Exploring Emoji Usage and Prediction Through a Temporal Variation Lens

Francesco Barbieri♣ Luís Marujo♽ Pradeep Karuturi♽
William Brendel♼ Horacio Saggion♣
♣ Large Scale Text Understanding Systems Lab, TALN, UPF, Barcelona, Spain
♽ Snap Inc. Research, Venice, California, USA

© 2018 held by the author(s). Copying permitted for private and academic purposes.

Abstract
The frequent use of Emojis on social media platforms has created a new form of multimodal social interaction. Developing methods for the study and representation of emoji semantics helps to improve future multimodal communication systems. In this paper we explore the usage and semantics of emojis over time. We compare emoji embeddings trained on a corpus of different seasons and show that some emojis are used differently depending on the time of the year. Moreover, we propose a method to take into account the time information for emoji prediction systems, outperforming state-of-the-art systems. We show that, using the time information, the accuracy of some emojis can be significantly improved.

1 Introduction
Emojis are frequently used on social media (Snapchat, Twitter, Facebook, Instagram) and on communication platforms (Whatsapp, Messenger). In turn, they create a new form of multimodal communication, wherein images are used to enrich standard text messages. Over the past few years, the interest in emoji research has increased with several studies which contributed to emoji semantics [BRS16, ERA+16, WBSD17a, WBSD17b, BCC18], sentiment analysis [NSSM15, HGS+17, KK17, RPG+18], automatic emoji prediction [BBS17, FMS+17] and multimodal systems [CMS15, CSG+18, BBRS18]. However, to the best of our knowledge, the temporal dimension of emojis has not been addressed in past research. In this paper we explore the temporal correlation between emoji usage and events during the year, and we show that temporal information helps disambiguate emoji meanings. For example, the four leaf clover emoji ♣ is usually associated with good luck wishes, while in March, the same emoji indicates parties and drinking, due to St. Patrick day. In addition, some emojis are naturally associated with specific seasons. (e.g., 🍄 during Christmas and 🌞 in Summer), or specific hours (e.g., 🌜 by night, and ☀️ in the morning). We show that considering temporal information helps predict emojis, including those that are not time-specific such as 🌛 and 🌚.

2 Datasets
We first collected a corpus C_{us} of more than 100 million English tweets, posted only in the U.S.¹ from October 2015 to November 2017, and retrieved via the Twitter API². We then extracted two datasets out of C_{us}.

2.1 Seasonal Emoji Dataset
We divide our initial corpus into four subsets (tweets posted in Spring, Summer, Autumn and Winter) to

<table>
<thead>
<tr>
<th>Season</th>
<th>Most Frequent Emojis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>🎄✨🌟流星озвездыicional</td>
</tr>
<tr>
<td>Summer</td>
<td>🌞суждение ₡работать</td>
</tr>
<tr>
<td>Autumn</td>
<td>🍂겨울 오후 🍂겨울 오전</td>
</tr>
<tr>
<td>Winter</td>
<td>🍂겨울 오후 🍂겨울 오전</td>
</tr>
</tbody>
</table>

1To remove spatial and cultural influence on data [BKRS16],
2https://dev.twitter.com/streaming/overview
In Spring and Summer, emojis are always the most common, emojis other emojis are select season-specific: 🌽 in Autumn, 🍂 and 🌸 in Winter, and 🌸 in Spring and Summer.

2.2 Large Scale Emoji Prediction Dataset

We retain from tweets containing only one emoji, and only if that emoji belongs to the set of 300 most frequently occurring emojis. The final dataset for emoji prediction is composed of 900,000 tweets, with 3,000 tweets per class. In previous work, we experimentally observed that using more than 3,000 tweets per class does not significantly improve the prediction accuracy.

3 Does the Emoji Semantic and Usage Change Over Seasons?

Emoji semantics are difficult to analyze due to the subjective nature of emoji meanings, especially when it comes to describing emotions. Nevertheless, we study emoji semantic by association, i.e. we describe an emoji with either a set of semantically close emojis, or by emoji pair co-occurrence in the same tweet. To this extent, we train skip-gram word embeddings models [MSC+13] on the four different subsets (Spring, Summer, Autumn, and Winter) of our seasonal dataset. Each model embeds emojis within a high dimensional space (300 dimensions, 6 tokens window) where distance metrics translate to semantic closeness and co-occurrence. Following [BKRS16] we first evaluate emoji semantics by describing each emoji with its k-Nearest-Neighbours (k-NN) for each season. Secondly, for each model, we produce a correlation matrix that encodes the semantic correlation of pairs of emojis appearing in the same tweet. We then compare the four matrices to see if their correlation statistics is preserved across different seasons.

3.1 Analysis From Emoji k-NN Description

For each season, emojis are associated to their k-NN, with k=10. We then look at the overlap of these NN for each emoji among different models. This way, we can investigate if a specific emoji shares the same set of NN across distinct seasons and thus if that emoji preserves its meaning across seasons. We also measure the number of NN that overlap in all the seasons to find emojis with smaller meaning variation during the year. Results are shown in Table 2. In the top half of the table, we notice that emojis related to music, animal, sweets, and emotions are not influenced by seasonality, i.e. they have the same set of Nearest-Neighbours in the four season-specific vector models (10-NN overlap ≥ 8).

The emojis for which their NN set varies the most across seasons are the ones listed in the bottom half of Table 2. Many are some sport-related emojis including 🏃 and 🏀 probably due to seasons of the year that are include more sports events that other periods. Also the emoji 🎓 used in a school/university graduation context, seems to change meaning across seasons. The Nearest-Neighbours of these emojis are party and heart-related emojis in Spring, while school-related emojis in Autumn.

Another season-dependant example is the pine emoji 🏔 (Table 3). The pine tree is associated with vegetation, camping and sunrise-related emoji in Spring and Summer, while in Autumn and Winter it co-occurs with Christmas-related emoji. The gift emoji 🎁 present a similar behaviour: in Spring and Summer the three nearest neighbors are 🎁, 🍃 and 🎊, while in Winter the three closest emojis are 🎁, 🍃, 🎊.

3.2 Analysis From Emoji Correlation

We evaluate how the semantics of pairs of emojis is preserved across different seasons. To this extent, we compute for each season a 300×300 correlation matrix, where the correlation of emoji i and j is encoded as the cosine similarity between their 300-D feature vectors extracted from the season model. We then compare

<table>
<thead>
<tr>
<th>Emoji</th>
<th>🌽</th>
<th>🍂</th>
<th>🌸</th>
<th>🌸</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spr–Sum</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Spr–Aut</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Spr–Win</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Sum–Aut</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Sum–Win</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Aut–Win</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
<tr>
<td>All</td>
<td>9 9 9 9</td>
<td>10 10 10</td>
<td>10 10 10</td>
<td>10 10 10</td>
</tr>
</tbody>
</table>

Table 2: Nearest-Neighbour (NN) results. Season/pair combinations, and all indicates the number of emojis that are common in all the season NN.

Table 3: The 10 NN emojis of the pine emoji 🏔 computed with respect to the semantic space of the four seasons. Emojis on the left are the closest ones.
pairs of seasons by evaluating the Pearson’s correlation between their respective matrices. The most correlated matrices are Spring and Summer (0.871) while the lowest correlation is between Spring and Winter (0.837). However, all the matrices are highly correlated, suggesting that only a small subset of emojis have their semantic varying across seasons.

Table 4 shows for each pair of seasons the pairs of emojis with the highest difference in similarity across those seasons. The differences between Spring and Summer (first column) does not look as significant as the differences between other seasons. We can spot few interesting cases. For example the pair 🎈ável is more correlated during Autumn and Winter than during Spring and Summer. This is due to a famous case of doping in sport occurred during that Autumn/Winter of 2016. The pair 🎁 is more correlated during Autumn and Winter relates to a Christmas gift, as it is highly correlated to 🎄 and 🎁, while in Spring and Summer it is mostly used as a birthday gift as it is associated to emojis like 🎉 and 🎁. The case of the pair 🎀 can relate to either mass-shooting events or could simply suggests that in Autumn students have a hard time with the beginning of the new school year. One of the emojis that seems to be used differently in Autumn and Winter is the Skull 🎃, likely due to the usage of this emoji during Halloween time.

4 How Does Temporal Information Help Emoji Prediction?

In this section we evaluate how temporal information can improve the accuracy of emoji prediction models. We use the same experimental settings as [BBS17], except we predict 300 emojis classes in instead of 20. We use temporal information as an input to the classifier in addition to the tweet. The date is encoded as a vector of three dimensions, where the first dimension is the month (1-12), the second dimension is the day of the week (1-7), and the last dimension is the local hour (1-24) when the tweet was posted. In the following we describe our classifier architecture with two variants to fuse temporal information with text.

4.1 Emoji Prediction Model

We start from the state-of-the-art emoji prediction classifier [BBS17], and built two different methods – early and late temporal signal fusion – to incorporate the date information. The two entry points for fusing temporal information are evaluated in Section 4.2.
Moreover, we proposed a method to measure the improvement of the emojis with higher gain in \(F_1 \), from without date and early date information (i.e. W/O). We show the emojis with the biggest improvement. We show that, using the date information, the accuracy of some emojis can be improved. Some of them are clearly time dependent (e.g., ☀️, 🌌). Others are not directly associated to time but time information helps to predict them (🌙, 🌌, and 💘).

In the future we plan to study the semantics of emojis over the day (morning/night) or over the week (weekdays/weekend) and improve the date information modules, trying the two methods we proposed together (early+late).

5 Conclusions

In the best of our knowledge, this is the first study to investigate if and how temporal information affects the interpretation and prediction of emojis. We studied whether the semantics of emojis change over different seasons, comparing emoji embeddings trained on a corpus of different seasons (Spring, Summer, Autumn, Winter) and show that some emojis are used differently depending on the time of the year, for example ☀️, 🌌, and 💘. Moreover, we proposed a method to take into account the date information for emoji prediction systems, slightly improving the state-of-the-art. We show that, using the date information, the accuracy of some emojis can be improved. Some of them are clearly time dependent (e.g., ☀️, 🌌). Others are not directly associated to time but time information helps to predict them (🌙, 🌌, and 💘).

Acknowledgments

Part of this work was done when Francesco B. interned at Snap Inc. Francesco B. and Horacio S. acknowledge support from the TUNER project (TIN2015-65308-C5-5-R, MINECO/FEDER, UE) and the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).
References

