
Klick Labs at CL-SciSumm 2018

Gaurav Baruah and Maheedhar Kolla

Klick Inc., 175 Bloor Street East, Toronto, Ontario M4W 3R8, Canada
gbaruah@klick.com, mkolla@klick.com

Abstract. The CL-SciSumm 2018 shared task is designed to further the
state-of-the-art in constructing summaries of research papers. Participat-
ing systems extract focused information from reference papers given their
citing papers in order to construct a summary. To that end, given a cit-
ing sentence, we would need to know what concept (a result, method,
or inference) is the citing sentence referring to in the reference paper.
We explore the efficacy of word embedding based similarity functions to
find relevant sentences from reference papers that are likely being re-
ferred to by citing sentences (citances). We also classify the sentences
into appropriate discourse facets. Our preliminary findings indicate rank
optimization for returning top sentences is useful for this task, and using
term-IDF weights for averaging term embeddings improves performance.

Keywords: word embeddings · sentence similarity · sentence classifica-
tion

1 Introduction

An appropriate (and adequate) summary of a specific line of research, could
greatly benefit researchers: salient findings can be quickly collated, information
overload can be avoided, contrasting viewpoints can be examined, all of which
help in a better understanding of the state-of-the-art of the research topic, while
getting an overview of its historical development.

An obvious first step in such an endeavor is to generate an adequate sum-
mary of one research publication. The CL-SciSumm shared tasks [5, 6, 4] enable
researchers to explore solutions for the constructing a structured summary of
a research paper given its citation contexts. This is interesting because, a set
of citations (from various citing papers) provides varying viewpoints about the
knowledge in the referred research paper. To better understand the relationship
between the reference and citing papers, it is necessary to find sentences in the
reference paper, that describe concepts which are the subject of the citances (the
sentences that refer to the reference paper) in the citing papers.

In this paper, we explore various baseline algorithms (with some variations),
for ranking the sentences of the reference paper, in order of their similarity
to a given citance. We experiment with BM25 over sentences, cosine distance
between sentence embeddings (constructed by averaging the word embeddings
of the sentence), weighted averages for embeddings, as well as, rank optimization,

2 Baruah and Kolla

and variations in word embeddings construction. Our preliminary findings show
that:

– BM25 is a strong baseline for this task.
– Inverse Document Frequency weighted averaging of word embeddings im-

proves performance.
– Optimizing for number of top sentences to return from ranked reference

paper sentences improves performance.

1.1 Challenge Data and Evaluation Metrics

The task organizers shared “topics”, each consisting of a reference paper, and
at least 10 citing papers. Within each citing paper, sentences that referred to
the reference paper (i.e. citances) were manually annotated. Furthermore, sen-
tence(s) in the reference paper that are most likely the subject of discourse of
each citance were also manually annotated. The type of discourse (aim, hypoth-
esis, method, implication, or result) was also noted. Gold standard summaries
of the reference papers were also shared as part of the training set.

There are 3 subtasks in CL-SciSumm shared task:

– Task1a: find sentences in the reference paper that are referred to by a citance,
– Task1b: classify the found sentences into appropriate discourse facets.
– Task2 : construct a summary of the reference paper using the found sentences

(and possibly other related content in the topic’s files)

The evaluation metrics for Task1 are Precision, Recall, and F1 (the harmonic
mean of Precision and Recall). Task2 is evaluated using the ROUGE [10] family
of metrics. For this iteration of the CL-SciSumm shared task, we only participate
in Task1.

2 Data Preprocessing

We downloaded the Parcit Structured XML1 [3] version of the ACL Anthology
Reference Corpus [2]. We extracted the all the text from the XML format (except
for figure, equation, table tags). Using the corpus text we constructed:

– a term to IDF (inverse document frequency) lookup table for all terms in the
corpus; we utilized the scikit-learn’s [12] “TfidfVectorizer” (with default
parameters) for computing term-IDF values.

– word2vec embeddings [11] for terms; (with parameters: context window 8,
number of iterations 20, negative samples 10, number of dimensions 200)

– word2vec embeddings with normalized text (no punctuation, all lowercase);
(with parameters: context window 5, number of iterations 25, negative sam-
ples 15, number of dimensions 200)

1 https://acl-arc.comp.nus.edu.sg/archives/acl-arc-160301-parscit

Klick Labs at CL-SciSumm 2018 3

3 Task1a Methods and Experiments

We approach Task1a as a sentence similarity problem: if the citance text is the
“query” sentence, we need to find the sentences from the reference paper that
are most similar to the query sentence. The similarity function could potentially
incorporate various lexical or semantic features, and the goal then is to find a
sentence similarity function that performs best for this subtask. As the similarity
function imposes an ordering over the sentences in the reference paper, we also
try to optimize the number of most similar sentences to be returned.

3.1 Baseline Systems

BM25 (Vanilla) baseline (BM25) We first build a baseline based on the BM25
similarity [14] of two sentences. We utilized corpus wide IDF-weights for terms,
and restricted sentence term frequency to 1.

BM25 (No Author) baseline (BM25 noauth) We noticed that references of
the form “(author, year)” caused those sentences to be returned (from the refer-
ence papers) that had the “author’s” names present. Such sentences are typically
references to an even earlier paper by the same author(s). We therefore gener-
ated a variation on the baseline wherein we removed “(author, year)” tokens
from the query citance text.

3.2 Word Embedding based similarity

We wanted to experiment with word embedding based approaches for sentence
similarity. Typically a sentence or phrase embeddings [9] could be first con-
structed and then the sentence-embeddings of citances and reference paper sen-
tences could be compared. Alternatively, we can compute an average vector of
the word embeddings for a sentence which could help approximate the concept
represented by the sentence. For this work, we follow the latter process, and we
try 3 different variations in computing an average vector.

Average Embedding based similarity (w2v avg) Our basic word embedding
based similarity function:

– computes the average vector of the query citance’s term embeddings giving
us a query vector,

– computes the average vector for each sentence in the reference paper giving
us sentence vectors,

– computes the cosine distance between the query vector and the sentence
vectors, and

– returns a ranked ordering over sentence vectors based on their cosine distance
from the query vector.

4 Baruah and Kolla

IDF-weighted Average Embedding based similarity (w2v idf avg) In
this method, instead of using the regular average, we compute a weighted mean
of the term embeddings. The weights are the IDF values for the terms in the
sentence/citance; IDF of terms is computed using the ACL Anthology Reference
Corpus (Section 2).

Smooth Inverse Frequency based similarity (w2v sif) We also investi-
gate the efficacy of the Smooth Inverse Frequency [1] based method for textual
similarity, wherein:

– We first compute a weighted average for a sentence/query term embeddings,
with the weight a/(a+p(w)) where a = 0.001, and p(w) is the probability of
occurrence of term w in the ACL Anthology Reference corpus (Section 2).

– We consider the set of vectors constituting of the query vector and the refer-
ence paper’s sentence vectors; we compute the first principal component2 [7]
of the set of vectors; and then, we remove (subtract) the principal compo-
nent, from each of the individual query-citance/sentence vectors in the set.
This transformation aims to remove commonalities between the averaged
embeddings [1].

– We return a ranked list of sentence vectors based on the cosine distance
between the transformed query vector and the transformed sentence vectors.

3.3 Variations on the core methods

We also explore 3 different variations that build upon some of the methods
described above.

Rank Optimization (optRank) Given that sometimes more than one sentence
can be referred to from the citing paper, and that sometimes the similarity
function returns the referred sentence lower in the ranked list, we can try to
optimize the number of top documents to return for maximizing the F1 metric.
We perform a 5-fold cross validation over the training data to determine how
many top ranked sentences need to be returned on average, in order to maximize
F1. We computed the mean number of top ranked sentences to be returned for
each of the similarity method described in Section 3.

“General” vs. “Normalized” Embeddings We observed that word2vec

program3 returns a different vocabulary set and embeddings with differently
processed inputs. For instance, given raw document text, word2vec produces
different embeddings for “methodically”, “Methodically”, “Methodically,” and
“methodically,”. On the other hand, given lower-cased document text with all
punctuations removed (normEmb), produces only one embedding for “methodi-
cally”. We tried to see how (if at all) this difference in embeddings affects system
performance .

2 https://en.wikipedia.org/wiki/Principal component analysis
3 https://github.com/tmikolov/word2vec

Klick Labs at CL-SciSumm 2018 5

Averaging Embeddings over a Window (wndw avg) Given that the aver-
age length of sentences in the challenge data is 23 words, computing an average
over 23 term embeddings may result in an inadequate sentence vector represen-
tation. We could try to capture phrase level concepts and use them for similarity
computation. It is possible, that some phrase-level average vectors that occur
early in one sentence, are most similar to phrases that occur later in another
sentence. In this method:

– We compute average vectors for an overlapping window of 5 terms, e.g. a
sentence of 6 words would return a set of 2 averaged vectors. Thus we get
a set of average vectors Aq for the query citance, and another set As for a
sentence in the reference paper.

– We generate a matrix Dqs of size |Aq| × |As| with each element being the
pairwise cosine distance between the elements of Aq and As.

– We find the maximum similarity along each row of Dqs and compute a mean
of the row maximums (Rmax mean). Similarly, we compute the mean of the
column maximums (Cmax mean).

– The similarity function returns (Rmax mean+Cmax mean)/2 for each sentence
in the reference paper.

The idea here is to capture the maximum possible similarity between the phrases
(windows) of two sentences.

4 Task1b Methods and Experiments

Task 1b involves identifying the Discourse Facet, of the cited text from each
reference paper, from a pre-defined set of labels: Aim, Hypothesis, Implication,
Method, Result. We approached this task as a multi-class classification prob-
lem where a trained classifier is used to predict the discourse facet label. For
each cited text sentence, we construct its corresponding feature vector , which
is an average of word2vec embedding vectors for each term in that particu-
lar sentence. We used our word2vec embeddings obtained from ACL Anthology
Reference Corpus (as explained in Section 2) to construct our sentence fea-
ture vectors. We then experimentally compared three classifiers: KNN classifier,
RandomForestClassifier, SVM classifier as implemented in scikit-learn [12], using
average sentence word2vec embedding vectors as input to predict the discourse
facet label.

5 Results

5.1 Task1a: Performance over the training set 2018

Table 1 lists the performance of methods (and respective variations) described
in the previous sections. From the table, we can see that:

1. The BM25 baseline is hard to beat, when comparing against basic word
embedding average based similarity functions.

6 Baruah and Kolla

Table 1. Task1a Precision, Recall, (F1) of methods/variations over Training Set 2018.
Bold and italics values denote best performance in columns and rows respectively.

with rank with normalized optRank

Method Performance optimization embeddings and
(optRank) (normEmb) normEmb

BM25 0.132, 0.086, (0.104) 0.132, 0.086, (0.104) NA NA
BM25 noauth 0.118, 0.076, (0.092) 0.097, 0.125, (0.109) NA NA
w2v avg 0.061, 0.039, (0.048) 0.049, 0.064, (0.056) 0.081, 0.052, (0.064) 0.061, 0.118, (0.080)
w2v idf avg 0.093, 0.060, (0.073) 0.093, 0.060, (0.073) 0.096, 0.062, (0.075) 0.058, 0.149, (0.083)
w2v sif 0.095, 0.061, (0.074) 0.066, 0.128, (0.087) 0.084, 0.054, (0.066) 0.064, 0.124, (0.084)
w2v wndw avg 0.078, 0.051, (0.062) 0.056, 0.108, (0.078) 0.105, 0.068, (0.083) 0.082, 0.107, (0.093)
w2v idf wndw avg 0.097, 0.063, (0.076) 0.085, 0.109, (0.095) 0.108, 0.070, (0.085) 0.070, 0.135, (0.092)

2. Optimizing number of top sentences to return almost always results in im-
provement in performance as measured by F1.

3. Using normalized embeddings improved performance over not using them,
except in the case of smooth inverse frequency based similarity.

4. Using IDF weighted average vectors worked better than simple averaging of
sentence word embeddings.

5. Window based averaging worked better than entire sentence averaging.

5.2 Task1b

Table 2. Task 1b training data: Discourse Facet breakdown

Discourse facet number of sentences

Aim 28
Hypothesis 12
Implication 51
Method 365
Result 61

For our official submission, we experimented with the following classifiers:

– K-Nearest Neighbors Classifier

– RandomForest Classifier

– SVM Classifier

Using 2018 training data, we ran 5-fold stratified K-fold validation to evaluate
and select the classifier that gives us better performance. As observed in Ta-
ble 2, majority of discourse facet instances in current training data are labeled
method citation. Evaluation results for our stratified K-fold validation are listed
in Table 3.

Klick Labs at CL-SciSumm 2018 7

Table 3. Task 1b Training cross validation results

Classifier Mean Accuracy Mean Precision Mean Recall Mean F1

KNN (Num Neighbors = 5) 0.66 0.64 0.66 0.62
RandomForestClassifier (n estimators=50) 0.725 0.64 0.715 0.63
SVM classifier (Kernel=’RBF’) 0.719 0.6 0.719 0.61

5.3 Submitted Runs for Task1

Based on the performance of our methods on the Training Set for 2018, we
submit as runs the system outputs of: (i) BM25 + optRank, (ii) BM25 noauth

+ optRank, (iii) w2v idf avg + optRank + normEmb, (iv) w2v sif + optRank,
(v) w2v wndw avg + optRank + normEmb, (vi) w2v idf wndw avg + optRank +
normEmb. For each of these methods we predicted the discourse facet using the
Random Forest Classifier.

6 Conclusions and Future Work

We submitted 6 runs for Task1a of the CL-SciSumm 2018 shared task. We found
that BM25 forms a good baseline for this task, and IDF weights of terms can
boost effectiveness of word embedding averaging based methods for sentence
similarity. Optimizing number of sentences to return for Task1a also improves
performance over the F1 metric.

In the future, for discourse facet prediction, we wish to combine word em-
bedding features along with word or character overlap segments between the
reference text and title text to generalize and improve prediction. In particular
for Task1a, as more data becomes available, it could be promising to use learning
to rank methods [8, 15] or answer selection based methods [16, 13], for finding
reference paper sentences similar to citances.

References

1. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence
embeddings (2017), https://openreview.net/pdf?id=SyK00v5xx

2. Bird, S., Dale, R., Dorr, B.J., Gibson, B., Joseph, M.T., Kan, M.Y., Lee, D., Powley,
B., Radev, D.R., Tan, Y.F.: The ACL anthology reference corpus: A reference
dataset for bibliographic research in computational linguistics (2008)

3. Councill, I.G., Giles, C.L., Kan, M.Y.: Parscit: an open-source CRF reference string
parsing package. In: LREC. vol. 8, pp. 661–667 (2008)

4. Jaidka, K., Chandrasekaran, M.K., Jain, D., Kan, M.Y.: The CL-SciSumm shared
task 2017: results and key insights. In: Proceedings of the Computational Lin-
guistics Scientific Summarization Shared Task (CL-SciSumm 2017), organized as
a part of the 2nd Joint Workshop on Bibliometric-enhanced Information Retrieval
and Natural Language Processing for Digital Libraries (BIRNDL 2017) (2017)

5. Jaidka, K., Chandrasekaran, M.K., Rustagi, S., Kan, M.Y.: Overview of the CL-
SciSumm 2016 shared task. In: Proceedings of Joint Workshop on Bibliometric-
enhanced Information Retrieval and NLP for Digital Libraries (BIRNDL 2016)
(2016)

8 Baruah and Kolla

6. Jaidka, K., Chandrasekaran, M.K., Rustagi, S., Kan, M.Y.: Insights from cl-
scisumm 2016: the faceted scientific document summarization shared task. Inter-
national Journal on Digital Libraries pp. 1–9 (2017)

7. Jolliffe, I.: Principal component analysis. In: International encyclopedia of statis-
tical science, pp. 1094–1096. Springer (2011)

8. Lauscher, A., Glavaš, G., Eckert, K.: University of mannheim@ CLSciSumm-17:
Citation-based summarization of scientific articles using semantic textual similarity
(2017)

9. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

10. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. Text Summa-
rization Branches Out (2004)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Ma-
chine learning in python. Journal of machine learning research 12(Oct), 2825–2830
(2011)

13. Rao, J., He, H., Lin, J.: Noise-contrastive estimation for answer selection with deep
neural networks. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. pp. 1913–1916. ACM (2016)

14. Robertson, S., Zaragoza, H.: The probabilistic relevance framework:
Bm25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (Apr 2009).
https://doi.org/10.1561/1500000019, http://dx.doi.org/10.1561/1500000019

15. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional
deep neural networks. In: Proceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. pp. 373–382. ACM
(2015)

16. Yu, L., Hermann, K.M., Blunsom, P., Pulman, S.: Deep learning for answer sen-
tence selection. arXiv preprint arXiv:1412.1632 (2014)

