
B-link-trees for DB/OS Co-Design

Jan Mühlig
TU Dortmund University

Germany
jan.muehlig@tu-dortmund.de

ABSTRACT
With modern and future hardware, which is characterized
by many compute units, large main memories, and hetero-
geneity, we have enough computational power, but software
has to adapt to these hardware changes. In this paper, we
present some aspects of the MxKernel, which is a bare me-
tal runtime focused on mentioned hardware and Database
/ Operating System Co-Design. As a key function, the Mx-

Kernel does not use threads but a smaller unit of work as
abstraction model for parallel control flows. To figure out
the behavior, we implemented a prototypical data structure
for indexing, whose results will be presented and discussed.

Keywords
Databases on Modern Hardware, Database/Operating Sys-
tem Co-Design, Database Performance

1. INTRODUCTION
While hardware changes in the order of many processor

cores, large amounts of main memory and complex memo-
ry architectures, software must also adopt these changes.
The purpose of increasing the number of processor units is a
linear speedup improvement, which is hard to reach. One re-
ason therefor is given by parts of a software, that cannot be
parallelized e.g. because of concurrent accesses to the same
shared resource, like shared memory, must be synchronized
[2, 14]. Otherwise, the software could end up in undefined
behavior such as system crashes or incorrect results [25]. In
conclusion, this means that synchronization like locking has
to be avoided both for Operating Systems (OSs) and app-
lications running on top, including Database Management
Systems (DBMSs).

In this work, we will introduce interesting aspects of the
project “MxKernel: A Bare-Metal Runtime System for Da-
tabase Operations in Heterogenous Many-Core Hardware”
which is a joint project of the Embedded System Software
Group and the Databases and Information Systems Group
at TU Dortmund. While common OSs allow the database to

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

run as an application on top, the MxKernel is a minimal layer
which can be used by both OS and DBMS as an abstraction
layer for the underlying hardware. This software architec-
ture enables the reuse of data structures and algorithms e.g.
indexes that are used by OSs for file system implementation
[11, 18] and databases to manage the data. Furthermore, all
applications running on top of the MxKernel will have a less
abstract interface to the hardware than the most operating
systems offer so far. Additional to the software architecture,
one main aspect of the MxKernel is a control flow abstrac-
tion, that is not built on the common thread model and
pledges for a more straightforward way to avoid locks.

This paper is organized as follows. In Section 2 we will
describe modern hardware in more detail and discuss pro-
blematic aspects. More precise information about the con-
cept of the MxKernel will be introduced in Section 3. As a
first data structure using the MxKernel, we built a B-link-
tree, which is presented and discussed in Section 4, before
we summarize in Section 5. Finally, the next steps of the
project respecting databases will be outlined in Section 6.

2. MODERN HARDWARE
There are several properties of current and future hard-

ware, that we need to follow from the software’s view. This
Section will discuss some of these characteristics.

2.1 Growing core count
Because it is no longer feasible to increase the clock fre-

quencies of processing units, more cores are installed on a
chip instead in order to enable more power through paralle-
lism [3]. This growing number of processor cores affects ser-
vers as well as end-user systems, such as desktop computer
and mobile devices. In fact, today we already have manycore
processors and in the future, these will continue to increase
[8]. Because not every part of an application can be paral-
lelized, at that point the concurrent control flows have to
be to synchronized, for example updating a shared memory
location or writing to the command line. While some techni-
ques like mutexes and spinlocks ensure only one control flow
to pass that critical section, smarter algorithms use atomic
load, store and compare operations [7] to implement wait-
or lock-free synchronization [21]. The development of these
algorithms is difficult and depends on the underlying data
structure.

2.2 Non-uniform Memory Access and cache
coherence

With the ongoing increase of processor units, symmetric

memory architectures stopped scaling with modern many-
core systems [14]. Instead, more complex memory architec-
tures like Non-uniform memory access (NUMA) exists in
modern hardware systems. A NUMA system is divided into
several nodes on which the CPUs are attached directly to
the node’s local memory. The memory is still organized in
a coherent memory space where every core can access every
memory address, but the latency differs on local and remo-
te accesses and may be higher in the latter case. Thus, the
memory accesses matters and can be a reason for bad per-
formance [6], when obtaining data from a remote NUMA
node. To prevent the latency that occurs on remote memo-
ry access, the OS and other applications should prefer local
data. Experiments in context of DBMSs have shown that
NUMA awareness can improve performance, but this requi-
res knowledge about the system and interfaces to allocate
local memory and place threads in defined regions [16]. Fur-
thermore, NUMA aware join algorithms like MPSM [1] and
Handshake join [23] have confirmed this.

In terms of distributed memory, parallel computing and
scalability, caches respectively cache coherence are also si-
gnificant. While caches speed up repeated access to data,
redundant data must be synchronized through complex ca-
che hierarchies. Since locks that are touched by many cores
are often implemented by using shared memory, cache cohe-
rence quickly results in solutions that are not scalable [22].

2.3 Heterogeneity
In addition to the growing number of computing units,

we also see an increase in heterogeneous hardware, like dif-
ferent cores with specialized functions in a single machine
[4]. The cores may differ in regard to energy consumption,
performance characteristics and also the instruction set ar-
chitecture [15]. Even peripheral devices are used more often,
such as special cores based on Field-programmable gate ar-
rays (FPGAs) and Graphics processing units (GPUs), which
are for example exploited on database query processing [9].

3. MXKERNEL
The goal of the MxKernel is to improve the performance

of manycore systems in regard to the increasing amount of
data. In order to achieve this, the MxKernel forms the basis
for applications like DBMSs and operating system services
as well. Additional small units of work, we call them MxTasks,
are used rather than threads for control flow abstraction.

This section will give an overview of the software archi-
tecture of the kernel, the MxTasks and how to synchronize
them.

3.1 Architecture
In most cases, operating systems are the basis for applica-

tions. The OS manages and abstracts the underlying hard-
ware, which makes it simple to deploy applications on a wide
set of different hardware. For this purpose, OSs provide in-
terfaces for the hardware and a set of services to applications
running on top of it. However, this endeavor also has disad-
vantages, for example, the OS is the only one who knows
much about running applications.

Particularly, DBMSs does need only a few of those provi-
ded services and implements his own ones. This concludes
that“a small efficient operating system with only desired ser-
vices” [26] would be preferred by database people. Further-
more, it is also important to consider the overall status of

CPU CPU CPU CPU GPU

Memory Memory

MxKernel

DBMS OS Services

Figure 1: Software architecture of the MxKernel.

the system if the database is to perform well in the presence
of other applications [12], but in most cases, only the OS
has knowledge about the status. While existing OSs in the
industry are being adapted, like Linux for Oracles Exada-
ta Database Machine [27], some research operating systems
allow specialization for applications [28, 4].

In contrast to this, the MxKernel, whose software archi-
tecture is shown in Figure 1, provides a platform for both
OS and DBMS. This makes sense for various reasons. When
the operating system is the base layer for applications, the
hardware will be abstracted to minimize any effort in regard
to different hardware architectures. On the other hand, the
abstraction may become prevalent and applications have fe-
wer possibilities to control hardware resources precise. While
hardware changed after OSs such as Linux were published,
it has become tedious to adopt these changes. For example,
the entire Linux kernel was temporarily locked by a single
lock to prevent multiple threads passing the kernel in par-
allel [5]. Another example is libnuma [17], a library that
provides an interface for NUMA architectures but does not
fit seamlessly into existing interfaces.

By providing a minimal layer for OSs and other applicati-
ons like DBMSs, which normally run on top with a need for
less abstracting interfaces of the underlying hardware, we
promise advantages for both sides. For example, the DBMS
could make a better placement of data on the hard disk,
improve scheduling of control flows and take more care of
NUMA awareness.

Further, there are components that are introduced by
both OSs and DBMSs. Indexing techniques, for example,
are used in databases to efficiently locate tuples. Even file
systems like BeOS [11] implemented similar data structures
and algorithms to access files in a quick way. Both use the
same approach, but they can not share concrete implemen-
tations because of the structure, where the database is built
upon the OS or vice versa. As a result, those functionali-
ties will be held redundant, where the MxKernel’s software
architecture allows sharing and reduces those redundancies.

3.2 Control flow abstraction
Threads are a well-known and heavily used method to

abstract concurrent control flows. Many OSs, as well as pro-
gramming languages, implement threads, which also have so-
me disadvantages. When several threads access a data struc-
ture at the same time and at least one of them updates the
data, the accesses must be atomic or synchronized, e.g. by
mutexes or spinlocks. This could impair the scalability of
the system because in case of synchronization only a single
thread could pass the guarded section.

Another costly aspect is scheduling and the included con-
text switches of threads. Since there are mostly more threads

Core

MxKernel

MxTask

MxTask

MxTask

Resource a

Resource b

Core

MxKernel

MxTask

MxTask

MxTask

(a) Unsynchronized access.

Core

MxKernel

MxTask

MxTask

MxTask

MxTask

MxTask

Resource a

Resource b

Core

MxKernel

MxTask

(b) Synchronized by core mapping.

Core

MxKernel

MxTask

SyncTask

Resource a

Resource b

Core

MxKernel

MxTask

SyncTask

(c) Synchronized by Synchronize-Task.

Figure 2: Concept of Synchronize-Task.

than processing units on a system, the operating system has
to schedule them periodically. When a thread is suppres-
sed by the OS for the benefit of another, the context of the
replaced thread has to be saved and the context of the resto-
red thread has to be recovered. On a Linux based system, a
context switch takes micro- up to milliseconds [20].

An alternative approach to threads, which represents a
large sequence of instructions, is to split the work into smal-
ler units, named tasks. Several libraries and operating sys-
tems make use of this concept, e.g. Intel’s Threading Buil-
ding Blocks [19] and the AUTOSAR OS [10], which provides
an option for offline scheduled tasks.

Also, the MxKernel uses the concept of tasks, namely Mx-

Tasks, to manage compute resources. The MxTasks are cha-
racterized by a run-to-completion semantic, which means
that running tasks will never be suppressed by the kernel.
Thus, a task does not need his own stack, instead, all tasks
of one core can share the same stack, which minimizes the
costs of a context switch between two tasks. Further, the
kernel guarantees the execution of a task per core to be ato-
mically, whereas a common thread could be interrupted at
any time. As a consequence, all tasks scheduled to the sa-
me core are synchronized by definition and do not need any
lock. This makes it easier to synchronize conflicting tasks
and simplifies the development of lock-free data structures
and algorithms.

In regard to modern hardware described in Section 2, we
see another benefit that tasks can profit in contrast to heavy-
weight threads. Due to the usually longer life and execution
time of threads, it is difficult to predict memory accesses and
migrate threads to the suitable NUMA region. MxTasks, on
the other hand, have a short duration of execution and in
this way lesser memory accesses. This allows finer scheduling
with respect to local memory requests.

3.3 Synchronization
Nevertheless, the access to one resource from different

MxTasks has to be synchronized. Otherwise different tasks
could update one resource on different cores at the same ti-
me like shown in Figure 2a, which causes undefined behavior.
For this purpose, we present two methods.

CPU core based synchronization.
Based on the run-to-completion semantic of tasks, we can

ensure that all tasks executed on the same CPU core are
serialized. By implication, this means when all accesses on

one resource are done by tasks assigned to the same core, the
resource does not need to be protected by locks or mutual
exclusion. Following this, we can synchronize multiple tasks
accessing the same resource by scheduling them to the same
core without any overhead. This is shown in Figure 2b, where
both Resource a and b are mapped to the first core in the
system.

Synchronize-Task.
Using the core based synchronization with a fixed resour-

ce to core mapping may result in an unbalanced load of the
system, where some cores may have a lot of work and others
not. In order to avoid that balancing problem and to get
rid of the static task-to-core-assignment, we implemented
a special task for synchronization, called Synchronize-Task.
Within a system where concurrent tasks access a shared re-
source like shown in Figure 2a, every Synchronize-Task re-
presents such a shared resource e.g. a monitor. Every task,
that wants to use the shared resource, for example, to print
some text on the monitor, needs to enqueue to the wai-
ting list of the Synchronize-Task, shown in Figure 2c. Af-
ter that, the Synchronize-Task will register itself as ready to
run to the MxKernel. By the time the MxKernel executes the
Synchronize-Task as a normal MxTask, a set of tasks waiting
in the ready list of the Synchronize-Task will be executed
directly. To avoid too long execution times, the set of run-
ning tasks within a Synchronize-Task will be restricted and
the Synchronize-Task will be marked as ready again if not
all (sub-) tasks were executed. In this way, the Synchronize-
Tasks can move around between cores to balance the load
and take care of NUMA aware execution. Moreover, when
multiple tasks accessing the same data are executed conse-
cutive, their behavior will be more cache-friendly because
already cached data could be used for several tasks in a di-
rect way.

4. MICRO-BENCHMARK
The task model introduced in Section 3 differs from pro-

gramming with well-known threads and looks more like an
event-based and asynchronous development. To get started,
we opted for a B-link-tree-based index structure, with which
we have already gained some experience in our group [24].

4.1 B-link-tree
B-trees and their variations like B+-trees and B-link-trees

[13] are key-value stores and approved data structures for

Data: tree, key, value
1 node←− Root(tree)
2 while node is not leaf do
3 TakeLatch(node)
4 n←− FindChild(node, key)
5 ReleaseLatch(node)
6 node←− n

7 end
8 TakeLatch(node)
9 if node is not full then

10 Insert(node, key, value)
11 ReleaseLatch(node)

12 else
// recursive split and insert

13 end

Algorithm 1: Thread based insert operation on a
B-link-tree.

indexing data in databases or file systems. In contrast to
original B-trees, B-link-trees store values in leaf nodes only,
inner nodes point the way down to child nodes using keys as
fences. Additionally, and contrary to B+-trees, every node
in a B-link-tree contains a high key, which indicates the hig-
hest key that node will hold, and a link to the right sibling.
The latter allows sequential processing of the inner and leaf
nodes. Moreover, the B-link-tree allows the split operation in
consequence of a node overflow to be executed in two single
steps [13], whereby only the modified node must be protec-
ted by a latch. This condition allows the B-link-tree to be
implemented with the task model by considering each node
of the tree as a shared resource, which can be synchronized
by the methods presented above in Section 3.3.

As an example for developing with the task model in the
context of the MxKernel, we will take a look at the insert
operation to store a key-value pair as a record into the B-
link-tree. Algorithm 1 shows the pseudo code of a simplified
insert operation using threads. First, we will find a leaf in a
B-link-tree by traversing through different levels of the tree,
shown in lines 2 to 7. As we found the correct leaf, we insert
the record composed of a key and the corresponding value,
represented by lines 8 to 11. In case that the leaf node is
full, it is split into two nodes, both filled with half of the
key-value pairs and the separator to the new node has to
be propagated up to the parent node. Because this is not
important for the comparison between the two abstraction
models, we neglect this step.

While navigating down to the leaf the record will be stored
in, we need to take a latch on every inner node to prevent
other threads from updating that node. Even for the leaf
node, we have to take a latch during insertion. As a result,
when frequently used nodes, such as the root node, will be
accessed by multiple threads, the latch data structure will
be touched by all of them. The lock contention will be a
big part of the execution time [28]. Another aspect is the
memory access in a NUMA system. When multiple threads
on different NUMA regions touch the same node, the data
will be shipped across. This can be associated with high
latency. By using the task model, we want to bring the code
to the data instead of moving the data to the code.

The concept of MxTasks and the way they are synchronized
with each other gives us the possibility to avoid the lock

Data: node, key, value
1 if node is not leaf then
2 node←− FindChild(node, key)
3 EnqueueTask(node, InsertTask(key, value))

4 else
5 if node is not full then
6 Insert(node, key, value)
7 else

// split, insert and enqueue

propagation task to parent

8 end

9 end

Algorithm 2: Insertion using task abstraction.

Processor 2× Intel R© Xeon R© CPU E5-2690
Base clock 2.90GHz
CPU Cache L1: 32KB / L2: 256KB / L3: 20MB
NUMA Nodes 2 (CPUs 0− 7 / CPUs 8− 15)

Table 1: Hardware setup for experiments.

contention. In opposition to threads, where one thread will
traverse through the tree to find a leaf, multiple tasks are
used to process node by node, shown in Algorithm 2. Every
insert task will start his work on the root node of the tree.
Assuming that the root node is not a leaf, the task will
look up for the next child node and create a follow-up task
for that node (lines 1-3). On the located child node, this
steps will be repeated, until we found a leaf. When the task
located the wanted leaf, the key-value pair will be inserted
(line 6) and the task is done. Assuming that the node has
to be split, an insert task for the pointer to the new node
will be spawned at the parent node. Deviating from thread
model, where the propagation of the new node would be done
bottom-up recursive, the MxKernel uses tasks to propagate
the key-pointer pair for the new node up to the parent.

In regard to different synchronization techniques descri-
bed in Section 3.3, the EnqueueTask method (line 3) could
have various implementations. When using the core, based
synchronization, every node is mapped to a core based on its
memory address. Enqueue in this context means to mark the
task as ready for the run on the mapped core so that only
this core will process all tasks accessing the node. Other-
wise, when the Synchronization-Task is used, every node is
seen as a shared resource and will be a MxTask which can
be processed by the MxKernel. In this way, every node will
execute the tasks that are accessing it, to avoid concurrent
accesses to one node.

4.2 Results
All measurements are carried out on a machine using the

hardware presented in Table 1. While the MxKernel is run-
ning directly on the hardware, we used an Ubuntu 17.10
with a Linux Kernel 4.13.0 − 36 to measure the thread ba-
sed variant of our benchmark.

As a workload, we insert 5, 000, 000 random generated 32-
bit key-value pairs into the B-link-tree using a global set of
predefined values, which are “stolen” by threads and tasks.
The results of our experiments can be seen in Figure 3. A
first finding is that all measurements show a loss of perfor-
mance when using more than eight cores. At this point, the

 0

 500000

 1x106
 1.5x106

 2x106
 2.5x106

 3x106
 3.5x106

 4x106
 4.5x106

 5x106

 0 2 4 6 8 10 12 14 16

O
p
e
ra

ti
o
n
s/

se
co

n
d

Cores / Threads

B-Link-Tree

Linux Threads
MxTasks (CPU-synchronized)

MxTasks (Synchronize-Task)

Figure 3: Results of the B-link-tree.

first processor with eight cores installed is not enough and
some tasks and threads are scheduled to the second pro-
cessor, which is also a separate NUMA region. While the
thread benchmark (red) is fastest at four cores and slows
down when additional cores are added, all variants of the
benchmarks using MxTask gain more throughput until using
the ninth core. At the thread variant, we have no influence
on the scheduling of threads and left it to Linux. Therefore,
it is possible that two threads on the same core compete for
computing time, which may slow down the benchmark.

We also see some differences in regard to throughput wi-
thin the two different techniques of task synchronization,
described in Section 3.3. While synchronization by Synchro-
nize-Task (blue) seems to be slower on the usage of the first
eleven cores, the core based synchronization (green) variant
loses more speed when using 12−15 cores. In the end, when
using all 16 processing units, their throughput is approxi-
mately equivalent.

By profiling the given benchmark and both techniques for
task synchronization we have uncovered problems concer-
ning the task queue data structure, which is used by both
Synchronize-Task and the task management of the MxKer-

nel. In order to achieve a wait-free behavior of the queue,
an atomic variable is shared between consumer and producer
when just one or none item is remaining in the queue. In the
case of the synchronize task, where each node is represented
by such a task, we get a lot of contention on that shared
variable, which slows down the whole application. Unbalan-
ced workloads in which some cores have little work end up
behaving the same way. The extra effort to keep the cache
coherent seems to get more expensive when more than one
NUMA region is involved which ends in poor performance
on two nodes.

Nonetheless, MxTasks seems like a promising approach to
make better use of modern hardware than usual threads
does. Although we have not made any optimizations regar-
ding the NUMA architecture and do not yet schedule tasks
in the best possible way, the MxKernel achieved a higher
throughput on the B-link-tree.

5. SUMMARY
In this paper, we presented the MxKernel, which is a bare-

metal runtime system for Database/Operating System Co-
Design. With the project, we focus on modern hardware that
is characterized by many cores, complex memory architec-

tures, and heterogeneity. Small units of work are used to
abstract control flows rather than threads.

As a first data structure, we implemented a B-link-tree on
top of the MxKernel and MxTasks. Experiments have revea-
led promising results and have shown that tasks sometimes
scale better than threads, even there is still room for optimi-
zations. With the software architecture outlined above, we
will obtain a better interface between software and hardware
to enable optimization in regard to modern hardware.

6. NEXT STEPS
As the experiments show, we need to find a more efficient

data structure for task management in order to reduce the
contention of shared variables. Considering the intention to
create a full runtime environment for databases and ope-
rating systems, we must first solve basic problems such as
efficient memory allocation. With MxTasks we have a data
structure that is allocated and destroyed at high frequencies,
our current usage of a global heap may be a bottleneck for
scalability. Similarly, there is still no clarity as to how tasks
could be ideally scheduled to available cores. Therefore, we
want to model dependencies among MxTasks and their access
patterns as metadata, connected directly to the tasks. Also,
offline scheduling may be an opinion.

In regard to databases, more data structures like hash
tables have to be implemented in order to further explore
the behavior and programming of MxTasks. Furthermore, we
will add a transactional interface to the B-link-tree.

7. ACKNOWLEDGMENTS
This research was supported by the Deutsche Forschungs-

gemeinschaft, DFG, project number TE 111/2-1.

8. REFERENCES
[1] M.-C. Albutiu, A. Kemper, and T. Neumann.

Massively parallel sort-merge joins in main memory
multi-core database systems. Proceedings of the VLDB
Endowment, 5(10):1064–1075, 2012.

[2] G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483–485.
ACM, 1967.

[3] A. Barbalace, B. Ravindran, and D. Katz. Popcorn: a
replicated-kernel os based on linux. In Proceedings of
the Linux Symposium, Ottawa, Canada, 2014.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new os architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pages 29–44. ACM, 2009.

[5] S. P. Bhattacharya and V. Apte. A measurement
study of the linux tcp/ip stack performance and
scalability on smp systems. In Communication System
Software and Middleware, 2006. Comsware 2006. First
International Conference on, pages 1–10. IEEE, 2006.

[6] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A case for numa-aware contention
management on multicore systems. In Proceedings of
the 19th international conference on Parallel

architectures and compilation techniques, pages
557–558. ACM, 2010.

[7] H.-J. Boehm and S. V. Adve. Foundations of the c++
concurrency memory model. In ACM SIGPLAN
Notices, volume 43, pages 68–78. ACM, 2008.

[8] S. Borkar. Thousand core chips: a technology
perspective. In Proceedings of the 44th annual Design
Automation Conference, pages 746–749. ACM, 2007.

[9] S. Breß, H. Funke, and J. Teubner. Robust query
processing in co-processor-accelerated databases. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1891–1906. ACM, 2016.

[10] K. Devika and R. Syama. An overview of autosar
multicore operating system implementation.
International Journal of Innovative Research in
Science, Engineering and Technology, 2:3162–3169,
2013.

[11] D. Giampaolo and D. Giampaolo. Practical File
System Design. Morgan Kaufmann Publishers, 1998.

[12] J. Giceva, T.-I. Salomie, A. Schüpbach, G. Alonso,
and T. Roscoe. Cod: Database/operating system
co-design. In CIDR, 2013.

[13] G. Graefe et al. Modern b-tree techniques.
Foundations and Trends R© in Databases, 3(4):203–402,
2011.

[14] J. L. Hennessy and D. A. Patterson. Computer
architecture: a quantitative approach. Elsevier, 2011.

[15] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez.
Core fusion: accommodating software diversity in chip
multiprocessors. ACM SIGARCH Computer
Architecture News, 35(2):186–197, 2007.

[16] T. Kiefer, B. Schlegel, and W. Lehner. Experimental
evaluation of numa effects on database management
systems. In BTW, volume 13, pages 185–204, 2013.

[17] A. Kleen. A numa api for linux. Novel Inc, 2005.

[18] P. Koruga and M. Bača. Analysis of b-tree data
structure and its usage in computer forensics. In
Central European Conference on Information and
Intelligent Systems, 2010.

[19] A. Kukanov and M. J. Voss. The foundations for
scalable multi-core software in intel threading building
blocks. Intel Technology Journal, 11(4), 2007.

[20] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop on
Experimental computer science, page 2. ACM, 2007.

[21] M. M. Michael. Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes. In
Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 21–30.
ACM, 2002.

[22] S. Ramos and T. Hoefler. Cache line aware
optimizations for ccnuma systems. In Proceedings of
the 24th International Symposium on
High-Performance Parallel and Distributed
Computing, pages 85–88. ACM, 2015.

[23] P. Roy, J. Teubner, and R. Gemulla. Low-latency
handshake join. Proceedings of the VLDB Endowment,
7(9):709–720, 2014.

[24] M. Schröder. Using Modern Synchronization
Mechanisms in Databases. Master’s thesis, TU
Dortmund, Dortmund, Germany, 2016.

[25] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating system concepts essentials. John Wiley &
Sons, Inc., 2014.

[26] M. Stonebraker. Operating system support for
database management. Communications of the ACM,
24(7):412–418, 1981.

[27] R. Weiss. A technical overview of the oracle exadata
database machine and exadata storage server. Oracle
White Paper. Oracle Corporation, Redwood Shores,
2012.

[28] D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating system
for multicores. ACM SIGOPS Operating Systems
Review, 43(2):76–85, 2009.

	Introduction
	Modern Hardware
	Growing core count
	Non-uniform Memory Access and cache coherence
	Heterogeneity

	MxKernel
	Architecture
	Control flow abstraction
	Synchronization

	Micro-Benchmark
	B-link-tree
	Results

	Summary
	Next Steps
	Acknowledgments
	References

