
Addressing Overgeneration Error: An Effective
and Efficient Approach to Keyphrase Extraction

from Scientific Papers

Haofeng Jia and Erik Saule

Dept. of Computer Science, UNC Charlotte, USA
{hjia1,esaule}@uncc.edu

Abstract. Keyphrases provide a concise summary of a document and
play an important role for many other tasks like searching and clustering.
With the large and increasing amount of online documents, automatic
keyphrase extraction has attracted much attention. Existing unsuper-
vised methods suffer from overgeneration error, since they typically i-
dentify key ”words” and then return phrases that contain keywords as
keyphrases. To alleviate this problem, we propose an unsupervised rank-
ing scheme directly on ”phrases” by exploring essential properties of
keyphrases such as informativeness and positional preference. Experi-
ments on two datasets show our approach significantly alleviates the
overgeneration error and obtains improvement in performance over state-
of-the-art keyphrase extraction approaches.

1 Introduction

Keyphrases are the words and phrases that provide a brief and precise description
for a document. Automatically extracting keyphrases from a text document is a
fundamental but hard problem which can benefit many tasks, such as document
summarization, categorization, searching, indexing, and clustering.

This problem was traditionally solved by supervised methods that convert
the problem to a binary classification problem, where a classifier will be trained
to identify whether a phrase is a keyphrase or not. For such supervised methods,
a lot of high-quality training data are required in order to reach a good perfor-
mance. Although different learning algorithms have been employed to train the
classifier, such as Naive Bayes [1], decision tree [2][3], logistic regression [4][5]
and SVM [6][7], most efforts of research on supervised keyphrase extraction are
made on feature selection, which turns out to have more significant impact on
performance.

In the line of unsupervised research, despite the robust performance of TF-
IDF, graph-based methods attract more attention. These methods construct
a word graph from each document, such that nodes correspond to words and
edges correspond to semantic relationships between words. Then words are s-
cored according to graph centrality measures like PageRank. Finally the phrases
consisting of top ranked words are returned as keyphrases. Recent work has

2

incorporated the positions of a word’s occurrence into graph-based model and
propose a position biased unsupervised approach [8].

Even though there is a vast literature on the automatic keyphrase extrac-
tion problem, state-of-the-art methods, would they be supervised or not, do not
achieve satisfying performance.

Recent work has shown that most errors made by state-of-the-art keyphrase
extraction systems are due to overgeneration [9]. According to Hasan et al. [10],
overgeneration errors contribute to 28%−37% of the overall error. Overgen-
eration errors occur when a system erroneously outputs other candidates as
keyphrases because they contain the highly scored word. Current keyphrase ex-
traction systems typically assign scores to words firstly, and rank candidate
phrases according to teh sum of weights of their component words. Therefore,
this kind of mechanism tends to suffer from overgeneration errors. Table 1 shows
an example of top 8 predicted keyphrases generated by SingleRank [11], a typical
unsupervised keyphrase extraction method. The golden keyphrases (manually as-
signed by the authors) are marked in bold. Since the words ”graph”, ”k-partite”
and ”structure” receive high scores, thus every candidate phrase that contains
these words tends to be ranked as a keyphrase. As we can see, there are many
top ranked keyphrases actually have the same or very similar semantics. These
overgeneration errors significantly decrease the precision.

Table 1: Overgeneration Errors
Top k SingleRank

1 original k-partite graph
2 k-partite graph
3 hidden structures
4 various structures
5 local cluster structures
6 global cluster structures
7 relation summary network
8 general model

In order to alleviate this problem, we look for a way to allow us to directly
operates on phrases instead of their component words. Before doing any oper-
ation, a system should firstly generate a list of quality candidate phrases from
each document, where a quality phrase means a continuous sequence of words
with coherent semantics.

Therefore, two questions come to us: What kinds of properties make a se-
quence of words into a quality phrase? Then what kinds of properties make
a phrase into a keyphrase? In this work, we explore these properties and pro-
pose KeyPhraser, which generates candidate phrases and ranks them by taking
each phrase as one semantic unit. Through experiments carried on two datasets,
we show that our approach improves the performances significantly on various
metrics.

3

The paper is organized as follows: In section 2, we summarize related work
from supervised keyphrase extraction methods to unsupervised ones. In Section
3, we define the problem and propose KeyPhraser, which is an effective and
efficient approach to keyphrase extraction. Then we present the experiments
and results in section 4. Finally, we conclude the paper in section 5.

2 Related Work

In general, keyphrase extraction techniques can be classified into two groups:
supervised learning approaches and unsupervised ranking approaches [10].

Traditionally, supervised approaches recast the keyphrase extraction task as
a binary classification problem. Given a set of annotated documents, the goal
is to train a classifier to determine whether a candidate phrase is a key phrase.
Various features and classification algorithms give rise to different models.

Although different learning algorithms have been employed to train the clas-
sifier, such as Naive Bayes [1], decision tree [2][3], logistic regression [4][5] and
SVM [6][7], most efforts of research on supervised keyphrase extraction are made
on feature selection, which turns out to have more significant impact on perfor-
mance.

Textual features like term frequency and inverse document frequency play an
important role for supervised keyphrase extraction. Frank et al. [1] developed a
system using Naive Bayes as the classifier, named KEA , which is based on text
features. Later work explore other textual features to perform consistently well
for web pages and scientific articles [4][5][12][13] [14][7][15].

Many studies [3][16] suggest linguistic knowledge is helpful. For example,
Hulth et al. [17] claim that part-of-speech sequences of keyphrases are similar.
Acronym [18][5] and suffix sequence [18][5] are also used to capture the propensity
of English to use certain Latin derivational morphology for technical keyphrases.

External Knowledge Features are also explored by previous work. Medelyan
et al. [14] extend KEA by features extracted from Wikipedia. Similarly, GRISP [19][7],
a large scale terminological database for technical and scientific domains, and
query logs [4][20] are also used to gain better performance on web pages.

In particular, some types of documents have explicit structures. For instance,
a scientific paper has various sections. Given this fact, some work try to design
features that encode the structural information and improvements have been
shown on data set consisting of scientific articles [18][5][7] or web pages [4].

Recently, Caragea et al. [21][22] point out that, citation context structure
information have the potential to improve keyphrase extraction. As we know,
scientific papers are highly inter-connected in citation networks, where papers
cite or are cited by other papers in appropriate context [23]. CeKE [21] combines
textual features from the target paper, as well as features extracted from the
citation networks to extraction keyphrases from scientific artilces.

Besides supervised approaches, there is also an unsupervised line of research
on automatic keyphrase extraction. Intuitively, the keyphrase extraction task is
looking for phrases that are important. Therefore, various methods are proposed

4

to score words, which are later aggregated to obtain scores for phrases. Statistical
measures [24] have been shown to work well in practice.

Graph-based ranking is now becoming more and more popular for keyphrase
extraction task. The idea behind graph-based methods is to construct a graph
that represents the text and encodes the relationship between words in a mean-
ingful way. Typically, words appearing in the text will be taken as nodes, and
edges represent semantic relationships between words. Then, the keyphrase ex-
traction task is transferred into a graph ranking problem based on the impor-
tance of nodes. The importance of a word is determined by its relatedness to
others. In other words, a word is important if it is related to a lot of words
or some words that are important. Each edge can be deemed as a vote from
one node to another. After convergence, graph-based methods select top ranked
nodes as keywords.

The basic graph-based method is TextRank[25]. An unweighted text graph
is constructed where nodes represent words and edges indicate two words co-
occur within a certain window size in the text. Now the goal is to extract the
keywords on this undirected word graph. So PageRank[26] is employed here to
compute a score for each word indicating how important it is. After convergence,
the T% top scored words are extracted as keywords. Finally, adjacent keywords
are collapsed and output as a keyphrase.

SingleRank [11] expands TextRank by constructing a weighted graph rather
than a unweighted graph for each document. In this work, a weight is assigned
to each edge according to the number of times the corresponding words co-occur
within a window size. SingleRank prefers the window size of 10, while TextRank
uses 2. After scoring words in the same way as TextRank, all noun phrases are
taken into consideration and each phrase is scored by summing up the scores
of words it contains. Based on SingleRank, Wan et al. [11] also make efforts to
improve the performance by exploring textual-similar neighborhood documents.
Inspired by TextRank, Boudin [27] explores various centrality measures, such as
degree, closeness and betweenness, for keyphrase extraction task.

Recently, the idea of k-core degeneracy [28][29] is also applied in the word
graph for keyphrase extraction [30]. Compared with those approaches solely
based on centrality, k-core degeneracy takes better into account proximity be-
tween key words and variability in the number of extracted keywords through
the selection of more cohesive subsets of nodes.

Along with the rise of deep learning, the distributed word representation-
s [31][32], also called word embedding, are becoming popular. Wang et al. [33]
propose a graph-based ranking approach that uses word embedding vectors as
the background knowledge. The key contribution of this approach is the pro-
posed weighting scheme, which is referred as word attraction score. Moreover,
positional preference has been shown its potential for keyphrase extraction sys-
tems [34][8].

Existing approaches typically score individual words, and then aggregate
words to obtain scores for phrases. This framework suffers from overgeneration
error because all phrases that contain highly scored words are very likely to be

5

returned as keyphrases. In the next section, we propose a method which tries to
capture essential properties of keyphrases. Our approach is designed to alleviate
the issue of overgeneration error.

3 Proposed Approach

In this section, we start with the traditional framework for unsupervised keyphrase
extraction systems. Then we introduce KeyPhraser, a fully unsupervised keyphrase
extraction approach that directly operates on phrases.

3.1 Unsupervised Keyphrase Extraction

A classic unsupervised keyphrase extraction system typically contains three step-
s:

– The first step is to generate a list of candidate word that have potential
to be keywords. Typically, words with certain part-of-speech tags such as
adjectives and nouns are considered. An alternative way is simply filtering
out stop words from the documents

– The second step is actually ranking or scoring candidate words, which are
generated from last step. This is the core step and various ranking algorithms
are proposed.

– The final step is called keyphrase formation, where the candidate words are
used to form keyphrases through certain aggregation function like sum.

As we can see from Fig. 1a, current unsupervised keyphrase extraction sys-
tems typically assign scores to words firstly, and then form keyphrases according
to the sum of weights of their component words. A phrase that contain a high-
ly scored word are very likely to returned as a keyphrase. Therefore, current
methods tends to suffer from overgeneration errors.

3.2 KeyPhraser

In order to alleviate this problem, we look for a scheme to directly operate
on phrases instead of their component words (Fig. 1b). In other words, our
method should be capable of extracting phrases from the text and then selecting
keyphrases from these candidate phrases based on reasonable measures.

Therefore, the following questions come to us:

– What kinds of properties make a group of words into a phrase?
– What kinds of properties make a phrase into a keyphrase?
– What is special for scientific documents?

To capture these properties, we define four metrics in this section: concor-
dance, popularity, informativeness and positional preference.

Let’s start with the first question, which corresponds the candidate phrase
selection part in Fig. 1b. Before doing any operation, a system should firstly

6

Candidate word
selection

Keyphrase
formation

Candidate word
scoring

Suffering overgeneration error

(a) Classic Scheme

Candidate phrase
selection

Keyphrase
ranking

(b) Keyphraser Scheme

Fig. 1: Keyphrase Extraction Schemes

generate a list of quality candidate phrases from each document, where a quality
phrase means a small group of words that appear contiguously in the text and
serve as a whole semantic unit in certain context. In practice, extracting phrases
from document turns out to be a nontrivial problem.

Concordance is also called phraseness, which measures the likelihood that
a sequence of words can be considered as a phrase. Several definitions that
quantify the discrepancy between the probability of their true collocation and
the presumed collocation under independence assumption are used to capture
concordance, such as pointwise mutual information [35] and Dice coefficient [33].

However, in order to achieve a reasonable concordance score, PMI and Dice
coefficient require that the corpus of English text is large enough.

In the context of keyphrase extraction, part-of-speech tag is widely used
to measure concordance. Typically, words tagged as adjectives or nouns are
selected, then a continuous sequence of candidate words is considered as a phrase:

Conc(s) =

{
1 if s = [adj]∗[noun]+

0 otherwise

We use this scheme in KeyPhraser to extract phrases from documents because
of two reasons. First, publicly available datasets for keyphrase extraction task
typically contain hundreds of documents, which can not guarantee a good perfor-
mance for PMI or Dice efficient; most existing keyphrase extraction algorithms
extract candidate word by part-of-speech tags, therefore, we choose to be con-
sistent with these works.

Now given a list of candidate phrases, we need to identify keyphrases out of
them. This is called keyphrase ranking in Fig. 1b. To this end, we need to figure
out the properties that make a phrase into a keyphrase.

Popularity is the first property coming to mind. As we know, keyphrases are
those phrases that provide a brief and precise description for the given document.
So they should occur with sufficient frequency in the given document. Intuitively,

7

term frequency is a good criteria to measure the popularity of a phrase. We use
a sublinear variant of term frequency in KeyPhraser, which is:

Pop(s, d) = log(f(s, d) + 1)

where f(s, d) denotes the frequency of a phrase s ∈ P in the document d.
Informativeness For a given document, some candidate phrases tends to

be less informative or unrelated to the main topics, even though they appear
frequently. Generally speaking, these phrases are likely to be functional phrases
in English. Therefore, it is difficult to measure informativeness only based on
the information of the current document.

Inverse document frequency is a traditional information retrieval measure
of how much information a word provides in order to retrieve a small subset
of documents from a corpus. The IDF of a phrase is usually calculated as the
average IDF scores of the words it contains. Here we take a phrase as an unit
and customise the inverse document frequency for phrases:

Info(s) = log
|C|

|d ∈ D : s ∈ d|

where C means the whole corpus, and D means the documents that contain
candidate phrase s.

Positional Preference Where a phrase occurs in the document is also
essential to the keyphrase extraction problem, especially for scientific papers.
Intuitively, given a scientific document, keyphrases tends to appear not only fre-
quently but also early. For instance, titles of scientific articles are very likely to
contain keyphrases.

Previous work has shown the power of positional information of words [34][8].
In this paper, we define the positional preference of each phrase by considering
all occurrence positions in the document:

Pos(s, d) = log(
∑

each s in d

|d|
op(s, d) + 1

)

where op(v, d) denotes an occurrence position of phrase v in document d. An
alternative way only takes the first occurrence position of a phrase into consid-
eration.

Pos(s, d) = log
|d|

fop(s, d) + 1

where fop(v, d) denotes the first occurrence position of phrase v in document d.
Finally, In order to build a keyphrase extraction system based on above

measures, one can aggregate them in multiple ways. Statistical method like TF-
IDF has been proven to be a strong and robust baseline according to many
previous work despite the simplicity of aggregation function. Therefore, we also
use product to aggregate above measures.

Keyphraser(s, d) = Conc(s)Pop(s, d)Info(s)Pos(s, d)

8

In this paper, we explore two different versions of KeyPhraser: KeyPhraser-full
which use all occurrence positions and KeyPhraser-fp which only use the position
of first occurrence.

4 Experiments and Results

In this section, we conduct experiments on real datasets to demonstrate the
effectiveness and efficiency of our proposed approach to the task of keyphrase
extraction.

4.1 Dataset and Experiment Settings

In order to evaluate the performance of our method, we conducted experiments
on two public datasets, which were made available by Gollapalli and Caragea1.
The datasets consist of research papers from two top-tier conferences: World
Wide Web (WWW) and Knowledge Discovery and Data Mining (KDD). All
titles and abstracts are used for keyphrase extraction, and the author assigned
keyphrases are used as ground truth for evaluation.

In specific, the KDD dataset contains 755 papers and the WWW dataset
consists of 1331 papers. (The KDD dataset actually contains 834 papers, but 79
of them do not have corresponding ground truth files. Similar for WWW.) The
average numbers of ground truth keyphrases for each paper in these two datasets
are 3.8 and 4.6 respectively. The average number of words in each ground truth
keyphrase is 1.8 for the KDD dataset and 1.9 for the WWW dataset. There
are few ground truth keyphrase consisting of more than 4 words. Therefore, we
set 4-grams as the threshold for candidate phrases for all method used in the
experiments.

In our experiments, we use average precision, recall and F1-score as per-
formance metrics, since they are widely used in keyphrase extraction task. To
demonstrate the effectiveness of the proposed approach, we compared it with
popular baselines and state-of-the-art algorithms: TF-IDF, TextRank, SingleR-
ank and PositionRank.

For most keyphrase extraction approaches, the number of phrases as output
are typically determined by users. Here we examine the top k performance of
our method, where k is set with the range from 1 to 8. The range is determined
by the following three reasons: Firstly, the average number of ground truth
keyphrases of the datasets is around 4; Secondly, overgeneration error results in
lower precision, which means this type of error occurs more frequently for small
k; Finally, in practice, a keyphrase extraction system is not expected to generate
plenty of phrases, otherwise the generated keyphrases will be less usefull.

Please note that TextRank is kind of special, as it requires a ratio (of top-
ranked words) instead of a specific k as input. For fair comparison, we use cor-
responding ratio for each k, so that TextRank will generate almost the same
number of phrases as others.

1 https://www.cse.unt.edu/~ccaragea/keyphrases.html

9

Window size is a typical parameter of graph-based keyphrase extraction
methods, such as PositionRank and SingleRank. While this parameter seems
to have a great impact on the built word graph, previous work has shown that
graph-based methods are not really sensitive to it. To be consistent with other
work, we set window size of 10 for PositionRank and SingleRank, and window
size of 2 for TextRank.

Some previous work use Porter Stemmer to reduce both predicted and ground
truth keyphrases to a base form. In this way, the number of miss-matched pairs
of keyphrases due to the gap in lexical form will be decreased. However, Porter
Stemmer is inappropriate under some circumstances. For instance, ”clusterings”
and ”clusters” usually don’t share the same meaning in computer science context.
In our experiments, we only use simple ad-hoc processing to match keyphrases
in singular/plural form.

4.2 Results and Discussion

1 2 3 4 5 6 7 8

Top K

6

8

10

12

14

16

18

20

22

24

P
re

ci
si

o
n
(%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

18

20

R
e
ca

ll(
%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

F1
-S

co
re

(%
)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

Fig. 2: Performance on the KDD dataset

1 2 3 4 5 6 7 8

Top K

5

10

15

20

25

P
re

ci
si

o
n
(%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

0

5

10

15

20

R
e
ca

ll(
%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

F1
-S

co
re

(%
)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

Fig. 3: Performance on the WWW dataset

Fig. 2 shows the performance of our method comparing with TF-IDF, Tex-
tRank, SingleRank and PositionRank on the KDD dataset, and Fig. 3 is for
the WWW dataset. As can be seen from the figures, KeyPhraser significantly
outperforms other approaches on both datasets.

The major improvements on F1-scores come from the substantial improve-
ments on precision, especially for small k. This is because current methods typ-
ically rank a candidate phrase by aggregate scores of words it contains. On the

10

contrary, our method directly operates on phrases, which turns out to be effective
to alleviate the overgeneration issue.

In particular, for the KDD dataset, state-of-the-art method achieves 9% on
precision when k equals 1, while KeyPhraser achieves 23% for the same k, which
means the improvement by our approach at this point is as high as 155%. For ex-
ample, KeyPhraser achieves F1-scores of 14.3% and 14.1% for k equals 3 and 5 re-
spectively on the same dataset, as comparison, the best state-of-the-art method,
PositionRank, achieves F1-scores 10.1% and 11.8% for corresponding k.

Generally speaking, our method tends to find the ”correct” keyphrases much
”faster” than others. We can easily conclude that based on a preliminary analysis
of recall and precision curves:

– First of all, if you look at the recall curves of all methods, a obvious finding is
that they tends to converge when k is large enough. This is true because each
method in the plot has employed part-of-speech tags to generate candidate
phrases or words, which means the pool where the keyphrases are selected
from is pretty much the same. In other words, these methods share the same
upper bound of recall. (One can learn more about upper bound of recall
from [36])

– Now look at the precision curves. For small k, KeyPhraser outperforms other
methods by a substantial improvement. This is due to the fact that over-
generation error occurs more frequently when k is small. Along with the
number of output getting larger, the difference between returned keyphrases
by difference methods becomes less significant, which is reflected in the plots.

For real systems, performance improvement for small k is much more useful.
Because a document usually contains a few keyphrases. A keyphrase extraction
method that generates a bunch of phrases to obtain a good performance is not
helpful in practice.

Table 2 shows result of top 8 predicted keyphrases by different methods for
a instance paper from the KDD dataset, where the ground truth keyphrases are
marked in bold. As we can see, compared with existing methods (upper part of
the Table 2), our methods (lower part of the Table 2) alleviate the overgenration
errors and obtains a higher precision. In other words, our methods tend to find
ground truth keyphrases faster.

Beside the cheerful performance on effectiveness, KeyPhraser remains a linear
time complexity to the corpus size. The efficiency is due to the simplicity of the
aggregation function of measures. In specific, on the KDD dataset, KeyPhraser
is 3x faster than graph-based methods and 2x faster on the WWW dataset.

Error Analysis. Hasan et al. [10] classify all errors of keyphrase extraction
systems into four categories: overgeneration error, infrequency error, redundant
error and evaluation error. essentially, redundant error and evaluation error are
kind of similar as they both stem from two phrases being semantically equiva-
lent. Overgeneration error comes from generating multiple phrases that contain
a popular word without the phrase making much sense. While infrequency error
come from a keyphrase appearing only once or twice in the entire document.

11

Table 2: Predicted Keyphrases Comparison
k SingleRank PositionRank

1 original k-partite graph original k-partite graph
2 k-partite graph k-partite graph
3 hidden structures various structures
4 various structures hidden structures
5 local cluster structures local cluster structures
6 global cluster structures global cluster structures
7 relation summary network unsupervised learning
8 general model relation summary network

k KeyPhraser-fp KeyPhraser-full

1 unsupervised learning k-partite graph
2 k-partite graph hidden structures
3 hidden structures unsupervised learning
4 data objects relation summary network
5 multiple types clustering approaches
6 relation summary network data objects
7 general model multiple types
8 local cluster structures connections

Since the methods we are investigating do not dig in the semantics of the ex-
tracted phrases we believe that overgeneration, redundant and evaluation error
are not usefully different and we classify the errors in the typical two category.

The first type of system errors is False Negative Error, this error happens
when a gold phrase is not returned as a keyphrase. Infrequency error is a typical
false positive error. Existing method are likely to miss it due to the difficulty
to detect such an infrequent phrase. To recall these infrequent phrases, we may
have to accept lower precision.

The other type of system errors is False Positive Error which happens when
candidate phrases are incorrectly returned as keyphrases. Overgeneration error is
a typical false negative error and certainly the most common one when manually
looking at the automatically extracted key phrases.

5 Conclusion and Future Work

In this paper, we presented KeyPhraser, an unsupervised keyphrase extraction
approach for scientific papers addressing overgeneration error. To this end, we
look for a way to allow us directly operates on phrases instead of their component
words. KeyPhraser takes each phrase as one semantic unit. Firstly candidate
phrases are generated by concordance measure, and then they are scored by three
other measures to determine whether a phrase is a keyphrase or not. Despite the
simplicity of the mechanism, experiments carried on two datasets demonstrate
KeyPhraser is an effective and efficient approach to keyphrase extraction.

In future, various concordance, informativeness and positional measures should
be explored. For example, how to find a way to incorporate more positional in-

12

formation rather than just the position of first occurrence. And finding other
effective aggregation functions of phrase measures seems promising. Moreover,
it would be interesting to explore more phrase based approaches. For instance, we
wonder how to build a phrase graph in a reasonable way and how is it compared
with word graph.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. 1652442.

References

1. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.:
Domain-specific keyphrase extraction. In: IJCAI. Volume 99. (1999) 668–673

2. Turney, P.: Learning to extract keyphrases from text. In: National Research
Council Canada, Institute for information Technology, Technology Report. (1999)
ERB–1057

3. Turney, P.D.: Learning algorithms for keyphrase extraction. Information Retrieval
2(4) (2000) 303–336

4. Yih, W.t., Goodman, J., Carvalho, V.R.: Finding advertising keywords on web
pages. In: Proceedings of the 15th international conference on World Wide Web,
ACM (2006) 213–222

5. Kim, S.N., Kan, M.Y.: Re-examining automatic keyphrase extraction approaches
in scientific articles. In: Proceedings of the workshop on multiword expression-
s: Identification, interpretation, disambiguation and applications, Association for
Computational Linguistics (2009) 9–16

6. Jiang, X., Hu, Y., Li, H.: A ranking approach to keyphrase extraction. In: Pro-
ceedings of the 32nd international ACM SIGIR conference on Research and devel-
opment in information retrieval, ACM (2009) 756–757

7. Lopez, P., Romary, L.: Humb: Automatic key term extraction from scientific ar-
ticles in grobid. In: Proceedings of the 5th international workshop on semantic
evaluation, Association for Computational Linguistics (2010) 248–251

8. Florescu, C., Caragea, C.: Positionrank: An unsupervised approach to keyphrase
extraction from scholarly documents. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Volume 1. (2017) 1105–1115

9. Boudin, F.: Reducing over-generation errors for automatic keyphrase extraction us-
ing integer linear programming. In: ACL 2015 Workshop on Novel Computational
Approaches to Keyphrase Extraction. (2015)

10. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: A survey of the state of the
art. In: In Proceedings of the Annual Meeting of the Association for Computational
Linguistics. (2014) 1262–1273

11. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood
knowledge. In: AAAI. Volume 8. (2008) 855–860

12. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Semeval-2010 task 5: Automatic
keyphrase extraction from scientific articles. In: Proceedings of the 5th Internation-
al Workshop on Semantic Evaluation, Association for Computational Linguistics
(2010) 21–26

13

13. Dredze, M., Wallach, H.M., Puller, D., Pereira, F.: Generating summary keywords
for emails using topics. In: Proceedings of the 13th international conference on
Intelligent user interfaces, ACM (2008) 199–206

14. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using auto-
matic keyphrase extraction. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 3-Volume 3, Association for
Computational Linguistics (2009) 1318–1327

15. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: Automatic keyphrase extraction
from scientific articles. Language resources and evaluation 47(3) (2013) 723–742

16. Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing. EMNLP ’03, Stroudsburg, PA, USA, Association for Com-
putational Linguistics (2003) 216–223

17. Hulth, A., Megyesi, B.B.: A study on automatically extracted keywords in text cat-
egorization. In: Proceedings of the 21st International Conference on Computation-
al Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, Association for Computational Linguistics (2006) 537–544

18. Nguyen, T.D., Kan, M.Y.: Keyphrase extraction in scientific publications. In: Asian
Digital Libraries. Looking Back 10 Years and Forging New Frontiers. Springer
(2007) 317–326

19. Lopez, P., Romary, L.: Grisp: A massive multilingual terminological database
for scientific and technical domains. In: In Seventh international conference on
Language Resources and Evaluation (LREC). (2010)

20. Turney, P.: Coherent keyphrase extraction via web mining. In: International Joint
Conference on Artificial Intelligence IJCAI-03. (2003)

21. Caragea, C., Bulgarov, F.A., Godea, A., Gollapalli, S.D.: Citation-enhanced
keyphrase extraction from research papers: A supervised approach. In: EMNLP.
(2014) 1435–1446

22. Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using
citation networks. In: AAAI. (2014) 1629–1635

23. Bulgarov, F., Caragea, C.: A comparison of supervised keyphrase extraction mod-
els. In: Proceedings of the 24th International Conference on World Wide We-
b Companion, International World Wide Web Conferences Steering Committee
(2015) 13–14

24. EI-Beltagy, S., Rafea, A.: Kp-miner:a keyphrase extraction system for english and
arabic documents. In: Information Systems. (2009) 132–144

25. Mihalcea, R., Tarau, P.: Textrank: Bringing order into texts. In: In Proceedings
of the Empirical Methods in Natural Language Processing. (2004) 404–411

26. Page, L., Brin, S., Motwani, R., Winograd, T.: Pagerank: Bringing order to the
web. Technical report, Stanford Digital Libraries Working Paper (1997)

27. Boudin, F.: A comparison of centrality measures for graph-based keyphrase ex-
traction. In: International Joint Conference on Natural Language Processing (I-
JCNLP). (2013) 834–838

28. Bollobás, B.: The evolution of random graphs. Transactions of the American
Mathematical Society (1984) 257–274

29. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
(1999) 509–512

30. Rousseau, F., Vazirgiannis, M.: Main core retention on graph-of-words for single-
document keyword extraction. In: Advances in Information Retrieval. Springer
(2015) 382–393

14

31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: arXiv preprint arXiv:1301.3781. (2013)

32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. (2013) 3111–3119

33. Wang, R., Liu, W., McDonald, C.: Corpus-independent generic keyphrase extrac-
tion using word embedding vectors. In: In Proceedings of the Conference on Web
Search and Data Mining Workshops. (2015) 834–838

34. Florescu, C., Caragea, C.: A position-biased pagerank algorithm for keyphrase
extraction. In: AAAI. (2017) 4923–4924

35. Liu, J., Shang, J., Wang, C., Ren, X., Han, J.: Mining quality phrases from massive
text corpora. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ACM (2015) 1729–1744

36. Wang, R., Liu, W., McDonald, C.: How preprocessing affects unsupervised
keyphrase extraction. In: In Proceedings of the CICLing Conference on Intelli-
gent Text Processing and Computational Linguistics. (2014) 163–176

