
Stream Processing on High-Bandwidth Memory

Constantin Pohl
TU Ilmenau, Germany

constantin.pohl@tu-ilmenau.de

ABSTRACT
High-Bandwidth Memory (HBM) provides lower latency on
many concurrent memory accesses than regular DRAM. This
is especially useful on GPUs, where thousands of lightweight
threads access data on shared memory at the same time. On
regular multicore CPUs, the degree of multithreaded paral-
lelism is usually not high enough to improve performance
noticeably by using HBM. However, with an increasingly
rising core count inside CPUs, especially manycore proces-
sors like the Xeon Phi Knights Landing (KNL) from Intel,
the properties of HBM are more and more interesting to ex-
ploit.
In this paper, we want to analyze the impact of HBM for
data stream processing, notably multithreaded hash joins
over several input data streams as well as tuple allocation
and aggregation within this memory technology. Our re-
sults show improvements on the tuple processing rate by up
to a magnitude when concurrently accessed data is stored in
HBM on chip instead of DDR4, considering different HBM
configurations of the KNL.

Keywords
HBM, MCDRAM, Stream Processing, Xeon Phi, KNL

1. INTRODUCTION
A widely known classification for performance analysis

is the division into memory-bound or CPU-bound applica-
tions, allowing to tackle the right spots for optimization.
In today’s systems, parallelism is the key phrase to im-
prove speedup for CPU-heavy software, which can be ap-
plied on different levels. Multithreading is a very common
paradigm for executing independent computations in paral-
lel, scheduled by the OS, reaching high degrees of concur-
rency through multicore CPUs and GPUs.

However, with an increased number of threads usually the
number of concurrent memory accesses is raised at the same
time. Regular memory controllers to main memory are capa-
ble of dealing with multiple memory requests of concurrent

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

threads. They reach their limit on bandwidth very fast,
though, especially with high numbers of threads, which is
very common in GPUs and manycore CPU architectures.

That is a reason for HBM development, which provides
a much higher available bandwidth for parallel memory re-
quests, overcoming the memory wall [15]. While HBM is
used regularly in GPUs, it is not very common in CPUs.
With the latest release of a manycore processor in the Xeon
Phi product line from Intel, namely Knights Landing (KNL),
16GB of Multi-Channel DRAM (MCDRAM) are added as
HBM on chip. For comparison, today’s DDR4 SRAM reaches
around 90GB/s as available bandwidth, while the MCDRAM
has a peak performance of up to 420GB/s with slightly worse
latency [10]. This allows to fulfill much more memory re-
quests at the same time, but the capacity is limited. There-
fore it is not an option to just store everything in HBM, not
to mention the increase of latency.

With this paper, we want to tackle the following questions:

• How good is the performance gain of HBM compared
to regular DDR4 when used for processing of data
streams?

• Which data structures benefit the most when stored
in HBM, e.g., tuples, states, or hash tables?

• Where is the break-even point of multithreaded mem-
ory access, until which a performance gain is achieved
compared to main memory DDR4 SRAM?

2. RELATED WORK
Since the MCDRAM was introduced by the Xeon Phi

KNL processor in 2016, some research already has been done
related to the KNL in other fields of science, like high perfor-
mance computing or machine learning. Most of the papers
try to determine the impact of a manycore CPU to their
applications.

Smith et al. [11] used the KNL as a case study for ten-
sor factorization on manycore CPUs. They placed different
data structures on the MCDRAM as well as changing its
configuration, exploring the influence of HBM on calcula-
tion efficiency compared to regular DDR4 SRAM. The re-
sults pointed out that the algorithm performs up to 30%
better when the MCDRAM is manually addressed instead
of being used as a low level cache (L3).

Barnes et al. [2] applied a huge set of workloads (called
the NERSC workload) on the KNL. The algorithms per-
formed best when data fully fits inside of MCDRAM when
parallelization is possible.



Cheng et al. [3] investigated main memory hash join per-
formance for traditional databases when executed on the
KNL processor. Their results show that the MCDRAM can
greatly contribute to hash join performance only if being
manually addressed (flat mode), else it is underutilized.

However, joins on a DSMS differ fundamentally from join
algorithms of a DBMS. A major difference is the streaming
property where tuples arrive continuously, therefore, a join
operator has to process tuples unblocked. This means that
it cannot simply wait until all data has been read before
producing results, hence certain stream join algorithms have
been developed.

One of the first important algorithms for joining data
streams was the Symmetric Hash Join (SHJ) [14], published
around 1991, later further refined as XJoin [13], which pre-
sents a solution for cases where the hash tables do not fit in
main memory. The adaptation of algorithms to new hard-
ware further progressed in the last decade. Examples for this
progression are the CellJoin [4], developed for the cell pro-
cessor, the HandshakeJoin [12] as well as the ScaleJoin [5]
for multicore CPUs, or the HELLS-Join for heterogeneous
hardware environments like CPUs coupled with GPUs [6].

3. PROCESSOR AND MEMORY
Due to the fact that hardware and software improves by

technological advance over time, applications try to adapt
as effectively as possible for better performance or new pos-
sibilities. Two main categories regarding hardware are pro-
cessors and memory. Both of them have a very heteroge-
neous landscape in terms of available variants. To name a
few, there are CPUs, GPUs, coprocessors, FPGAs, DSPs as
well as registers, caches, DDR4, HBM, NVRAM and many
more. A recent trend goes to manycore CPUs with inte-
grated HBM, discussed further in this section.

3.1 Manycore CPU
After hitting the CPU clock rate wall at around 4 GHz

and developing processors to use multiple cores on a single
chip, a direction goes to CPUs with more and more smaller
cores, so called manycore architectures. While hundreds
and thousands of (lightweight) cores are already common
in GPUs, regular CPUs are far off from such numbers. For
multithreading, performance improvements depend mainly
on the possible degree of parallelism of applications.

Both GPU and CPU threads have their own advantages
and disadvantages for parallelism, though. GPU threads are
grouped together into warps. All threads inside a warp per-
form the same instructions simultaneously, ideally repeating
them multiple times, leading to an intense amount of paral-
lelism. However, if somehow a thread inside a warp has to
change instructions, maybe because of branching code, its
instructions get serialized, losing performance [8]. In addi-
tion, the GPU is not used for all instructions of an applica-
tion, just for the parallel parts. Therefore, data needs to be
transferred between the CPU (host) and the GPU for pro-
cessing by its threads, increasing execution time by transfer
delay.

On CPU side, a main challenge lies in efficient scaling
of applications to hundreds of threads. This is a common
problem of traditional databases when using manycore pro-
cessors, for instance in terms of concurrency control [16]. If
the trend to manycore processors continues, there has to be

some serious redesign on databases if this hardware should
be used efficiently.

A well-known example for manycore CPUs is the Xeon Phi
product line from Intel. The first Xeon Phi, called Knights
Ferry, was released 2010 as a prototype for research purposes
and not commercially available. Knights Ferry is a copro-
cessor, that means, it needs a host system with a regular
CPU, like GPUs also do.

The successor was released 2012, called Knights Corner
(KNC), still as coprocessor only but commercially obtain-
able. For database usage, the main bottleneck emerges from
the PCI connection to the host system, limiting data trans-
fer through offloading to 15GB/s. As a result, the KNC is
not often found in used hardware for database systems.

With the latest release, namely Knights Landing (KNL),
available since 2016, Intel addressed this bottleneck by dis-
carding the coprocessor design, although the KNL was later
additionally released as coprocessor. With a high core count
for CPUs (up to 72 cores on chip) as well as HBM for higher
memory bandwidth, the KNL got an increased interest for
researchers as well as owners of database systems.

3.2 Multi-Channel DRAM
As already stated earlier, there are different variants of

memory, leading to the so-called memory hierarchy (see Fig-
ure 1). It is always a tradeoff between capacity and access
latency (respective the price). The HBM in general has com-
parable latency to regular DDR4 SRAM but is more limited
in size.

Figure 1: Memory Hierarchy

However, with multithreading purposes comes another re-
quirement to memory, called memory bandwidth. Single-
threaded applications mostly do not saturate the available
bandwidth of main memory (for DDR4 around 90GB/s).
Nevertheless, multiple threads accessing memory in paral-
lel can reach this limit very quickly, especially on manycore
architectures where hundreds of threads can be executed si-
multaneously. This is also a common problem on GPUs,
therefore, the HBM was developed years ago.

To overcome this limitation for intense multithreading on
CPUs, the KNL utilizes its own HBM on chip, the so-called
Multi-Channel DRAM (MCDRAM). The MCDRAM itself
is a memory variant specialized for high bandwidth, allowing
up to 420GB/s data transfer rates with slightly worse access
latency [10] and a maximum capacity of around 16GB. Since



regular CPUs did not have any HBM by default in the past,
it opens new possibilities for applications with high numbers
of threads.

The utilization of the MCDRAM, however, is no trivial de-
cision. Because of the generally higher accessing latencies,
Intel provided three configurations (flat, cache, hybrid) to
allow owners to decide where the MCDRAM can be prefer-
ably used.

In cache mode, the MCDRAM is not visible to applica-
tions. Instead, the operating system uses it as a huge L3
cache, with usual advantages and disadvantages. A disad-
vantage to remember is the increased latency on a cache
miss, where the data has to be retrieved from main memory
with detour of the MCDRAM. In flat mode, the MCDRAM
can be addressed by the application itself, else it is not used.
In this case, the programmer has to decide where the appli-
cation benefits the most from HBM. The third configuration
is a hybrid mode, where the MCDRAM is partly used as
cache as well as addressable memory.

It is important to mention that processors of the next
generation with more cores (like server CPUs) will very likely
use this HBM in addition to regular DDR4 SRAM.

3.3 Summary
With simpler core design compared to current state of

the art multicore processors as well as low clock frequen-
cies of 1.5GHz, algorithms and implementations have to
adapt to manycore CPU properties to gain any performance
advantage. The parallel execution of code along with data
partitioning is a key to achieve this goal. By increasing the
thread count as well as fitting algorithms to manycore ar-
chitectures efficiently, memory bandwidth typically becomes
a major bottleneck very quickly. Therefore the MCDRAM
as a version of HBM provides new possibilities to overcome
this gap, supporting three different configurations as a tun-
ing parameter. In this paper we want to analyze its impact
and benefit on typical streaming operations and semantics,
which are further explained in the following section.

4. DATA STREAM PROCESSING
While relational database systems are still the most com-

mon platforms for data storage and processing [7], more and
more applications need to handle incoming data directly on
the fly, such as IoT, social network or sensor data analysis.
Instead of storing everything and processing the data later
on, DSMS handle tuples usually with timestamps, allowing
to remove outdated data from their system. It is necessary
to be able to run queries for long times instead of only once,
processing tuples directly after arrival.

To give an example, join algorithms that work well in re-
lational databases (like sort-merge joins) are impossible to
use directly in a DSMS because of their blocking property.
That means, they can execute only if all the data is stored
in main memory, for example to sort them for joining. On
data streams possibly never ending, the joins must be non-
blocking, in other words, producing results continuously in-
stead of only once.

In this section, we want to give a short overview about
our used stream processing engine PipeFabric1 as well as
a common join algorithm and window semantics in DSMS,
relevant for our experimental analysis with HBM.

1
https://github.com/dbis-ilm/pipefabric

Figure 2: Query with windowed Join in PipeFabric

4.1 PipeFabric
PipeFabric is a stream processing engine developed at

our research group of the TU Ilmenau. It is open source
and fully functional, written in C++. Data streams can
be constructed via different network protocols, like AMQP,
MQTT or ZeroMQ, to get tuples from different servers like
Apache Kafka or RabbitMQ. It is also possible to create fi-
nite streams from files or just construct tuples through a
generator function.

For queries, common operators are provided, like selec-
tion and projection or joins over multiple streams. These
operators are connected like a dataflow graph, where input
tuples are forwarded between the query operators. This is
exemplarily shown in Figure 2, where tuples from two data
sources arrive. First, their key attribute (K) is specified, fol-
lowed by window (W) operators, avoiding a memory over-
flow caused by infinite data streams as well as keeping only
recent data for further computations. After that, the tu-
ples are forwarded to a join (J) operator, which joins tuples
according to their keys.

4.2 Window-based Operations
Windows are a very common way to deal with infinite

data streams. Usually data streams from various sources
like sensor networks produce information continuously over
long time periods. Since a few years the cost of memory
dropped significantly, however, even if it would be theoreti-
cally possible to store all retrieved information, it would be
no good idea. Finding correlations in terms of data mining
is much more difficult in huge amounts of data, even if some
information is already outdated, like sensor measurements
weeks ago.

A window holds a certain number of tuples that are cur-
rently relevant for queries. There are different window al-
gorithms, like sliding or tumbling windows, determining the
data displacement strategy. A sliding window for example
invalidates the oldest tuple when a new tuple arrives. The
number of tuples a window holds can be fixed, e.g. one
million, or time based, where the size changes dynamically.

To invalidate tuples, another common algorithm is the
positive-negative approach [1]. When a tuple arrives at a
window operator that already holds its maximum capacity,
it forwards the new tuple as well as the (labeled) invalidated
tuple to the following operator. Depending on the next oper-
ators, they can individually react according to their function.
A sum over a certain attribute for example can just subtract
the value of the invalidated tuple from its aggregation.

For our testing purposes with HBM we used a sliding
window operator with fixed length for the input stream.
Because of the sequential data access and processing of a
window, we expect that it ideally benefits very well from
the increased available bandwidth, leading to higher tuple
processing rates.

https://github.com/dbis-ilm/pipefabric


4.3 Symmetric Hash Join
For our measurements in Section 5, we decided to show

results based on hashing, like the common Symmetric Hash
Join (SHJ). The SHJ [14] is one of the first published join al-
gorithms for processing data streams unblocked. The main
difference to hash joins in relational databases is that it pro-
duces results continuously for each incoming tuple. As a
side note, it depends mainly on the individual scenario of
data stream processing if micro-batching strategies are al-
lowed, increasing overall throughput but delaying individual
results.

Figure 3 shows the general idea of the join algorithm for
two input streams.

Figure 3: Symmetric Hash Join Algorithm

If a tuple arrives either on the left or the right input
stream, it is first inserted into its corresponding hash ta-
ble. After that, it is probed against the other hash table
for matches. For all partners found, tuples are produced
and returned to the following operator in a single output
stream.

The sizes of the hash tables are dependent on the input
tuple rate of the individual stream. If a stream delivers tu-
ples faster than another stream or the same key value occurs
more frequently over time, the corresponding hash table is
reoptimized regarding its hash function to avoid too many
collisions. When an outdated tuple from a predecessing win-
dow operator arrives, it already has an entry inside of the
hash table. Therefore it is not joined, but removed from the
table, leading to no more matches from future tuples of the
other stream.

It is also possible to extend the SHJ to n > 2 input
streams, resulting in n hash tables. Every input tuple is
probed against all the other n − 1 hash tables after being
inserted.

5. EXPERIMENTAL ANALYSIS
Peng et al. [9] pointed out that the memory access pat-

tern has the most influence on benefits of HBM. While we
have sequential access for data streams (tuple by tuple),
hash joins use random access patterns to find matches in
hash tables by probing. Therefore the expectations arised
that the performance of our hash join operators will not im-

prove noticeably. Instead, queries processing only a single
input stream each, tuplewise or as microbatches, should de-
liver much better processing rates under high occurrence of
threads and many parallel memory requests.

Regarding the MCDRAM configurations, running MC-
DRAM as huge last level cache is the most trivial way of
utilizing it, because there are no changes necessary inside
an application to benefit from higher bandwidth. However,
it worsens the latency on cache misses, because memory re-
quests cannot go directly from L2 cache to main memory,
instead they have to traverse MCDRAM before. The gen-
eral advice2 regarding MCDRAM in performance aspects is
to choose carefully which data structures should be placed
in MCDRAM and which not, using the flat mode. The
Memkind API3 provides HBM allocators for any data type
to use HBM instead of regular DDR4 SRAM.

Another possibility addressing HBM is provided by Nu-
mactl4. Numactl allows applications to run fully on a certain
memory device, e.g. on MCDRAM without using DDR4.
Because of the goal of our work, analyzing effects of HBM
on different individual data structures and operators, we did
not use any test results with Numactl in this paper.

In summary, the test cases considered the following op-
tions:

• MCDRAM configuration (flat, cache)

• Tuple allocation of data streams

• Window content allocation

• Hash Table allocation of Hash Joins

• State allocation of aggregations

Allocations can be done in MCDRAM as well as in DDR4.
All tests use data streams directly streamed from main mem-
ory without any I/O from disk, with one million tuples per
stream (except for joins) for calculating the tuple processing
rate (tp/s) of queries. We also tested higher tuple amounts
per stream, but the processing rate (tp/s) did not change,
pointing out that a million tuples is enough for calculating
rates. With these results, we want to show the influence of
HBM on performance regarding different data structures.

5.1 Setup
For our tests with HBM we used a KNL 7210 with 64

cores, 96GB DDR4 memory and 16GB MCDRAM. PipeFab-
ric is compiled with the Intel compiler version 17.0.6 and the
AVX512 instruction set support. Threads run in scattered
setting, which means that each of the 64 cores gets first a
single thread before a core gets a second one. The clustering
mode of the KNL runs SNC-4, that means, the core grid is
divided into four NUMA sections with 24 GB main memory
and 4 GB MCDRAM each.

Tuples use an integer, a double as well as a string value
as format. For stable results without too much randomness,
the integer is simply counted up from zero modulo 10,000
and declared as key attribute for the join tests.

2
https://colfaxresearch.com/knl-mcdram/

3
http://memkind.github.io/memkind/

4
https://www.systutorials.com/docs/linux/man/8-numactl/

https://colfaxresearch.com/knl-mcdram/
http://memkind.github.io/memkind/
https://www.systutorials.com/docs/linux/man/8-numactl/


0 16 32 64 128 192 256
#Threads

10m

50m

100m

200m

300m

400m

500m

600m
R

a
te

 [
tp

/s
]

MCDRAM Unused
MCDRAM Flat
MCDRAM Cache

Figure 4: Tuple Allocation Performance

5.2 Tuple Allocation
Our first measurements address the allocation of data

stream tuples. Three possibilities can be explored: (1) Stor-
ing them in main memory DDR4, (2) allocate them in HBM
directly with memkind API, and (3) using MCDRAM as
last level cache without further modifications. We tested all
three variants regarding tuple throughput for a query with
a selection operator (50% selectivity), streaming the tuples
right through it in the absence of additional operators.

To utilize the bandwidth and 256 supported threads of the
KNL 7210 processor, we run the same query multiple times
while increasing the number of OpenMP threads. Each
OpenMP thread runs a single instance of the query (Inter-
Query Parallelism), leading to a rising number of memory
requests. Threads are created with the first parallel pragma
of OpenMP, therefore we skip the first run for our mea-
surements. Our results are shown in Figure 4 for all three
options mentioned above. The abbreviation m expresses a
million tuples per second while k stands for thousand tuples
per second accordingly.

It can easily be seen that the sequential tuple access cre-
ates ideal conditions to saturate the bandwidth. Important
to notice is the difference between MCDRAM as cache and
being directly addressed. In the latter case there are no
cache misses in MCDRAM, saving the detour back to main
memory. The increased latency costs of MCDRAM access
can be hidden after each core got two threads due to hyper-
threading effects, improving performance of MCDRAM in
flat mode even more.

5.3 Window Allocation
A window operator stores a sequence of tuples, defining a

range in which tuples are relevant for further processing (see
Section 4.2). The elements stored in a window can be allo-
cated in main memory and HBM as well. We investigated
the performance advantage in the same way like allocating
tuples in the last Section.

The window operator uses a sliding window with a size of
100,000 tuples, preventing a possible memory overflow. This
is especially useful for the limited space of the MCDRAM to
16GB. In addition, a selection operator with 50% selectivity
processes the valid tuples afterwards. The results are shown
in Figure 5.

0 16 32 64 128 192 256
#Threads

1m

10m

20m

30m

40m

50m

R
a
te

 [
tp

/s
]

MCDRAM Unused
MCDRAM Flat
MCDRAM Cache

Figure 5: Window Performance

After 20 threads requesting data from memory simultane-
ously, an advantage between HBM and regular DDR4 can
be noticed, up to around 80% with 128 threads. Because
of the window semantics, inserting new tuples and removing
the oldest ones leads to a predictable memory access pattern.
The cache mode cannot compensate misses and the generally
higher access latencies with higher bandwidth, leading to no
noticeable improvements overall. The MCDRAM seems to
show best performance for 64, 128, 192 and 256 threads -
where each core has one, two, three or four threads, with
equal load on each core.

5.4 Hash Table Allocation
Another chance to use HBM for improved bandwidth is

the allocation of hash tables, being used regularly by join
operators. Two input streams deliver 100,000 tuples each
for our test case. After key specification, the tuples are
forwarded to the join operator. Because of the specified
workload, one million tuples are produced by joining.

Like the tests before, we run this query in parallel with
OpenMP threads to show Inter-Query Parallelism perfor-
mance. In Figure 6 the results of the join operator are
shown.

0 16 32 64 128 192 256
#Threads

100k

1m

2m

3m

4m

5m

R
a
te

 [
tp

/s
]

MCDRAM Unused
MCDRAM Flat
MCDRAM Cache

Figure 6: SHJ Performance



0 16 32 64 128 192 256
#Threads

1m

10m

20m

50m

R
a
te

 [
tp

/s
]

MCDRAM Unused
MCDRAM Flat
MCDRAM Cache

Figure 7: Aggregation Performance

The numbers are quite disappointing, although they met
our earlier expectations. With MCDRAM as a cache the
rate even gets worse, caused by random memory access and
cache misses. But even with directly allocating and updating
only hash tables in MCDRAM, the tuple processing rate
increases by 15% at most while running 64 threads (one per
core).

5.5 Aggregate State Allocation
Finally we want to improve the tuple processing rate of ag-

gregation operators. Each operator holds a state where the
aggregate is stored, e.g. in simple cases just a sum, average
or current maximum. This state can also be allocated on
HBM for increased bandwidth. Figure 7 shows the results
of our measurements.

The observation shows that it is just possible to store small
states in L1 and L2 cache of each core. This results in no
improvement of performance when utilizing HBM instead of
DDR4. The peak rates at 64, 128 and 192 threads can again
be explained by the scattered thread setting, where threads
are distributed evenly to the cores. With 128 threads, each
core maximized its parallelism because each core supports
two hardware threads without hyperthreading side effects.

6. CONCLUSION
The questions of the introduction can be answered in the

following way. First, the performance gain of HBM can in-
crease up to a magnitude when a high count of threads is ac-
cessing memory sequentially. Instead of just running HBM
as a cache without further modifications, it is absolutely nec-
essary to carefully store suitable data structures in HBM to
avoid expensive cache misses.

In addition to this, not all data structures benefit equally
from the higher available bandwidth. Random access pat-
terns that are commonly found in hash joins cannot ex-
ploit effectively the HBM properties with prefetching mecha-
nisms. On the other hand, predictably removing and adding
elements in a window experiences a notable boost in rate
performance up to 80%. The ideal case, receiving tuples
from a source and storing them directly for further process-
ing in HBM can benefit the most from the higher bandwidth
with up to a magnitude higher processing rates, which was
quite surprising, though. However, it demonstrates the pos-

sible potential when algorithms get further enhanced and
optimized for manycore CPUs with HBM support.

To summarize it up, the observations made with data
stream processing on the KNL manycore architecture show
that there is a huge gap in performance between operators
with random and predictable memory access. Especially
hash join operators show bad behavior and should ideally
be replaced by join operators using more linear accessable
data structures. Our future work will draw on these results,
attending HBM characteristics for improved data structures
and algorithms of database operations to maximize parallel
performance.

7. REFERENCES
[1] A. Arasu, S. Babu, et al. The CQL Continuous Query

Language: Semantic Foundations and Query
Execution. The VLDB Journal, pages 121–142, 2006.

[2] T. Barnes, B. Cook, et al. Evaluating and Optimizing
the NERSC Workload on Knights Landing. In PMBS,
pages 43–53, 2016.

[3] X. Cheng, B. He, et al. A Study of Main-Memory
Hash Joins on Many-core Processor: A Case with Intel
Knights Landing Architecture. CIKM, 2017.

[4] B. Gedik, R. R. Bordawekar, et al. CellJoin: A
Parallel Stream Join Operator for the Cell Processor.
The VLDB Journal, 18(2):501–519, 2009.

[5] V. Gulisano, Y. Nikolakopoulos, et al. ScaleJoin: a
Deterministic, Disjoint-Parallel and Skew-Resilient
Stream Join. IEEE TBD, pages 1–1, 2016.

[6] T. Karnagel, D. Habich, et al. The HELLS-join: A
Heterogeneous Stream Join for Extremely Large
Windows. In DaMoN, pages 2:1–2:7, 2013.

[7] V. Leis. Query Processing and Optimization in
Modern Database Systems. In BTW, pages 507–518,
2017.

[8] A. Meister, S. Breß, et al. Toward GPU-accelerated
Database Optimization. Datenbank-Spektrum,
15(2):131–140, 2015.

[9] I. B. Peng, R. Gioiosa, et al. Exploring the
Performance Benefit of Hybrid Memory System on
HPC Environments. In IPDPSW, pages 683–692,
2017.

[10] C. Pohl. Exploiting Manycore Architectures for
Parallel Data Stream Processing. In GvD, pages
66–71, 2017.

[11] S. Smith, J. Park, et al. Sparse Tensor Factorization
on Many-Core Processors with High-Bandwidth
Memory. In IPDPS, pages 1058–1067, 2017.

[12] J. Teubner and R. Mueller. How Soccer Players Would
Do Stream Joins. In SIGMOD, pages 625–636, 2011.

[13] T. Urhan and M. J. Franklin. Dynamic Pipeline
Scheduling for Improving Interactive Query
Performance. VLDB, pages 501–510, 2001.

[14] A. Wilschut and P. Apers. Dataflow Query Execution
in a Parallel Main-Memory Environment, pages
68–77. IEEE Computer Society, 1991.

[15] W. A. Wulf and S. A. McKee. Hitting the Memory
Wall: Implications of the Obvious. CAN, 23(1):20–24,
1995.

[16] X. Yu, G. Bezerra, et al. Staring into the Abyss: An
Evaluation of Concurrency Control with One
Thousand Cores. pages 209–220, 2014.


	Introduction
	Related Work
	Processor and Memory
	Manycore CPU
	Multi-Channel DRAM
	Summary

	Data Stream Processing
	PipeFabric
	Window-based Operations
	Symmetric Hash Join

	Experimental Analysis
	Setup
	Tuple Allocation
	Window Allocation
	Hash Table Allocation
	Aggregate State Allocation

	Conclusion
	References

