduce jobs.

5.2.2 Tasks Injection
In some cases, additional tasks shall be added to the work-

flow like:

• Entry and exit tasks are used to combine multiple se-
parated workflows in a single one. Also, they are use-
ful when a workflow has multiple entry and exit tasks
as in case of MapReduce workflow. The computation
and data transfer costs for both tasks equal zero. Fig.4
shows how both submitted MapReduce jobs are com-
bined.

Figure 4: Combining multiple workflows.



• Data uploading task shall be injected before each pu-
blic cloud allocated task when its parent is allocated
in the private cloud. The same uploading tasks shall
be also injected after each task allocated in the private
cloud when its child is allocated in the public one, while
uploading data consumes both clouds resources. The
uploaded data will not be exchanged locally anymo-
re. Accordingly, in case of uploading data, local data
transfer costs in the cluster will be zero. The time that
the processors take for uploading data v from a pro-
cessor pi in the private cloud to a processor pj in the
public cloud is defined as:

uptij(v) = max

{
pdtti(v), pdttj(v),

( v

UP

)}
(7)

• Data downloading task shall be injected after each pu-
blic cloud allocated task when its child is allocated
in the private cloud. As in data uploading tasks, the
same downloading tasks shall be also injected before
each task allocated in the private cloud when its parent
is allocated in the public one, while downloading data
consumes both clouds resources. The downloaded data
will not be exchanged locally anymore .Accordingly, in
case of downloading data, local data transfer costs in
the cluster will be zero. The time that the processors
take for downloading data v from a processor pi in the
private cloud to a processor pj in the public cloud is
defined as:

dwtij(v) = max

{
pdtti(v), pdttj(v),

( v

DW

)}
(8)

5.2.3 Merge
Allocating multiple data dependent tasks into one proces-

sor reduces data transfer costs between processors. Hence,
multiple workflow tasks can be merged into one. There are
three merging types:

• Vertical merge: Merging multiple tasks belong to the
same data dependency level into one. The computati-
on cost (number of instructions) of the resulting task
equals the sum of computation costs of all merged
tasks. Also, data dependency links shall be merged,
there are two scenarios for merging data links:

– If the transferred data volumes are identical then
transferring data is performed only once. Fig.5.a
shows an example of this case.

– Otherwise, the transferred data volume in the re-
sulting data link will be the sum of all data vo-
lumes of merged data links. Fig.5.b shows an ex-
ample of this case.

• Horizontal merge: Merging sequential tasks into one.
The data transfer costs in this case equal zero. Fig.6
shows an example of horizontal merge.

• Nested merge: Combine the vertical merge and the ho-
rizontal one, e.g. merging the vertically merged map-
pers with the vertically merged reducers horizontally.

After merging tasks, some entry and exit pre-injected tasks
might be deleted.

Figure 5: Vertical merge of tasks.

Figure 6: Horizontal merge of tasks.

5.2.4 Rescaling Values
Before executing the workflows on the simulation tool, re-

scaling of values is needed to accelerate the simulation execu-
tion. This is done by dividing tasks execution cost values on
their greatest common denominator. Also, the same resca-
ling process is done for data volumes. In addition, reducing
time units, if possible, speeds up the simulation stage. For
example, if all values of tasks are in hours we can consider
them in seconds.

5.3 Architecture
The main objective of our scheduling approach is to reduce

monetary costs and meet deadlines. The scheduling process
is divided into multiple layers:

1. High-level scheduling: Its main objective is to decide
for each task whether to be executed on the private
cloud or on the public one. Task ti has a public cloud
cost ratio which is defined as

pcr(i) =
ini

eai + eib
(9)

Where ta and tb are a parent and a child tasks of ti re-
spectively. The high-level scheduler selects tasks with
high public cloud ratio first to be allocated in the pu-
blic cloud.

2. Intermediate-level scheduling: This layer consists of
two schedulers, The private cloud workflow scheduler,
which its main objective is to meet deadlines cons-
traints. The second is the public cloud workflow sche-
duler, which its main objective is to minimize mone-
tary costs and meet deadlines constraints.

3. Simulation: Executing the allocation plans provided
by both intermediate schedulers and then sending an
execution report to be evaluated. This report main-
ly contains the private cloud plan, which includes the
execution schedule of all tasks allocated in the private
cloud, and the public cloud plan, which includes the



execution schedule of all tasks allocated in the public
cloud with resources reservation schedule.

4. Overlapping: Overlapping the private and public simu-
lation execution reports into a comprehensive one and
update the absolute execution time of each task into a
relative one that represents the real execution starting
time of a task.

5. Evaluation: Evaluating the execution report and pro-
vide a feedback to the rescheduling process. Depending
on this feedback, the high-level scheduler changes the
allocation plans. There are four feedback options: The
first feedback option is that both schedules are not vi-
sible, in this case meeting both budget and deadlines
constraints is not possible and scheduling process will
stop. The second option is that the public cloud sche-
dule is visible but the private one is not, this means
that the deadline for one or more private cloud alloca-
ted tasks is exceeded and more tasks shall be transfer-
red to the public cloud. The third option is that the
private cloud schedule is visible and the public one is
not, this means that the budget is exceeded and the
tasks that are allocated in the public cloud shall be
transferred to the private one. The last option is that
both schedules are visible, in this case the allocation
plan will be compared with the best plan so far. If it is
better, then it will be submitted. Also, more iterations
might be performed to optimize the allocation plan.

5.3.1 System Flow Chart
Firstly, the workflows will be generated and combined into

one by injecting entry and exit tasks. The high-level sche-
duler decides to schedule R1 and R2, as an example, in
the public cloud and the rest in the private one. The pri-
vate and public allocation plans contain injected uploading
and downloading tasks. Each data uploading operation costs
both clouds, the private one while sending, and also the pu-
blic one while receiving.
These intermediate schedulers are considered as a black

box at the moment, many of the state of the art implemen-
ted schedulers can be applied. After simulating both alloca-
tion plans, the execution reports of both simulations, which
contain the absolute execution time of each task on its hos-
ting processor, will be sent to the overlapping stage. In this
stage, the real execution time of tasks will be calculated e.g.
if M1, M2 and M3 took 50 minutes and uploading data to
the public cloud took 5 minutes, then the R1 and R2 will be
started at minute 55, and so on.
After that, the final execution report will be sent to the

evaluator to check if all constraints are met or not. If yes
and the allocation plan cost is cheaper than the previous
optimal cost plan then it will be submitted, otherwise it will
be skipped.
Before starting a new iteration, the results must be logged.

Hence, the high-level scheduler does reallocation of tasks
with respect to historical logged data. Fig.7 shows the sys-
tem components and detailed flowchart.

6. CONCLUSION
In this paper, we have proposed a model and an architec-

ture of static multi-tier workflow scheduling in hybrid cloud.
The presented model supports MapReduce jobs and takes in-
to account data transferring costs on processors and sharing

Figure 7: The System Flowchart.

limited internet bandwidth among clouds’ processors. The
selected scheduling approach is a meta-heuristic one that
runs in multiple layers and iterations to meet deadlines and
minimize monetary costs.
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