
Blocking music metadata from heterogenous data sources

Oliver Pabst
FG Datenbanken und Informationssysteme

Institut für Praktische Informatik
Leibniz Universität Hannover

pabst@dbs.uni-hannover.de

Udo W. Lipeck
FG Datenbanken und Informationssysteme

Institut für Praktische Informatik
Leibniz Universität Hannover
ul@dbs.uni-hannover.de

ABSTRACT
Entity resolution or object matching describes the assign-
ment of different objects to each other that describe the
same object of the real world. It is used in a variety of tech-
nical systems, e.g. systems that fuse different data sources.
Blocking is used in this context as an approach to reduce the
total amount of comparisons by grouping similar objects in
the same cluster and dissimilar objects in different clusters.
As a result only the objects of the same clusters have to
be compared to each other. To deal with noise, for instance
spelling errors, that can result from different heterogeneous
data sources, various blocking approaches exist that may
add or remove redundancy to the data.

In this paper we propose a system that utilizes a deriva-
tive of the standard blocking technique to compute corre-
spondences between objects as starting points for a graph
matching process. The blocking technique, which usually re-
lies on identity of blocking keys derived from attributes, is
modified to cope with heterogenous source data with few at-
tributes suitable for matching. A common criticism of stan-
dard blocking is low efficiency, since the block sizes are un-
balanced with regard to the number of contained entities.
We take precautions to keep the efficiency high by reducing
the size and amount of large partitions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Blocking, matching, entity resolution

Keywords
Blocking, matching, entity resolution

1. INTRODUCTION
Merging two different relational databases is a difficult

task. There are well known research approaches in the area of

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

information integration where mappings between relational
schemas are the groundwork before relational schemas can
be matched and later fused. Whereas relational databases
have to compute expensive joins over relations to gather
data that are related, the graph data model is predestined to
directly store relational data and process them object-wise.
While we have to perform complex operations in relational
systems to get the join partners of a specific tuple, in the
graph data model we just have to query the adjacent edges
and nodes of a specific node. Now if we want to use graphs
to match entities, we do need some starting points, since
testing all possibilities is infeasible.

As an origin we have two relational databases, Discogs1

and Musicbrainz2, which collect and maintain music meta-
data from web communities, that we want to fuse into one
database. Both databases are both structurally and syntacti-
cally heterogenous. To overcome this heterogeneity, we have
defined an integrated schema and have transformed both da-
tabases into this schema. There are, however, actually very
few attributes in the data that are suitable for an attribute-
based matching process. For example, the position of a track
on a release or the genre of a release are by no means suita-
ble: Genres occur frequently and possess only a small num-
ber of distinct values, i.e., a low entropy. And track positions
are not comparable; two tracks are not more similar if the
difference of the positions is low. Additionally these data
are afflicted by noise in the form of spelling mistakes and
modifications by internal processes. No matter how a later
object matching is implemented, as the focus of the later
object matching could be shifted from attribute-based to
relational similarities[5], the blocking before matching has
to stay reliable even for few and ’noisy’ attributes. Thus we
need correspondences between blocks based on similar ins-
tead of identical blocking keys. These correspondences form
partitions of matching candidates that can be processed in
parallel.

During initial tests we have looked at different solutions
to perform the blocking process directly on the database
system that holds our data. [2] provides a list of possible ap-
proaches like q-gram-indexing which first seemed promising,
as PostgreSQL already has indexing structures that support
q-grams and matching operators in place. Unfortunately the
approach did not perform well at all. If it is used to perform
string matching between two different tables, a nested loop
join is required to compute the string similarities. This leads
to very high runtimes (days) for the calculations, despite the

1https://www.discogs.com
2https://musicbrainz.org



indexes. Additionally the database approach does not scale
well at all, since operations are performed sequentially, not
in parallel. Other indexing techniques like phonetic codes
were considered, but also discarded, because they delivered
no suitable results.

To deal with this problem, we have decided to modify the
standard blocking technique, first presented by Fellegi and
Sunter [3] and later picked up by [9] and [8] to cope with
very few available attributes. With regards to performance
we want to remain as efficient as standard blocking while
decreasing the redundancy and increasing the quality.

This paper is structured as follows. In the next subsection
we provide a brief overview of the various classes of blocking
techniques. In section 2 we outline the steps of our envisio-
ned process that takes two input data sources and computes
starting points for a graph matching process. We explain
our new blocking technique and outline the differences to
the standard blocking and explain our modifications. Fur-
thermore, we describe the block matching which calculates
the correspondences. We show which steps we take to handle
noise in the data sources and how we compute block pairs
that might be similar and have to be checked in a subse-
quent graph-matching process; that later process is not part
of this paper. In section 3 we describe our experiences with
the blocking process. Finally in section 4 we present the con-
clusions and future work.

Related work
Blocking has been introduced as an important preparation
of matching by, e.g., Christen [1]. Over the time a variety
of blocking techniques have evolved. Papadakis [7] catego-
rises them into two classes: redundancy-free methods and
methods manipulating redundancy. Redundancy in this ca-
se means, that the same entity may occur in more than one
block. The standard blocking proposed by Fellegi at al. [3]
and later modified by Papadakis [8] assigns a blocking key
to every entity and groups two entities in the same block if
their blocking keys match exactly. This technique is efficient
but can lead to insufficient results as it does not handle noise
and missing values well, but is free of redundancy.

The other class, methods manipulating redundancy, i.e.
methods that may decrease or increase the redundancy, can
roughly be separated into three categories of negative red-
undancy, neutral redundancy and positive redundancy. An
example for negative redundancy is canopy clustering [6]. In
every iteration an object is picked as a cluster center, points
within a threshold distance are assigned to the cluster, and
objects inside a smaller threshold distance are completely
removed from the dataset. This is justified by the assump-
tion that highly similar objects are most likely in the same
block and will not match with other objects. By removing
them from the dataset these data cannot be assigned to a
new cluster, thus the redundancy is decreased. Redundancy
neutral techniques comprise the same number of common
blocks across all entity pairs. An example for this category
is sorted neighbourhood blocking [4] as the sliding window
is shared among all entity pairs of the dataset. Redundancy
positive techniques, however, share the concept that the si-
milarity of two entities correlates with the number of blocks
that contain both entities. An example is q-gram blocking,
where two entities are most similar to each other if they
share all q-grams while they are least similar if they have no
common q-gram.

Our proposed method at first behaves like a redundancy-
positive method since similar (i.e. candidate) entity pairs
may appear in multiple block correspondences, but finally
it delivers a redundancy-free blocking since duplicate entity
pairs are filtered after the block building process.

2. PROCESS OVERVIEW
As described earlier, we want to compute possible corre-

spondences between nodes of two different graphs to initia-
lise a graph-matching process. To achieve this goal we have
developed a process that takes data from two sources in the
form s1: (id, string), s2: (id, string) that is sufficient to des-
cribe an entity. In our prototype, that currently works with
music metadata, we use the name of artists (together with
their local identifier) to approximately identify real world
objects in our data sources. Other attributes of artists are
not given, but rich contexts of related tracks, labels, releases,
etc.

These input data need to be preprocessed since they are
afflicted by noise, be it human mistakes like spelling errors
which result in transposed characters, omitted strings or mo-
difications by internal processes of the systems 3 that handle
the metadata. The string content from an incoming record
is split apart at blanks into tokens and the tokens are then
processed by applying a stop word list and regular expressi-
ons.

Input Preprocess 
(Stopwords, RegExp) Block Building

Block Matching Pair Filtering

Output

Partition Creation

Figure 1: process overview

To reduce the number of comparisons needed to compute
possible correspondences between both datasets, we use the
standard blocking technique. We work with either of two
different strategies to create blocks from the preprocessed
input data. The split-at-blank -approach leaves the tokens
apart, which potentially leads to more than one block per
entity. Alternatively blanks are eliminated by the merge-at-
blank -approach, so that the incoming tokens are merged;
with this strategy only one block per entity will be created.
Of course, created blocks will collect further entities with
the same split/merged tokens.

Then we have to match blocks of entities from our two
sources. To avoid missing matches due to noise we do not
use an exact matching to compute correspondences between
blocks. Instead blocks with same or similar labels shall be
matched by applying a string similarity measure on the la-
bels of all block pairs. Thus we can additionally apply a
3By system we mean internal rules inside a processing sys-
tem that affect the data as they are fed into the information
system, processed and stored.



variable threshold that can be set appropriately to fit the
noise of the data sources.

The resulting matches from the block matching are then
used to create partitions. Each match is used to build a par-
tition, which clusters the identifiers of similar block labels
together according to the computed block matches. Each
match is used to build such a partition by carrying two lists
that contain the identifiers participating in the block mat-
ching.

To reduce redundancy and thus increase efficiency, we ap-
ply a pair filtering after the block matching process. If we
consider the strategy that splits the entity string at blanks
into multiple tokens, it is obvious that an entity can be con-
tained in multiple blocks. Since this applies to both data
sources, it is clear that the same entity can participate in
more than one candidate pair.

The resulting output is a set of partitions that contain
all correspondence pairs of entities that we want to use as
starting points for the later graph-matching process. There
we will decide which entity pairs really match, in our ap-
plication mainly by utilizing relational similarities. To save
space pairs are implicitly stored; they can be reconstructed
by building the local cartesian product between two stored
identifier lists, while discarded pairs are stored in a blacklist.

The whole process is depicted in figure 1 and the com-
ponents of the process are further described in the following.

2.1 Preprocess and Block Building
The proposed blocking technique bases on the method pre-

sented by Papadakis at al. [8]. Strings are initially split at
blanks into tokens. On each token of a split string a domain
specific stop word list is applied to omit frequent substrings,
that do not contribute to a matching decision and have a
high entropy (e.g. the). Afterwards the remaining tokens
are kept separated (split-at-blank -strategy) or the blanks are
eliminated and the remaining tokens are fused (merge-at-
blank -strategy).

1: a day to remember

3: fiddler´s green

2: green day (2)

Figure 2: input example

In our approach the incoming entities, which consist of
a unique identifier and a string, are initially preprocessed
before being handled by the block building process in order
to reduce the quantity of noise in the data. Opposite to [8],
due to the lack of suitable matching attributes, we do not use
a unique identifier accompanied by a set of key-value-pairs,
but only a unique identifier and an associated attribute. A
set of sample entities can be seen in figure 2.

As previously described, the strings are first separated into
tokens using blanks as delimiters. A domain-specific stop
word list with common expressions (e.g. the, a or – in the
music domain – dj ) is applied and afterwards a set of regular
expressions is used to eliminate disturbing suffixes like (1),
(3), ?. Consequently some tokens will be removed after this
step.

In figure 3 (left) the result of the preprocessing can be
seen. For the first entity the stop words a and to have be-
en removed. The entities 2 and 3 were modified by regular
expressions, removing the numerical suffix ’(2)’ and the apo-
strophe from entity 3.

remember

fiddlersgreengreen

dayremember

greenday

fiddlers

daygreen

day

Figure 3: cleansed sample data, (left) split-at-blank,
(right) merge-at-blank

In figure 3 the result of both string handling strategies are
depicted. On the left side, the remaining tokens are unchan-
ged for the blocking step. The benefit of this approach is that
big mistakes can be compensated as we may get a match by
other blocks that contain the same entity. On the other hand
this may lead to a large number of blocks; entities which
consist of more than one token and spelling mistakes will
increase the count even further. Additionally, this approach
does not cover cases when blanks were omitted and tokens
were mistakenly concatenated in the source data. With the
second strategy all tokens of one entity will be collapsed to
just one string, which results in just one block. While we are
able to handle mistakenly concatenated strings big mistakes
cannot be compensated by other blocks but only by signifi-
cantly reducing the required similarity threshold to assume
a match.

remember: {1}

fiddlersgreen: {3}
green: {2, 3}

dayremember: {1}

greenday: {2}

fiddlers: {3}

day: {1, 2}

Figure 4: resulting blocks - (left) split-at-blank
(right) merge-at-blank

The result of the block building is shown in figure 4. The
first strategy places the entities 1 and 2 in the same block for
the token day and the entities 2 and 3 in the same block for
the token green. For the desired matching of two data sources
it is not required that similar objects of the same source are
actually placed in the same block, since a deduplication is
usually presumed beforehand.

Each block has a label that indicates the token it origina-
ted from and a list of identifiers from entities that contain
the token. These labels are used in the block matching, but
are irrelevant after the block matching is performed.



2.2 Block matching
After the block building we have to apply a matching bet-

ween the block sets of both data sources to compute the
possible correspondences between entities from both data
sources. Since the sources are different we have to hand-
le syntactical heterogeneity, in other words noise. Therefore
we must not use exact matching to determine correspon-
dences between blocks from both sources. Because the block
labels are stored as strings, we use the Jaro-Winkler string
similarity to measure the similarity of block labels, and we
need a threshold to determine whether two blocks represent
possible entity correspondences or not.

To compute the matching, we have to compare the block
labels of both block sets. Comparing them to each other
is computationally very expensive, so we choose to sort the
blocking labels in alphabetical order and apply a sliding win-
dow approach to reduce the number of comparisons. We her-
eby rely on the assumption that spelling mistakes are more
likely to appear in the end part of a word. Then a spelling
error will not much affect the sorting position.

Let us assume that the block building has been applied on
datasets similar to figure 2, using the split at blank -strategy.
The built blocks for both data sources are depicted in figure
5. Arrows represent the correspondences between the blocks.
The blocks on the left side have resulted from the following
artist names: 1) A Day To Remebmer, 2) Green Day and
3) Fiddler’s Green; we have noise in the form of two trans-
posed characters in the token remebmer (b ↔ m). On the
right side, the blocks are built from the artist names 5) The
Offspring, 3) Grene Day, 7) A Day To Remember and 2)
Fideler’s Green; here we have more noise.

remebmer: {1}

green: {2, 3}

fiddlers: {3}

day: {1, 2} grene: {3}

offspring: {5}

day: {3, 7}

remember: {7}

fidelers: {2}

green: {2}

Figure 5: blocking matching result for two block sets
using exact matching

If we take the example in figure 5 and assume exact mat-
ching, two block matches (day and green) are considered
which would cover a few entity match candidates, like 1− 7
(A Day To Remebmer, A Day to Remember) or 2−3 (Green
Day, Grene Day).

In contrast, figure 6 depicts the results for a non-exact
matching of the block labels, using the Jaro-Winkler distan-
ce; similarities with a threshold of 0.9 or above are consi-
dered a block match. With this approach we get an entity
match candidate for the artist Fiddler’s Green, as both to-
kens have matching partners on each side (fiddlers and fi-

remebmer: {1}

green: {2, 3}

fiddlers: {3}

day: {1, 2} grene: {3}

offspring: {5}

day: {3, 7}

remember: {7}

fidelers: {2}

green: {2}

Figure 6: block matching result for two block sets
using not-exact matching (threshold: 0.9)

delers, green and grene). With a threshold of 0.9, the artist
The Offspring does not match with anything, as there is no
fitting partner in the left side. Arguably this can change if we
would lower the threshold strongly. In this example though,
the threshold is low enough to discover all reasonable mat-
chings, but high enough to avoid unreasonable matches.

2.3 Partition building
For further computation, we utilize the existing block cor-

respondences as partitions for our later entity matching.
Thus we can load the data from all entities that are con-
tained in both blocks in one in-memory step. The partitions
consist of two separate lists that each contains the identifiers
that are stored in a block. As aforementioned, each partition
also will have a blacklist introduced in the next subsection.

s1-ids
1

partition 1
s2-ids

7

blacklist
∅

s1-ids
1
2

partition 2
s2-ids

3
7

blacklist
¬(1 , 7)

s1-ids
2
3

partition 3
s2-ids

3

blacklist
¬(2 , 3)

s1-ids
3

partition 4
s2-ids

2

blacklist
∅

s1-ids
3

partition 5
s2-ids

2

blacklist
¬(3 , 2)

Figure 7: result partitions

As can be seen in figure 7, the partitions are built accor-
ding to the block matchings from figure 6. Partition 3, e.g.
emerges from the matching of the blocks labeled green and
grene. The identifiers are taken from the blocks and added
to the identifier lists of the partition. Please note that we
do not actually store all pairs to save space; instead we car-
ry two lists along, each containing the identifiers from one
source and reconstruct the pairs later.

Additionally two inverse indexes are created alongside crea-
ting the partitions (figure 8). The index on each source tells



1 : p1, p2 2 : p4, p5
2 : p2, p3 3 : p2, p3
3 : p3, p4, p5 7 : p1, p2, p5

Figure 8: inverse indexes

for each identifier in which partitions it is contained. These
indexes will be used in the next step, the pair filtering.

2.4 Pair filtering
Once the partitions are built, we apply a filter to eliminate

redundant pairs across the generated partitions. To achieve
this, we utilize the inverse indexes that were created in the
partition building step and a temporary blacklist, to avoid
testing pairs for duplicates more than once. For each par-
tition, we reconstruct all possible pairs using the cartesian
product. For each pair, if it is not already contained in the
blacklist, we compose two sets by gathering the occurrences
in partitions by looking up the inverse indexes. Next, we cal-
culate the intersection of both sets, i.e., all partitions that
contain the current pair. We will add the pair to the tem-
porary blacklist and add the pair to the blacklists of all
partitions but the first.

The blacklist is later used when the pairs have to be recon-
structed using the in-memory cartesian product; blacklisted
pairs will be rejected during the reconstruction process.

We can see that three duplicate pairs exist across all five
partitions: the pair (1, 7) exists in partitions 1 and 2 and
the pair (2, 3) exists in partitions 2 and 3 and the pair (3, 2)
exists in partitions 4 and 5. Accordingly the pair (1, 7) is
added to the blacklist of partition 2, the pair (2, 3) is added
to the blacklist of partition 3 and the pair (3, 2) is added
to the blacklist of partition 5. Thereby partition 5 is empty
and can consequently be removed.

The partitions, as depicted in figure 7, represent the out-
put of our process and contain the correspondences that we
use to initialise a matching process across two graphs repre-
senting our data source.

3. PRELIMINARY RESULTS
The blocking technique presented was successfully applied

in a project at our institute, namely in the master thesis of
Kroll [5] who investigated relational similarity in the context
of a matching process for graph databases. We have tested
the blocking process with the database dumps of the Discogs
and MusicBrainz projects. The Discogs dataset contains over
400 000 artists while the MusicBrainz dataset comprises over
900 000 artists. After the preprocessing and the block buil-
ding are applied on both datasets, we get different numbers
of blocks for the implemented block building strategies. Uti-
lizing the split-at-blank strategy, we obtain 242 900 blocks
for the Discogs dataset and 435 563 blocks for the Music-
Brainz dataset; this corresponds roughly to a reduction by
half. With the merge-at-blank strategy, we receive 445 763
blocks for Discogs and 903 059 blocks for Musicbrainz; con-
trary to the other strategy, we see no reduction with regards
to the block count.

In our experiments we examined the effectiveness of our
pair filtering approach. Table 1 and 2 show the results for
both implemented strategies. The aim of these experiments
was to investigate the benefit of pair filtering concerning the
amount of detected duplicates. For measurement we counted

the number of pairs immediately before and after applying
the duplicate filtering. All experiments where conducted on a
3.4 GHZ quad-core CPU with 32 Gigabytes of main memory
running Linux 4.15 (Debian) and using Java 8u162.

sim # before # after duplicates runtime
(in %) (hh:mm:ss)

1.0 734.047.668 728.536.532 0.76 15:31
0.99 745.763.364 739.682.616 0.82 19:28
0.95 810.004.501 799.165.736 1.36 1:05:55
0.9 872.870.493 858.427.029 1.68 3:23:52

Table 1: pair filtering results for split-strategy

In table 1 the results for pair filtering utilizing the split-at-
blank strategy with various similarities are depicted. With a
decreasing similarity threshold we can see that the number
of pairs to test increases; yet the amount of duplicates is
initially small and does not grow jointly with the number of
pairs to be tested for possible duplicates.

When applying the merge-at-blank strategy it is obvious
that the number of pairs to test is dramatically lower than
with the split-at-blank strategy. Then we can see that the re-
quired runtimes for pair filtering are significantly lower than
the corresponding runtimes for the split-at-blank strategy,
due to the lower pair count. With regards to the amount of
duplicates detected by the pair filtering, the results for the
merge-at-blank strategy in table 2 are similarly underwhel-
ming. In this case, pair filtering yields less than one percent
reduction concerning the total amount of pairs.

sim # before # after duplicates runtime
(in %) (mm:ss)

1.0 1.873.697 1.867.733 0.32 00:03
0.99 2.013.566 2.004.183 0.47 00:04
0.95 3.607.298 3.574.736 0.91 00:11
0.9 9.185.447 9.103.081 0.90 01:26

Table 2: pair filtering results for merge-strategy

Obviously the chosen attributes, the artist names, of the
selected datasets have a high entropy, thus the effect of a
post-processing that applies a pair filtering step to eliminate
duplicate pairs is ineffective, as the effort spent for the post-
processing bears no proportion to the savings. Especially
for the split-at-blank strategy the increasing runtime with a
lowered similarity threshold gets disproportionate.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new blocking method

as part of a process that allows the computation of starting
points for the initialisation of a graph matching process. We
took steps to adapt the standard blocking technique to data-
sets that have few attributes that are suitable for a matching.
We also addressed the disadvantages of standard blocking by
introducing stop word lists and regular expressions to reduce
the size and amount of overly large blocks.

Kroll[5] has obtained very satisfactory quality results on
the overall graph matching starting with our blocking me-
thod. Nevertheless we have to thoroughly evaluate several
key aspects of our technique. Foremost we have to evaluate
the quality of our approach with regards to the accuracy,
especially in comparison to competing techniques.

Additional steps have to be taken for the evaluation of two
core elements of our block matching step, the effect of the



used similarity function and the optimal size of the sliding
window. Concerning the result quality we want to explore
our blocking technique with alternatives to the Jaro-Winkler
distance and varying sizes of the sliding window and their
ramifications on the quality.

5. REFERENCES
[1] P. Christen. Data Matching - Concepts and Techniques

for Record Linkage, Entity Resolution, and Duplicate
Detection. Data-Centric Systems and Applications.
Springer, 2012.

[2] P. Christen. A survey of indexing techniques for
scalable record linkage and deduplication. IEEE Trans.
Knowl. Data Eng., 24(9):1537–1555, 2012.

[3] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. American Statistical Association,
64(328):1183–1210, 1969.

[4] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In M. J. Carey and D. A.
Schneider, editors, Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995., pages
127–138. ACM Press, 1995.

[5] H. Kroll. Relationale Ähnlichkeit im Matching-Prozess
für Graphdatenbanken. Master’s thesis, Leibniz
University Hannover, 2017.

[6] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In R. Ramakrishnan,
S. J. Stolfo, R. J. Bayardo, and I. Parsa, editors,
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
Boston, MA, USA, August 20-23, 2000, pages 169–178.
ACM, 2000.

[7] G. Papadakis. Blocking techniques for efficient entity
resolution over large, highly heterogeneous information
spaces. PhD thesis, Leibniz University Hannover, 2013.

[8] G. Papadakis and W. Nejdl. Efficient entity resolution
methods for heterogeneous information spaces. In
S. Abiteboul, K. Böhm, C. Koch, and K. Tan, editors,
Workshops Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 304–307. IEEE
Computer Society, 2011.

[9] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2):6, 2006.


