
Formalizing and Verifying Natural Language System Requirements using Petri
Nets and Context based Reasoning

Aishwarya Chhabra, Amit Sangroya, C. Anantaram
TCS Innovation Labs, Gurgaon, India

{aishwarya.chhabra, amit.sangroya, c.anantaram}@tcs.com

Abstract
Natural language descriptions are generally used to
describe requirements in reactive systems. Trans-
lating the natural language requirements to a more
formal specification is a challenging task. One pos-
sible approach to handle complex natural language
requirements is to convert them to an intermediary
formal representation. This intermediate represen-
tation is further converted into a more formal rep-
resentation such as EDT (Expressive Decision Ta-
bles). In this paper, we use Petri nets in combina-
tion with domain based context reasoning as a tool
to model natural language requirements. We have
also built a tool, NatEDT, to generate EDT specifi-
cations. In a case study, consisting of natural lan-
guage requirements across three domains, our ex-
perimental results show that Petri nets provide an
efficient way of formalizing natural language re-
quirements.

1 Introduction
With the rapid growth of the internet of things (IoT), smart
homes, smart cars, smart factories have become a reality.
These smart systems are kind of reactive systems that interact
via various sensors. It becomes a challenging task for sys-
tem designers to conceptualize systems that can take complex
natural language sentences as an input and test/verify the re-
quirement. Table 1 shows some examples of natural language
specifications from multiple domains of reactive systems.

The NL requirements can belong to a system as simple as
switching on a light or as complex as control a fire detection
system remotely. It is important for system designers to have
an engineering approach to formalize NL requirement speci-
fications. In this paper, we focus on system requirements that
are primarily the descriptions of how a system (i.e. Smart
Home/Automobile/IoT based system) is expected to perform
in a real environment. An example of such a description in
an automobile domain is as follows. ”If the ignition is on
for more than 45 seconds, and seat belt is not engaged then
alarm should beep”. In this example, alarm system should
beep; if the ignition is on and the seat belt is not engaged.

Many-a-times the specifications of such systems are spec-
ified in natural language sentences by designers. At times

Table 1: Example of natural language specifications

Automobile Domain:
If the ignition is on, and switch 1 is on for 2 seconds then
operation 1 becomes required.
Turn Indicator System:
When the turn indicator lever becomes left position, and
the emergency flashing is off, then the flashing mode com-
ponent shall assign left flashing to the flashing mode, set
0 at the flashing timer.
Air Conditioning Domain:
When swing mode is vertical, and operation mode is cool-
ing, then operation type becomes high speed.

such specifications also tend to change for different system
configurations and also over a period of time. In order to
make it easier for system designers to define such specifica-
tions and update them, it is important to have a way to convert
the specifications from natural language sentences into for-
mal specifications. In general, requirements broadly consists
of two parts: the condition part and the action part. In our ap-
proach we take NL requirement specification as an input and
produce Expressive decision tables as the final output. EDT
is a formal way of representing the NL specification which
can be tested and verified [Venkatesh et al., 2014]. EDT is a
regular expression based, tabular format notation for reactive
systems. An example of EDT is as follows (See Table 2).

For reactive systems, EDT representations can be easily
verified for functional testing in comparison to NL specifica-
tions. This is because of the fact that natural language specifi-
cations can be ambiguous or sometimes incomplete. System
designers sometimes use natural language as it can be easily
written without getting into the complexity of the problem.
However, to verify these reactive systems, we need test cases,
and it is better to generate test cases using a formal language.
Hence, it necessitates the automation of natural language to
a formal language in order to bridge the gap between natural

Table 2: Example of EDT (Expressive Decision Table)

in IGN in SEAT BELT out ALARM
ON {> 45s} NOT ENGAGED BEEP

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

64

language to test case generation.
To this end, we designed a tool called NatEDT (Natural

Language to EDT) to translate the natural language specifi-
cations to formal notation using Petri nets as an intermedi-
ary and verification mechanism. Our Approach consists of
several steps consisting of pre-processing, NL parsing, inter-
mediary Petri net representation and final output as EDT. In
addition to this, we have an additional step of verification that
helps to test the properties like completeness and consistency
of requirements. The overall approach is domain agnostic and
can be easily adapted to new domains.

The remainder of this paper is structured as follows. Sec-
tion 3 provides a small introduction to preliminaries which
are essential for our work. Section 4 presents the proposed
architecture of the system that takes natural language require-
ments as an input and provides a formal specification as an
output. Then section 5 discusses the experimental evaluation.
Section 2 offers an overview of the existing state of art ap-
proaches that focus on formalizing natural language require-
ment specifications. Finally, in section 6, this work ends up
with some conclusions and an outlook of our future work in
this area.

2 Related Work
We classify the existing approaches into two categories.

Approaches using Restrictive Natural Language
One way is to restrict the language used in writing the require-
ments specifications to make semantic parsing easier [Yan
et al., 2015]. Gutavo et al. use the Control Natural Lan-
guage(CNL) for writing the specifications and have also de-
fined a grammar for that CNL structure to do Syntactic Anal-
ysis [Carvalho et al., 2014]. They also talk about the trade
off between removing restrictions from the grammar and au-
tomation extent. They say that they aim at fully automat-
ing the formalizing process by restricting the language and
providing a fixed format of the specifications. Since NL
is controlled, a lot of manual effort is required in convert-
ing the Specification to that controlled format. Böschen et
al. [Böschen et al., 2016] uses a preprocessing approach to
enrich the natural language requirements using a knowledge
base. In this context, our approach is complementary to their
work since we also use a domain ontology to contextualize
the natural language requirements.

Approaches using Less Restrictive Natural Language
Less restrictive NL specifications are more natural in com-
parison to restrictive approaches; hence making it easier
for users to write these requirements. Bajwa et al. pro-
pose an approach of scanning the specifications for rele-
vant relationships and extracting them [Bajwa et al., 2012;
2010]. They also use intermediary models from which they
extract the final concepts. However, their approach is pri-
marily based on information extraction. Other NL process-
ing techniques such as parsing, exploiting the use of patterns,
regular expressions, and rules, etc. can provide extraction
of concepts and relationships from the unrestricted natural
language requirement specification. Validation of the out-
put model from the business specification must be performed
which can be a laborious for large specifications.

Our approach is based upon parsing that reduces the man-
ual effort of validating the output that is involved in ap-
proached based on information extraction [Ghosh et al.,
2016]. Shalini et al. proposed ARSENAL which works for
less restrictive grammar but our approach verifies for the cor-
rectness using domain ontology. In this approach complete
parsing is done and its semantic interpretation is done in con-
text of the domain knowledge. Selvet et al. also takes an
advantage of parsing but their approach is different in all re-
spects as they are using SBVR (Semantics of Business Vocab-
ulary and Business Rules) for semantic understanding [Sel-
way et al., 2015]. Sadoun et al. make the use of extracting
rules automatically acquired by a training corpus, and iden-
tify concepts using a domain ontology [Sadoun et al., 2013].

We also use domain knowledge in the form of ontology
to validate all the identified Variables and its values. Petri
nets have been used as a verification mechanism in various
domains [Lee et al., 2001; Sarmiento et al., 2015]. Our ap-
proach is more promising as it gives an additional step of ver-
ification. Using Petri Nets as an intermediary model gives us
a more robust verification mechanism and visual representa-
tion. The primary advantages of our approach over the state
of art approaches is that requirements can be in less restrictive
natural language. We use a domain dictionary that allows to
write NL requirements using a rich vocabulary. Use of Petri
nets as an intermediary helps in validation of NL specifica-
tion and also preserving the context. Additionally, NatEDT
has a verification process for formal verification of NL spec-
ifications.

3 Preliminaries
3.1 Expressive Decision Tables (EDT)
An EDT specification [Venkatesh et al., 2014] consists of one
or more tables where the column headers specify the input
and output ports and the rows specify the relationship be-
tween input and output values. Each cell in a row consists
of a regular expression that is used to match input streams at
that port. Input values arrive as a stream at input ports at dis-
crete time units and output values are generated as a stream at
output ports at discrete time units. Example of EDT is shown
in table 2, where “in” stands for input and “out” stands for
output.

3.2 Ontology
In the context of knowledge sharing, the term ontology is
used to mean a specification of a conceptualization. That is,
an ontology is a description of the concepts and relationships
that can exist for an agent or a community of agents. This
definition is consistent with the usage of ontology as set-of-
concept-definitions, but more general. And it is certainly a
different sense of the word than its use in philosophy. We are
using domain ontology which covers the concepts and their
relationships with its attributes and other values. We are us-
ing Protege to construct the ontology in OWL format [Musen,
2015].

Domain ontology helps us specialize the approach to a par-
ticular domain which will help in fetching better results. We
are using ontology for checking the identified concepts to

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

65

check if the concepts extraction does not give incorrect con-
cepts. The verified concepts are processed further and the
remaining concepts which do not belong to the domain are
dropped. It also helps us identify the correct relationships of
the values and the variables.

3.3 Petri Nets
Petri nets, also known as Place/Transition Nets, are used to
verify work flows. Petri nets are classical models of con-
currency, non-determinism, and control flow, first proposed
by Carl Adam Petri in 1962. It is a collection of arcs con-
necting places and transitions. Places refer to the current
state of the system whereas transitions are the events that
take place and may cause a change in the state of the sys-
tem. Places may hold tokens which enable the transitions
and eventually the transition gets fired, then the tokens are
distributed as per the weight given on the arcs. Places of
Petri nets usually represent states or resources in the system
while transitions model the activities of the system. Petri
nets are bipartite graphs and provide an elegant and math-
ematically rigorous modeling framework for discrete event
dynamically systems. Petri nets are a simple but effective
method of analysing manufacturing systems [Murata, 1989;
van der Aalst, 1998].

Definition 3.1. Petri Nets [Petri, 1962]
A Petri net is a four-tuple (P, T, IN,OUT) where

P = p1, p2, p3, ...pn is a finite set of places
T = t1, t2, t3, ...tn is a finite set of transitions
IN : is an input function that defines directed arcs from
places to transitions, and
OUT : is an output function that defines directed arcs form
transitions to places.

Graphically places are represented by circles and transi-
tions represented by horizontal or vertical bars (See Figure 1).
If IN(pi, tj) = k, where k > 1 is an integer, a directed arc
from place pi to transition tj is drawn with the label k. If
k = 1 we include an unlabeled arc and if k = 0 then no arc is
drawn.

Figure 1: A simple example of Petri net

4 System Architecture
Figure 2 represents the overall architecture. System design-
ers specify the requirement in natural language. First, we per-
form syntactic analysis that involves POS tagging, chunking,

dependency parsing. Thereafter, we perform semantic analy-
sis using semantic parsing techniques. We make use of a do-
main ontology to identify and confirm the context for a given
specification. Thereafter, Petri nets are used for verification
of NL specification. The output of this is a formal EDT that
can be further processed for test case generation [Venkatesh
et al., 2016].

We designed a tool NatEDT, that takes a natural language
sentence as an input and generates an equivalent EDT specifi-
cation and preserves the original context. The current version
of the developed prototype not only generates corresponding
formal specification but also verifies the NL specifications.
The overall workflow of NatEDT consist of following main
steps:

4.1 Preprocessing
Each system requirement consists of mainly two parts : con-
dition clause and action clause. In preprocessing, the first
step is to split the system requirement based on its syntactic
structure. The specifications when written in natural language
might make use of synonyms of domain specific terms (terms
present in domain ontology) instead of directly using them.
To overcome this we assume that we have a domain dictio-
nary built by domain experts. Using the domain dictionary,
synonyms of the domain specific words are replaced with ac-
tual domain specific words. For example: For a given NL
specification ”If ignition is ON, and switch 1 is ON for 2 sec-
onds then operation 1 becomes REQ.” , this will be changed
to ”If IGN is ON, and SW 1 is ON for 2 seconds then OP 1
becomes REQ.”. Since in this domain we consider n-gram
switch 1 as one domain term so we replace it with SW 1.
Moreover, we have some general n-grams like greater than,
less than or equal to. These are are replaced with greater than,
less than or equal to, respectively.

4.2 Extraction of Domain Variables
In requirement specifications, both the condition clause and
action clause have some variables and values associated to
these variables. We use term input variables for the terms
used in conditional clause and output variables for the terms
used in action clause. Extracting these variables from the re-
quirement requires an intricate approach, which is described
underneath:

Dependency Parsing
We use Stanford CoreNLP dependency parser for depen-
dency parsing, which gives us a set of triples (dependent, de-
pendency, governor) [Manning et al., 2014]. For Example:
(IGN, nsubj, ON) which means IGN is is related to ON and is
the nominal subject for ON. We parse our specification using
this Stanford typed dependency parser and get a list of such
sets with various dependencies [Marneffe et al., 2006]. Now
let us consider the given example from general automobile
domain which has time attributes also. “If IGN is ON, and
SW1 is ON for 2 seconds”. Figure 3 represents the depen-
dency tree for this specification.

Semantic Analysis and Validation using Ontology
Now we have all the dependencies, we can also call them
grammatical relationships. We need to make sure that while

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

66

1

System Requirements in Natural Language

Example: “When power saving mode is on, swing mode is off, the controller shall

assign off to ventilation function”

Syntactic

Analysis using

NLP

techniques

Formal Expressive Decision Tables (EDT)

in power_saving_mode in swing_mode out ventilation_function

on off off

Semantic

Analysis

Using

Semantic

Parsing

Domain

Ontology

Based Context

Validation

Petri nets

Based

Verification

Figure 2: Overview of System Architecture

mapping them to the EDT, we don’t lose the context of the
specification as these are general grammar relationships. So
for all the variables (concepts), we have some attributes as-
sociated to them like - value, type, time, modifier. We define
some rules associated with the dependencies to fill the slots
for these attributes. Using these types of rules we preserve
the context of the original requirement while modeling Petri
nets and generating formal EDT specifications.

For example: (SW 1, nsubj, ON) we get SW 1 is the vari-
able and and ON is its value. We can validate the semantic
relationship between SW 1 and ON using a domain ontology
so that the context is preserved. (2, nummod, seconds) and
(seconds , nmod:for, ON) together helps fill us the slot for
time attribute. In case of “type” attribute we have two options
numeric or non-numeric. For variables like voltage, timer, etc
for which the value will always be numeric are categorized in
that category and remaining falls into another category. We
extract that using POS tags of the values. Last attribute re-
maining is the modifier which has the values of type greater
than, less than, greater than or equal to, equal to, etc. In this
example absence of any relation like this implies ’equal to’.

4.3 Deriving Petri Nets Representations
In this step we derive Petri net based intermediate repre-
sentation from the natural language requirement. To model
this information into Petri nets we use python SNAKES li-
brary [Pommereau, 2008; 2015]. We assign each variable a
place. The values of the variables are considered as tokens.

The expression which satisfies the condition is given at the
arcs. When the token fired satisfies the expression on the arcs,
transition assigns tokens to the output place. Example : “If
IGN is ON, and SW 1 is ON for 2 seconds then OP 1 becomes
REQ.”. In this step we can fire tokens and visualize the work
flow of the requirement specification. Figure 4 shows the net-
work before and after firing of tokens.

4.4 Generating EDT Specification
The last step is generation of EDT specifications. As initially
described, EDT is in tabular format so we use python libraries
like pandas to create a table for the specification. As by now
we have identified the concepts and its attributes, and have
also validated them in the above steps. We can map it to the
EDT format. The places in the Petri nets with the tokens de-
notes the values at the current state of the system so we can
consider places as the column names, where input place will
be represented with a prefix ‘in’ and output variables ‘out’.
The tokens will be represented as the values in the corre-
sponding rows. Figure 3 shows the table generated for the
given example.

4.5 Verifying Specifications for Contextual
Inconsistencies

We are verifying the extracted domain variables and the val-
ues associated to them using an ontology in the transforma-
tion process itself. We have added an additional verifica-
tion step to to the tool which verifies the other requirements

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

67

If IGN is ON , and SW1 is ON For 2 seconds

LS NNP VBZ NNP , CC NN VBZ NNP IN CD NNS

cop

nsubj

dep

conj:and

punct

cc

cop

nsubj

nummod

case

nmod:for

Figure 3: Dependency Graph for NL Specification

Table 3: EDT for the representative example

in IGN in SW 1 out OP 1
ON ON REQ

given to check their consistency with the existing require-
ments. We process a finite number of specifications S (where
S = S1, S2, S3, ...Sn) as explained in the above sections and
store the information extracted at each step in a file. When a
user provides a new input condition (C), it is processed as ex-
plained in previous sections. The information extracted from
C is matched to the information extracted for specifications
(S1, S2, S3, ...Sn) using the verification algorithm which re-
turns complete specification with a Petri net for the given in-
put conditions if an exact match is found. If the exact match
is not found it looks for the best match which refers to the one
with the highest number of matching input conditions and re-
turns the Petri net and table stored for those specifications.

For Example: We originally had a specification in set
S : “If screen is unlock and power button is pressed for
less than 1 second and released, then turn screen to lock”.
User describes an input condition as: “If screen is unlock
and power button is pressed for less than 3 second and
released”, the tool process this condition and extract two
input variables: SCREEN having a value UNLOCK and
POWER BUTTON having a value PRESSED for less than
3s and then changes to RELEASED. The verification algo-
rithm couldn’t find an exact match in set S, hence looks for
the best match highlighting the differences. In this example,
it highlights the time attribute is different from the existing
best match for the given input. Thereafter, it provides user an
additional option to either correct if it was an error or add it
as a new requirement specification in the set S by providing
the output action for the corresponding input.

5 Experimental Evaluation
NatEDT tool was tried on two different set of requirements
from automobile domain (Turn Indicator Systems (17 re-
quirements) and another automobile sample set [Venkatesh
et al., 2014] (29 requirements). We also tested toy exam-
ples from Air Conditioner domain (See table 5). We tested

Table 4: Precision and Recall for various domains

Samples Recall % Precision%
Turn Indica-
tor System

76 85.52% 100%

Automobile 49 91.78% 94.36%
Air Condi-
tioning

17 100% 100%

on different domains to test the adaptability of the approach
on different domains and we realized that the approach is
generic. To adapt to different domains one need to have exter-
nal domain dictionary for preprocessing and domain ontology
for verification of those specifications. Our evaluation criteria
was based upon calculating the precision and recall.

We calculated the total number of concepts that need
to be identified in each sample set and then the variables
which were correctly identified, incorrectly identified, and
the missed concepts. The largest requirement in english was
composed of 48 words and the smallest sentence was com-
posed of 12 words. The TIS sample was mostly state based
examples and the other set had some state based as well as
examples having time and stream of inputs. The results are
compiled in table 4. We get a precision of 94.36% and a
recall of 91.78% in automobile domain. Though we cannot
compare our results with any other work as the formal nota-
tion and approach used in our paper is quite different than the
formal notations and approaches in prior work. Our results
are quite promising for the transformation to a relatively new
formal notation.

6 Conclusions and Future Work
To this end, a tool called NatEDT is developed that takes a
natural language sentence as an input and generates an EDT
specification. We make use of domain knowledge in the form
of dictionary and ontology to preserve the context in NL spec-
ification. We are also able to verify the new NL requirements
based on the existing requirements for its consistency and
completeness. In the future, this work could be extended for
robust verification and validation of the requirements in the
system.

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

68

Table 5: Examples of Natural Language Specification and their corresponding EDTs

1 If Mist Remover
Switch is on and
Mist Remover
controller is
NO req then Mist
Remover Request
becomes on and
Mist remover
relay is on.

in
Mist Remover SW

in
Mist Remover Ctrl

out
Mist Remover Request

out
Mist Remover Relay

ON NO REQ ON ON
2 If Mist Remover

Switch is off and
Mist Remover
controller is
NO req then Mist
Remover Request
becomes off and
Mist remover
relay is off.

in
Mist Remover SW

in
Mist Remover Ctrl

out
Mist Remover Request

out
Mist Remover Relay

OFF NO REQ OFF OFF
3 If alarm is ON,

and panicsw is
pressed for more
than 3 seconds
and released then
the flash should
be NO REQ, and
alarm should be
OFF.

in alarm in panicSw out flash out alarm

ON pressed > 3s re-
leased

NO REQ OFF

4 When the turn
indicator lever
becomes left
position, and
the emergency
flashing is off,
then the flashing
mode component
shall assign left
flashing to the
flashing mode,
reset the flashing
timer.

In
turn indicator lever

In emer-
gency flashing

Out flashing mode Out flashing timer

Left position off right flashing 0
5 When the emer-

gency flashing is
off, and the turn
indicator lever
becomes the right
position, and the
flashing mode is
not right flashing,
the flashing mode
component shall
assign right flash-
ing to the flashing
mode, reset the
flashing timer.

In
turn indicator lever

In emer-
gency flashing

Out flashing mode Out flashing timer

Right position on left flashing 0

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

69

IGN
{‘ON’}

SW_1
{‘ON’}

OP_1
{‘’}

T
true

‘ON’‘ON’

‘REQ’

IGN
{‘’}

SW_1
{‘’}

OP_1
{‘REQ’}

T
true

‘ON’‘ON’

‘REQ’

Before Token Firing After Token Firing

Figure 4: Before and After Firing of Tokens

References
[Bajwa et al., 2010] I. S. Bajwa, B. Bordbar, and M. G. Lee.

Ocl constraints generation from natural language specifi-
cation. In 2010 14th IEEE International Enterprise Dis-
tributed Object Computing Conference, pages 204–213,
Oct 2010.

[Bajwa et al., 2012] Imran Bajwa, Behzad Bordbar, and
Mark Lee. Nl2alloy: A tool to generate alloy from nl con-
straints. 10:365–372, 12 2012.

[Böschen et al., 2016] Martin Böschen, Ralf Bogusch, An-
abel Fraga, and Christian Rudat. Bridging the gap be-
tween natural language requirements and formal specifi-
cations. In Joint Proceedings of REFSQ-2016 Workshops,
Doctoral Symposium, Research Method Track, and Poster
Track co-located with the 22nd International Conference
on Requirements Engineering: Foundation for Software
Quality (REFSQ 2016), Gothenburg, Sweden, March 14,
2016., 2016.

[Carvalho et al., 2014] Gustavo Carvalho, Ana Carvalho,
Eduardo Rocha, Ana Cavalcanti, and Augusto Sampaio. A
formal model for natural-language timed requirements of
reactive systems. In Stephan Merz and Jun Pang, editors,
Formal Methods and Software Engineering, pages 43–58,
Cham, 2014. Springer International Publishing.

[Ghosh et al., 2016] Shalini Ghosh, Daniel Elenius, Wen-
chao Li, Patrick Lincoln, Natarajan Shankar, and Wilfried
Steiner. Arsenal: Automatic requirements specification
extraction from natural language. In Sanjai Rayadurgam
and Oksana Tkachuk, editors, NASA Formal Methods,
pages 41–46, Cham, 2016. Springer International Publish-
ing.

[Lee et al., 2001] Jonathan Lee, Jiann-I Pan, and Jong-Yih
Kuo. Verifying scenarios with time petri-nets. Information
and Software Technology, 43(13):769 – 781, 2001.

[Manning et al., 2014] Christopher D. Manning, Mihai Sur-
deanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Computa-
tional Linguistics (ACL) System Demonstrations, pages
55–60, 2014.

[Marneffe et al., 2006] M. Marneffe, B. Maccartney, and
C. Manning. Generating typed dependency parses from
phrase structure parses. In Proceedings of the Fifth In-
ternational Conference on Language Resources and Eval-
uation (LREC-2006), Genoa, Italy, May 2006. European
Language Resources Association (ELRA). ACL Anthol-
ogy Identifier: L06-1260.

[Murata, 1989] Tadao Murata. Petri nets: Properties, analy-
sis and applications. Proceedings of the IEEE, 77(4):541–
580, April 1989.

[Musen, 2015] Mark A. Musen. The protege project: A look
back and a look forward. AI Matters, 1(4):4–12, June
2015.

[Petri, 1962] Carl Adam Petri. Kommunikation mit Auto-
maten. PhD thesis, Universitat Hamburg, 1962.

[Pommereau, 2008] Franck Pommereau. Quickly prototyp-
ing Petri nets tools with SNAKES. Petri net newsletter,
(10-2008):1–18, 10 2008.

[Pommereau, 2015] Franck Pommereau. SNAKES: a flex-
ible high-level Petri nets library. In Proceedings of

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

70

PETRI NETS’15, volume 9115 of LNCS, pages 254–265.
Springer, 06 2015.

[Sadoun et al., 2013] D. Sadoun, C. Dubois, Y. Ghamri-
Doudane, and B. Grau. From natural language require-
ments to formal specification using an ontology. In 2013
IEEE 25th International Conference on Tools with Artifi-
cial Intelligence, pages 755–760, Nov 2013.

[Sarmiento et al., 2015] E. Sarmiento, J. C. S. D. P. Leite,
and E. Almentero. Analysis of scenarios with petri-net
models. In 2015 29th Brazilian Symposium on Software
Engineering, pages 90–99, Sept 2015.

[Selway et al., 2015] Matt Selway, Georg Grossmann, Wolf-
gang Mayer, and Markus Stumptner. Formalising nat-
ural language specifications using a cognitive linguis-
tic/configuration based approach. 54, 04 2015.

[van der Aalst, 1998] Wil M. P. van der Aalst. The appli-
cation of petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

[Venkatesh et al., 2014] R. Venkatesh, U. Shrotri, G. M. Kr-
ishna, and S. Agrawal. Edt: A specification notation for re-
active systems. In 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1–6, March 2014.

[Venkatesh et al., 2016] R. Venkatesh, Ulka Shrotri, Amey
Zare, and Supriya Agrawal. On generating test cases from
edt specifications. In Leszek A. Maciaszek and Joaquim
Filipe, editors, Evaluation of Novel Approaches to Soft-
ware Engineering, pages 1–20, Cham, 2016. Springer In-
ternational Publishing.

[Yan et al., 2015] R. Yan, C. H. Cheng, and Y. Chai. For-
mal consistency checking over specifications in natural
languages. In 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1677–1682, March
2015.

Tenth International Workshop Modelling and Reasoning in Context (MRC) – 13.07.2018 – Stockholm, Sweden

71

