
Time-aware Collaborative Topic Regression:
Towards Higher Relevance in Textual Item

Recommendation

Anas Alzogbi

Department of Computer Science, University of Freiburg
79110 Freiburg, Germany

alzoghba@informatik.uni-freiburg.de

Abstract. Time is an important aspect in Recommender Systems. Its
impact is observed in several aspects ranging from the change in user in-
terest to the dynamics of adding new users and items into the system. In
this work, we present a time-aware recommender system that accounts
for the concept-drift in user interest. By computing user-specific concept-
drift score, our model controls which ratings should have more influence
in the process of learning the recommender model. We consider the use-
case of scientific papers recommendation and conduct experiments on
a real-world dataset from citeulike. The results clearly show the supe-
riority of the proposed model over the state-of-the-art methods. They
additionally show that conducting time-aware evaluations is essential to
achieve realistic evaluation for the recommender system.

Keywords: Time-aware RS; Hybrid Recommendation; Latent Dirichlet
Allocation (LDA); Matrix Factorization; Scientific paper recommenda-
tion.

1 Introduction

Collaborative filtering (CF) in general and matrix factorization in particular has
gained a lot of attention in the last decade as a recommendation technique. Since
matrix factorization (MF) showed promising results in generating recommenda-
tions [10], more and more works engaged this method for CF Recommenders.
A successful approach that builds on matrix factorization and recently gained
considerable interest is Collaborative Topic Regression (CTR) for recommend-
ing scientific articles [19]. CTR leverages not only collaborative ratings but also
articles’ textual content in order to learn the latent models for users and items.
Several works pushed CTR further in different directions. For example, adapt-
ing CTR to consider item tags [20], employing autoencoders for a better latent
topic modeling [21], or considering the word order in the textual content [2]. Al-
though these works demonstrate appealing results, conducted evaluations ignore
an important aspect, the temporal nature of recommender systems. Offline eval-
uations that don’t respect the chronological order of users ratings in the process
of train/test data splitting, allow the model to learn from future data, i.e., when

2 Alzogbi

the split procedure doesn’t guarantee that all training data points are prior in
time compared to test data points. We call such evaluations “time-ignorant”
and those which obey the temporal order “time-aware” evaluations. Previous
works [4,14] showed that conducting time-ignorant evaluations promise unre-
alistic performance, whereas time-aware evaluations can better simulate real-
world scenarios and provide therefore more realistic results. The difference in
results between time-aware and time-ignorant evaluations can be explained by
the “concept-drift” in user interest, i.e., the change of user interest over time.
In this paper, we show that the performance of CTR drops significantly when
evaluated under a time-aware evaluation framework over a real-world dataset.
This motivates on the one hand, applying time-aware evaluations to assess the
quality of a recommender system and on the other hand, extending CTR to
consider temporal aspects, which is our main contribution in this work.
Concept-drift in user interest over time is a widely known aspect when building
real-world recommender systems. It can be observed in various applications, for
example: news, books and scientific papers recommendations. We distinguish
between two models for temporal influence over the behavior of users: (a) time
as context [18] where user habits repeat regularly at certain intervals. Here, the
time value (weekend, evening, summer, etc.) when computing predictions plays
an important role in deciding the user interest; and (b) time as an aging factor,
where time diminishes old user interactions (ratings). As time elapses, old user’s
interactions become less representative for the actual user interest. In contrast
to the “time-as-context” model, here, the age of the user interaction decides its
importance in defining actual user interest. Concept-drift is related to the latter
model and in this work we look at the time from this perspective, time as an
aging factor which is the motor for the drift in user interest.
The role of concept-drift in recommender systems has been addressed by a wide
range of previous works [18]. A common strategy is to apply forgetting mech-
anism, in which old ratings are down weighted so that their contribution in
computing the actual user model is penalized. This is achieved by using a time-
decay function to compute a weight for each rating. The older the rating is, the
lower the corresponding weight gets. However, the steepness of the decay func-
tion is regulated by a damping (forgetting) factor and the specific value of this
factor is usually set emperically as in [17,14,1,5,11].
In this work, we bring the time aspect to CTR. We present Time-aware Col-
laborative Topic Regression (T-CTR), a recommendation method that applies
a forgetting strategy to account for the concept-drift in user interest over time.
In contrast to existing works, in T-CTR, we emphasize the fact that users have
different dynamics when it comes to the interest drift, some users tend to change
their interest faster than others. Therefore, we suggest to compute a personal-
ized concept-drift score for each user, a score that quantifies the user tendency to
change his/her interest as time goes on. Then, we utilize user concept-drift score
as a forgetting factor to compute a weighting value for each observed rating. The
main contributions of this paper can be summarized in:

Time-aware Collaborative Topic Regression 3

– A time-aware hybrid recommender system for textual items (items associated
with text content) that dynamically accounts for the concept-drift in user
interest by leveraging the textual content of rated items.

– An experimental study on a real-world dataset that explores the differences
between time-aware and time-ignorant evaluation methods when evaluating
recommender systems.

– A real-world dataset that enables conducting time-aware offline evaluations.

The remainder of this paper is organized as follows: in Section 2, we review the
most relevant existing works; Afterwards, in Section 3 we introduce our notation
and the important preliminaries; in Section 4, we present our method; then, we
explain the conducted experiments and analyze the findings in Section 5; finally,
we conclude in section 6.

2 Related Work

Several works addressed the role of time and concept drift in recommender sys-
tems [18]. Koren introduced in [9] a matrix factorization method that learns
time-based biases along learning users and items latent factors in a method
called timeSVD++. The time period of the ratings is divided into bins (time
intervals) and a bias is learned for each bin. This method can compute predic-
tions for time intervals only if they appear in the training phase, it is therefore
not applicable in time-aware evaluation setup. A recent approach fits a time
series model that learns from historical ratings how users latent models evolve
over time as in [12,13,6]. This approach involves refitting the latent models at
each time interval and afterwards fitting the auto-regressive model that finds
the linear correlation between actual user latent model and the previous ones.
This process adds an extra complexity on the recommendation algorithm. Ad-
ditionally, as we will show in Subsection 5.4, these methods don’t produce good
results when the underlying data has few ratings within small intervals.
Another strategy for considering temporal influence which is similar to ours, is to
apply a forgetting mechanism in which old ratings are either discarded or down
weighted based on a forgetting factor [5,1,17,11]. In these works, the forgetting
factor is set empirically, whereas in our work, we compute an individual value
for each user dynamically (cf. Subsection 4.1). Time aspect in matrix factoriza-
tion was also addressed in [14], the work suggested a stream-based algorithm for
updating users and items preference models in an online fashion. As new rat-
ings arrive, old ratings are considered obsolete and this triggers either refitting
the learned models or penalizing old models. The authors suggested also sev-
eral strategies for dealing with old ratings. A key difference in our work is that
we leverage the items textual content for estimating user-specific concept-drift
scores.

3 Problem Statement and Preliminaries

Before explaining the details of our method, we introduce some notation and
give a brief explanation about important background information relevant to
our method: matrix factorization and collaborative topic regression.

4 Alzogbi

3.1 Notation and Problem Statement

Let U = {u1, . . . , un} be the set of users and I = {i1, . . . , im} the set of items.
We assume each item has textual content and is associated with a bag of words
representation over the set of domain-related vocabulary. Additionally, each user
has a set of relevant items, recorded in the rating matrix R ∈ Rn×m. An entry
Rui has a value of 1 if the user u is interested in item i, otherwise Rui = 0. We
assume the one-class scenario where only relevant items are known. Therefore,
zero values in R don’t necessarily represent negative ratings but also unknown
ratings. Each rating Rui is associated with a time stamp tRui

that records the
time when user u rated item i. Given U , I, and R, the goal is to predict for
every user u ∈ U at a given time T , the set of top M relevant items from I.

3.2 Matrix Factorization for Collaborative Filtering

Matrix factorization (MF) is one of the most successful recommendation methods
for model-based collaborative filtering [10,15]. The main idea is to factorize the
incomplete rating matrix R into two matrices with a joint latent low-dimensional
space of dimension k: the users latent matrix U ∈ Rn×k and the items latent
matrix V ∈ Rm×k, where each user u and each item i are represented as latent
vectors Uu ∈ Rm, Vi ∈ Rn respectively.
Zero values in the rating matrix don’t necessarily denote negative ratings, but
also unknown or missing ratings. Therefore, they should have less contribution
in the learning process in comparison to known ratings. This is the well-known
one-class problem, where only positive ratings are available. To solve this prob-
lem, confidence weights are introduced [16,7] where zero values are weighted by
a small value b and non-zero values are weighted by a larger value a such that
a > b > 0. Given R, a matrix factorization algorithm finds U and V that min-
imize the following objective function with confidence weights, the regularized
squared reconstruction error:

argmin
U,V

∑
u∈U,i∈I

Cui(Rui − UT
u Vi)

2 + λu
∑
u∈U
||Uu||2 + λv

∑
i∈I
||Vi||2 (1)

Where λu, λv are the regularization parameters and Cui is the confidence weight
of the rating Rui:

Cui =

{
a, if Rui 6= 0

b, otherwise
(2)

After finding U and V , we can estimate the affinity of user u towards item i by
the dot product between their latent factors:

R̂ui = UT
u Vi (3)

3.3 Collaborative Topic Regression (CTR)

CTR [19] is a hybrid recommendation approach that builds on MF and extends
it to benefit from items’ textual content. It adopts matrix factorization for one-
class problem. Additionally, it assumes that items’ latent vectors are generated

Time-aware Collaborative Topic Regression 5

from a topic model, specifically, Latent Dirichlet Allocation (LDA) [3]. LDA is
a topic modeling algorithm that finds a set of topics for a set of documents. Let
θ ∈ Rm×k be the matrix of k latent topics extracted from a set of m items by
LDA, where θi ∈ Rk is the topic vector of item i. CTR consists in factorizing
the rating matrix R into users latent matrix U and items latent matrix V , such
that V is basically the latent topics vectors extracted by LDA with an added
offset: Vi = θi + εi. The offset εi represents how much of the prediction relies on
i’s content and how much it relies on other users ratings on item i. To solve the
matrix factorization, CTR applies a probabilistic model as in [15] that aims at
maximizing the log likelihood of the model variables1 U and V :

L = −
∑

u∈U,i∈I

Cui

2
(Rui − UT

u Vi)
2 − λu

2

∑
u∈U
||Uu||2 −

λv
2

∑
i∈I
||(Vi − θi)||2 (4)

The algorithm to maximize L alternates the parameter optimization between
U and V until convergence. Each time, one parameter is fixed to its current
estimate and the other parameter is optimized by differentiation, which leads
the following analytic solutions:

Uu ← (V TCuV + λuIII)−1V TCuRu (5)

Vi ← (UTCiU + λvIII)−1(UTCiRi + λvθi) (6)

Where III is k × k identity matrix, Cu ∈ Rm×m and Ci ∈ Rn×n are diagonal
matrices, with Cu1, · · · , Cum and C1i, · · · , Cni at their diagonals respectively
and Ru ∈ Rm is the vector that contains u’s preferences. Similarly, Ri ∈ Rn is
the vector that contains preferences for item i.
After finding U and V , we approximate the missing ratings using Equation 3.

4 Time-aware Collaborative Topic Regression (T-CTR)

For considering the temporal aspect, we propose T-CTR. Our approach is a
hybrid recommender system that is capable of accounting for concept-drift in
user interest. It learns users and items latent models seamlessly from items’ tex-
tual content and users ratings. Additionally, we impose the time influence in
the model by extending the role of confidence weights. As we have seen in the
previous section, confidence weights are employed to give known ratings more
importance than unknown ratings. In T-CTR, we give confidence weights an ad-
ditional task, which is expressing different importance levels for different known
ratings. As mentioned earlier, the older a rating gets, the less important it be-
comes in representing the actual user interest. Therefore, we make old ratings
weigh less than recent ones. Above that, the aging process of ratings is user-
specific i.e different users bare different concept-drift mechanisms. For example,

1 In CTR, the matrix of items latent topics θ is considered as a variable as well, but
we removed it from the list of variables for simplicity because experiments in [19]
showed that fixing θ as the result of LDA gives comparable performance.

6 Alzogbi

given two users A and B where A tends to change the topics of interest more
rapidly than B. Assume that both users have 6-months-old ratings: RA,i, RB,j

respectively. Although these ratings have the same age, knowing that A tends to
change the topics of interest more rapidly than B gives RB,j more importance in
representing the actual interest model of B than RA,i in representing the actual
interest model of A. In order to account for this difference in users’ behavior, we
calculate a per-user concept-drift score. This score quantifies the user tendency
to change his/her interests as time goes on. User’s concept-drift score is then
involved in computing the ratings confidence weights, which allows getting dif-
ferent confidence weights for ratings from different users even when they have the
same age. In the following, we explain in details the users concept-drift scores,
ratings weights and the model learning algorithm.

4.1 Concept-drift Score

The inter-similarity between items that successively appear in the user’s list of
relevant items gives us an important evidence whether the user has a consistent
taste or tends to show a drift in the interest. The lower this similarity is, the
higher the likelyhood that the user experiences a concept-drift in her interest. In
order to calculate similarities between items, we choose to represent items using
their latent topics. Therefore, given the items textual content, we extract the set
of k latent topics for each item using LDA. Let θ ∈ Rm×k be the items-topics
matrix computed by LDA. θil is the probability of item i having topic l. For each
item, we keep only the representative topics, those topics which probability is
higher than a certain threshold τ . Γi is the set of such topics. In our experiments,
we chose τ = 0.01 empirically:

Γi = {l | θil ≥ τ}; i ∈ I

Given the rating matrix R and Γ , we calculate the concept drift scores as shown
in Algorithm 1. For each user u, we first order u’s ratings by the rating date.
Then, based on item’s topics, we calculate the pairwise similarity between each
two items i and j that appear successively in u’s ratings. In our implementation,
we used the Jaccard similarity to calculate the similarity between two sets of
topics. The concept-drift score is then calculated as (1 - average pairwise simi-
larity). The result is the set of concept-drift scores for all users S, which will be
used in computing confidence weights.

4.2 Ratings Confidence Weights

The confidence weight of a rating quantifies the rating’s importance in repre-
senting user interest at a given time T and serves to control how much a rating
Rui should contribute in the process of learning the latent models of user u and
item i. Having the concept-drift scores S for all users, we apply an exponential
decay function (Equation 7) to compute the confidence weights Wui for all u’s
ratings based on the rating’s age: T − tRui

. Here, the concept-drift score Su
controls the steepness of the decay function and it therefore plays the role of

Time-aware Collaborative Topic Regression 7

Algorithm 1: ConceptDrift

Input: Items’ LDA topics Γ , Rating matrix R
Result: List of users’ concept-drift scores S
Initialize S to an empty list;
for u ∈ U do

P := {i|Ru,i = 1};
Sort P by the ratings dates;
initialize Su to 0;
for i = 1 to |P | − 1 do
Su := Su + Jaccard-similarity(ΓPi , ΓPi+1);

end
Su := Su/(|Pu| − 1);
Append 1− Su to S;

end

an aging factor, the higher the score is, the steeper the function gets. Figure 1
demonstrates the influence of different values for the concept-drift on the confi-
dence weights. This is a desired behavior to account for the difference in users
concept-drift mechanisms. This way, users with higher concept-drift scores, will
have steeper curve and as a result, their old ratings get lower weights. The rat-
ing’s age granularity can be configured based on the underlying application. For
example, in the scenario of paper recommendation, we chose the age to be in
months.

Wui =
2

1 + eSu(T−tRui
)

(7)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

rating’s age (months)

co
n
fi
d
en

ce
w

ei
g
h
t

Su=0.01

Su=0.1

Su=0.2

Su=1

Fig. 1: The impact of the concept-drift score on the decay function.

4.3 Model Learning and Prediction

After computing the concept-drift scores and ratings confidence weights, we can
learn the latent topic vectors U and V from R and θ similarly to CTR as ex-
plained in Subsection 3.3. But, the confidence scores are not taken from Equa-
tion 2, we use our calculated confidence weights instead. Thus, the confidence

8 Alzogbi

matrix C is defined as following:

Cui =

{
max(Wui, b) if Rui = 1

b, otherwise

Here, b is the confidence score for the unknown ratings, {Rui | Rui = 0} and is
set to a small value as in [16,19].
After finding U and V , we approximate the predicted ratings using Equation 3.

5 Experiments and Discussion

We conducted offline evaluations on a real-world dataset to demonstrate the
effectiveness of our model and compare it against other state-of-the-art and basic
approaches2. In this section, we introduce the used dataset and the experimental
setup. Then, we explain the conducted experiments and discuss the findings.

5.1 Dataset

We used a dataset from citeulike3. Citeulike allows users to create personalized
digital libraries where they can bookmark and tag relevant scientific publica-
tions (papers, books, theses,...). Our dataset spans over three years starting
from November 2004 to December 2007 and contains information about 210,137
papers and 3,039 users with a total of 284,960 ratings. All users have at least
10 papers in their libraries. Ratings are also associated with timestamps which
record the time of adding the paper to the user library. We collected publications
meta-data such as title, abstract, publication year and keywords. We defined the
dataset vocabulary as a set of 19871 words. It comprises all keywords associated
with the papers, in addition to 10000 words extracted from the articles’ titles
and abstracts. We kept only English words with more than 2 letters and applied
stop words removal, stemming and finally removed very in-frequent and very
frequent words (those appearing in less than 3 documents or more than 90% of
all papers).

5.2 Experimental Setup

In order to apply time-aware evaluations that simulate a real-world scenario, we
followed recommendations of Campos et al. in [4]. We chose 5 different dates to
be the split points. Each two successive dates are 6 months apart. We simulated
a real-life scenario where the recommender rebuilds its model at each split date
to generate predictions for the next 6 months. This results in 5 folds, one fold
for each split date. All ratings before the split date are considered as the fold’s
training set, ratings from the next 6 months comprise the fold’s test set. The test
sets contain ratings from users that appear in the training set. This is because
our method doesn’t address the problem of having new users (the cold-start

2 Our implementation is available at: https://github.com/anasalzogbi/T-CTR
3 http://www.citeulike.org

https://github.com/anasalzogbi/T-CTR
http://www.citeulike.org

Time-aware Collaborative Topic Regression 9

problem). Note that test sets may contain papers unseen in the corresponding
training sets. For each fold, we fit the model on the training set and test it on
the test set. Table 1 shows the number of users, papers and ratings in each fold
for both training and test sets4. The recommender generates for each (user, pa-

#Users #Papers #Ratings
Fold Split date

Training Test Training Test Training Test

1 Sep 2005 484 310 18,988 10913 25,393 13,968

2 Mar 2006 978 564 46,585 17,026 62,795 21,980

3 Sep 2006 1,518 793 83,217 22,326 112,098 30,559

4 Mar 2007 2,105 1,023 122,596 30,830 169,145 39,652

5 Sep 2007 2,716 970 176,977 22,142 243,787 24,119

Table 1: Dataset statistics for each fold.

per) pair a scalar prediction score that represents the paper’s relevance to the
user. For each user, the papers are ranked based on the prediction score and
top M papers are recommended. We evaluate the presented approach based on
the following ranking metrics which are typical for evaluating recommender sys-
tems: Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain
(nDCG@M) [8] and Recall@M [19]. The average of these metrics over all users
for each fold is reported.

5.3 Time-aware vs time-ignorant evaluations

In our initial experiment, we evaluate a state-of-the-art system on our dataset
following the time-aware scheme. The goal is to study the applicability and
the expected performance of such methods in real-world scenarios and show its
deviation from the -usually reported- time-ignorant results. As a representative
model, we chose CTR [19] (cf. Subsection 3.3). Figure 2 shows the performance
of CTR evaluated on time-ignorant and time-aware schemes. The results of all
metrics show clearly that the method performance drops significantly when a
time-aware evaluation is imposed. We believe the reason for this behavior is
related to the concept-drift in users interests, this can be explained as following.
In time-ignorant evaluations, training and test ratings are sampled randomly
from the set of all available ratings. This allows the model to possibly sample
training ratings from different time-slots and learn accordingly. On the contrary,
restricting the training ratings to be sampled exclusively from time slots that
are prior in time to test ratings, makes it more challenging for the fitted model
to predict future ratings correctly.

5.4 T-CTR against baselines

To analyze the performance of our approach (T-CTR), we compare it with the
following methods:

4 The dataset is available for public use at:
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SciPRec

http://dbis.informatik.uni-freiburg.de/forschung/projekte/SciPRec

10 Alzogbi

5 40 80 120 160 200

0

0.2

0.4

0.6

M

R
e
c
a
ll
@

M

time-aware time-ignorant

MRR nDCG@5 nDCG@10

0.1

0.2

0.3

0.4

M
e
t
r
ic

v
a
lu

e

time-aware time-ignorant

Fig. 2: Performance comparison of time-aware and time-ignorant evaluations for
CTR based on Recall@M, MRR and nDCG.

– CF: Collaborative Filtering for Implicit Feedback [7] is an effective matrix
factorization method for positive-only (one-class) datasets. It factorizes the
rating matrix and uses static confidence weights for known and unknown
ratings (cf. Subsection 3.2).

– CTR: Collaborative Topic Regression [19] performs topic modeling and col-
laborative filtering simultaneously (cf. Subsection 3.3).

– CE: Collaborative Evolution For User Profiling [13]. This work represents
the state-of-the-art time-aware MF-based recommender systems. It follows
a different strategy than ours, in which the evolution of user latent models
over time is learned by fitting an auto-regressive model. Their assumption
is, user latent model U t

u at time t is dependent on the user’s previous φ
latent models {U t−j

u | 1 ≤ j ≤ φ}. We chose this method as a representative
for such methods [6,12] that learn the evolution of users models instead of
applying a forgetting strategy.

Figure 3 shows the evaluation results for all methods on all folds.
CF and CE show the worst performance. CF is based on the rating matrix only
and doesn’t utilize papers’ text. The high sparsity in our dataset and the ex-
istence of new papers in the test sets explain the poor performance of those
algorithms, which depend on the rating matrix solely.
CE also depends on the rating matrix only. Above that, applying CE in our

1 2 3 4 5

0

0.1

0.2

Fold

M
R
R

1 2 3 4 5

0

0.05

0.1

0.15

Fold

n
D

C
G

@
5

T-CTR CTR CE CF

1 2 3 4 5

0

0.05

0.1

0.15

Fold

n
D

C
G

@
1
0

Fig. 3: Performance comparison for T-CTR and the baseline methods. Evaluation
metrics are shown for each fold.

Time-aware Collaborative Topic Regression 11

scenario shows an additional shortcoming that contributes to its poor perfor-
mance. Here, we will give more insights about how CE works in order to explain
its poor performance on our dataset. In CE, an auto-regressive model is learned
from the first T0 time intervals. It finds φ coefficient matrices each is a k × k
matrix. Implementing this method requires several decisions to be made that
are subject to the underlying dataset: first, the time interval (day, week, month,
etc.); second, T0, the number of time intervals used in fitting the auto-regressive
model; and third, φ, the auto-regressive model’s dimension (number of historical
time intervals). T0 cannot exceed the number of available intervals in the under-
lying dataset (see Table 2). According to the description of CE in [13], in order
to estimate the coefficient matrices correctly, the following condition should be
met T0 ≥ kφ. As T0 is limited, φ and k can not grow together. For example, let’s
consider the 4th fold, choosing one week as the time interval gives 126 intervals
in the training set. We can assign 100 for learning the auto-regressive model:
T0 = 100. If we want to build the auto-regressive model with looking at 4 weeks
in the past (φ = 4), then k can be at most 25. We know that this value of k is
too small to learn good latent models in our dataset, it is desired to give higher
values for φ and k and this is not possible as long as the previously mentioned
condition should be met. Although CE builds a time-aware model, the limitation
we explained here makes it inapplicable in such real-world datasets where the
ratings frequency doesn’t allow considering shorter time intervals.
CTR shows better performance in comparison with CF and CE as it utilizes the

Time interval
Fold

1 Day 1 Week 1 Month

1 327 48 11

2 508 74 17

3 692 100 23

4 873 126 29

5 1057 152 35

Table 2: Number of intervals in the dataset for each fold

content of the items in addition to the collaborative ratings. However, account-
ing for the concept-drift in user interest leads to the superiority of our method
against all studied methods in all recorded metrics as shown in Figure 3.

5.5 User-specific vs Common Concept-drift Scores

In our last experiment, we analyze the advantage of computing the concept-drift
score for each user individually. Therefore, we ran T-CTR with the following con-
figurations: (a) T-CTR: where the concept-drift score is computed individually
for each user as in Algorithm 1; (b)T-CTR-s: where a common concept-drift
score (s) is set for all users. We chose three values for s ranging from small to
high: s ∈ {0.1, 0.5, 1}. As depicted in Figure 1, lower concept-drift scores give
higher confidence weights for old ratings. When s = 0.1 for example, old rat-
ings are lightly penalized and when s = 1 old ratings are strongly penalized.

12 Alzogbi

The results are shown in Figure 4. The results of all evaluation metrics show
that using individual concept-drift scores yields better results. To gain better

1 2 3 4 5

0.15

0.2

0.25

Fold

M
R
R

1 2 3 4 5

0.08

0.1

0.12

0.14

0.16

Fold
n
D

C
G

@
5

T-CTR CTR-0.1 CTR-0.5 CTR-1

1 2 3 4 5

0.08

0.1

0.12

0.14

0.16

Fold

n
D

C
G

@
1
0

Fig. 4: Performance comparison. User-specific compared to common concept-
drift score. These results show that computing the concept-score for each user
individually leads to better recommendations.

understanding about the role of concept-drift score, we conducted qualitative
analysis. We considered the 5th fold and compared the performance of T-CTR-s
for individual users across the different values of s. We found the following, when
increasing s from 0.1 to 0.5, results improved for 87 users but worsened for 143,
this means for 87 users s = 0.5 is a better choice than s = 0.1 and for 143 users it
is the opposite case. Similar observation can be realized when moving to s = 1,
compared to s = 0.5, the results got better for 109 users and worst for 134 users.
An interesting question is whether those users which got better results when
increasing s to 0.5 will also show better results for s = 1. We found that not
all users who showed results improvement for s = 0.5 also showed improvement
for s = 1, 46 of them got worst results and additional 68 users showed better
results. This analysis supports our assumption that each user has an individual
concept-drift score which does not fit necessarily other users. Above that, our
suggested method to dynamically compute individual concept-drift scores leads
to better results than assigning a common score for all users.

6 Conclusion and Future Work

In this paper, we introduced T-CTR, a time-aware approach for recommending
textual items. Based on the heterogeneity of the items from user’s historical rat-
ings, we compute a personalized user-specific concept-drift score. Then, we use
these scores to calculate confidence weights for known ratings. These weights
control the ratings’ contribution in fitting the CTR model. The take-away mes-
sages from this work is twofold: (a) in order to achieve realistic evaluation, it is
essential to conduct time-aware evaluation method; and (b) as users have differ-
ent concept-drift dynamics, concept-drift models should be computed for each
user individually. The main aspect that we plan to investigate in our future work
is to design a probabilistic model that allows learning the concept-drift score for
each user instead of relying on the heuristic approach of calculating the average
similarity of the user previous ratings.

Time-aware Collaborative Topic Regression 13

References

1. Alzoghbi, A., Ayala, V.A.A., Fischer, P.M., Lausen, G.: Pubrec: Recommending
publications based on publicly available meta-data. In: LWA Workshops: KDML,
FGWM, IR, and FGDB, pp. 11–18 (2015)

2. Bansal, T., Belanger, D., McCallum, A.: Ask the gru: Multi-task learning for deep
text recommendations. In: Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys ’16. ACM (2016)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

4. Campos, P.G., Dı́ez, F., Cantador, I.: Time-aware recommender systems: A com-
prehensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction 24(1-2), 67–119 (2014)

5. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proceedings of the 14th
ACM international conference on Information and knowledge management, pp.
485–492. ACM (2005)

6. Gao, L., Wu, J., Zhou, C., Hu, Y.: Collaborative dynamic sparse topic regression
with user profile evolution for item recommendation. In: AAAI Conference on
Artificial Intelligence, pp. 1316–1322 (2017)

7. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on, pp. 263–272. Ieee (2008)

8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst. 20(4) (2002)

9. Koren, Y.: Collaborative filtering with temporal dynamics. Communications of the
ACM 53(4), 89–97 (2010)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

11. Liu, N.N., Zhao, M., Xiang, E., Yang, Q.: Online evolutionary collaborative filter-
ing. In: Proceedings of the Fourth ACM Conference on Recommender Systems,
RecSys ’10. ACM (2010)

12. Liu, X.: Modeling users’ dynamic preference for personalized recommendation. In:
Proceedings of the 24th International Conference on Artificial Intelligence, pp.
1785–1791 (2015)

13. Lu, Z., Pan, S.J., Li, Y., Jiang, J., Yang, Q.: Collaborative evolution for user pro-
filing in recommender systems. In: Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, pp. 3804–3810 (2016)

14. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowl-
edge and Information Systems 55(2), 275–304 (2018)

15. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in
neural information processing systems, pp. 1257–1264 (2008)

16. Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class
collaborative filtering. In: Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, ICDM ’08, pp. 502–511. IEEE Computer Society,
Washington, DC, USA (2008)

17. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering.
Journal of the Brazilian Computer Society 18(4), 271–282 (2012)

18. Vinagre, J.a., Jorge, A.M., Gama, J.a.: An overview on the exploitation of time in
collaborative filtering. Wiley Int. Rev. Data Min. and Knowl. Disc. 5(5) (2015)

14 Alzogbi

19. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 448–456. ACM (2011)

20. Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regulariza-
tion for tag recommendation. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 2719–2725 (2013)

21. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender
systems. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15. ACM (2015)

	Time-aware Collaborative Topic Regression: Towards Higher Relevance in Textual Item Recommendation

