
Data-based code synthesis in IntelliJ IDEA
Vladislav Tankov

Saint-Petersburg State University
JetBrains

Email: vdtankov@gmail.com

Timofey Bryksin
Saint-Petersburg State University

JetBrains Research
Email: t.bryksin@spbu.ru

Abstract—Automatic code synthesis has been attract-
ing more attention lately. Some recent papers in this tra-
ditionally academic field even present results that could
be applicable for industrial programmers. This paper
provides an overview of Bayesian Sketch Learning (BSL)
approach, describes basic concepts and workflow of a BSL
synthesizer. Based on this we discuss an architecture
of a configurable BSL synthesizer that could work as
a part of an integrated development environment. We
describe the implementation of such synthesizer for JVM
platform and its integration with IntelliJ IDEA as a
plugin. Two approaches to implement user interaction in
a plugin like this are presented: method annotations and
a domain-specific language. The paper concludes with
an evaluation and a discussion on limitations of selected
approach for industrial programmers.

I
Automatic code synthesis has been a field of interest of

computer science and software engineering for decades. It
is defined as a task of synthesizing an algorithm in certain
programming language based on incomplete specifications.
Depending on the approach, this specification can be a def-
inition of an algorithm in some domain specific language
(DSL), a set of inputs and outputs of the algorithm, a set
of system calls that occur when the algorithm is executed,
etc.
Recently, more and more researchers have been address-

ing this task, and even first industrial code synthesizers
begin to appear on the market [1]. However, most modern
code synthesis tools are poorly applicable, since they usu-
ally require programmers to master some new formalism,
almost always alienated from programmers’ main field of
knowledge. For example, study a separate specification
language.
In this regard, Bayesian Sketch Learning approach (BSL

approach), proposed by a group of researchers from the
University of Rice in [2], is fundamentally different. BSL
approach allows you to use identifiers of a programming
language and its libraries as domain specific language. It
narrows the gap between a specification language used
by a code synthesizer and a synthesized code used by
programmers. This approach has a significant impact:
since the synthesizer works with nothing else than the
programming language and its libraries, it can be used
within an integrated development environment (IDE) and
fit in the usual patterns of work with this IDE. Moreover,

using such a synthesizer, an IDE could offer more intelli-
gent code completion and even try to synthesize parts of
developed systems.
This paper describes the implementation of a BSL

synthesizer for JVM platform and its integration with
IntelliJ IDEA. The reminder of this paper is structured
as follows. Section I provides an overview of BSL synthe-
sizer’s concepts, describes several alternative approaches
to code synthesis and examines the architecture of Bayou
which is the baseline implementation of the BSL approach.
Section II presents an architecture of a configurable BSL
synthesizer that could work as a part of an IDE. Section III
describes implementation of such a synthesizer and its
compatibility with Bayou models. Section IV explores
challenges arising while implementing the synthesizer as
an IntelliJ IDEA’s plugin. Section V provides evaluation
of suggested implementation.

I. O
A. Overview of BSL synthesizer’s concepts
BSL synthesizer is a code synthesizer based on Bayesian

Learning approach [3]. The essence of Bayesian approach
in this case boils down to the following: a synthesizer is
trained on a corpus of programs and so called “evidence”
(some values associated with every program). After that,
getting some set of evidence, it tries to synthesize code that
most likely satisfies this evidence in context of the whole
corpus. So, on the learning step an a priori distribution of
programs is calculated for a given set of evidence, and on
the synthesis step an a posteriori distribution is calculated
for a specific evidence.
Evidence for a BSL synthesizer is usually method calls

and classes used in the synthesized function. Experiments
in [2] showed high effectiveness of BSL synthesizers for
API-heavy code (code with a large number of API calls).
Efficiency of BSL synthesizers in arbitrary code synthesis
tasks has not been investigated yet.
BSL synthesizer uses sketches [4] as internal representa-

tion of programs. A sketch is a simplified representation of
a program that consists only of basic language constructs
(such as control flow and, in case of BSL synthesizers, API
calls). Sketches do not preserve semantics of the program
(which, nevertheless, can be recovered using probabilistic
methods, see [2] for details), but they represent programs
with similar intent in a uniform manner. Sketches are

37

associated with evidence using Bayesian encoder-decoder
(BED) techniques [2] (fairly close to variational autoen-
coders [5]). An evidence is converted into an element of
intent latent variable space (“encoded”), and this element
is converted (“decoded”) into a sketch corresponding to the
given evidence.
Thus, from the probability theory’s point of view, fol-

lowing calculations take place.
1) Let X be a collection of evidence, Z is an intent
latent variable, corresponding to X, Y is a sketch
corresponding to Z.

2) Calculate P (Z|X) — a distribution of the hidden
variable by X.

3) Sample Z in accordance with the distribution ob-
tained.

4) Calculate P (Y |Z) — a sketch distribution by Z.
5) Sample Y in accordance with the distribution ob-
tained.

By combining Bayesian approach with representation
of programs as sketches, BSL synthesizers can correctly
synthesize fairly complex API-heavy methods.

B. Related works
Currently there are several tools that are capable of

synthesizing API-heavy methods provided with evidence.
1) Bing Developer Assistant (BDA): Bing Developer

Assistant [6] is a system for searching code samples or even
entire projects corresponding to natural language queries.
BDA consists of a Visual Studio plugin that consists of a
user interface (frontend), and a cloud-based platform that
provides search capabilities (backend). The frontend part
uses natural language as a way of communicating with its
users (for example, queries like “how to save png image”).
After receiving response from the backend, BDA is able
to insert code into current user’s project, open a separate
window with a code sample, or even offer GitHub projects
matching with the current request.
To search code using natural language queries the back-

end part uses Bing1, restricting itself to a limited set of
sites. A framework proposed in [6] extracts code pieces
from Bing search result pages and ranks them. Then code
samples are passed to the frontend.
BDA is a successful tool to search code with 670 thou-

sand downloads according to [6]. However BSL synthesiz-
ers are not just code search systems. BDA is not capable
of generalizing and synthesizing code not known to it, but
deducable from already known data.
2) Synthesizing API usage examples (SAU): Another

interesting alternative is proposed in [7] — an algorithm
for synthesizing code samples for Java Standard Library
API. This algorithm takes an input type T (so called target
type) for which it is required to synthesize usage examples,
and code corpus where this type is used in some way.
Synthesis is performed in several steps.
1Bing: a web search engine by Microsoft, URL: https://www.bing.com

Initially existing methods using type T are enumer-
ated, and via symbolic execution [8] a graph model is
constructed, representing different ways of working with
type T. Then, obtained use cases of type T are clustered.
Clustering is performed using k-medoids method [9] based
on the metric proposed in [7]. For each of the clusters
obtained, an abstract element is synthesized — a repre-
sentative of this entire cluster. Finally, all these abstract
representatives are concretized into final code. This code
might not be compilable: catching of checked exceptions
or initialization of variables may be omitted, if exception
handling in code corpus is usually performed outside of
functions using type T or initialization is not important
for the sake of synthesized examples.
SAU shows excellent results of synthesizing examples

(82% of respondents did not see any difference between
SAU generated code and human written code or even
would prefer SAU examples) and has a decent generalizing
capability. However, it is obvious that this algorithm is
highly specialized for code examples synthesis. Unlike BSL
synthesizers, SAU is not able to synthesize code that uses
several types, and such support would require fundamental
rework of the entire algorithm.

C. Bayou
Researchers from the Rice University also proposed their

implementation of the BSL synthesizer, Bayou [2]. Bayou
is a complex machine learning system employing several
algorithms. It work in two modes: learning mode, when a
statistical model is obtained, adjusting to a training sam-
ple, and synthesis mode, when code synthesis is performed
in accordance with the statistical model.
Input is a set of sets of evidence — a set (possibly

empty) for each type of evidence. The implementation
supports three types of evidence:

• ApiCall — call of some API method (for example,
“readLine”);

• ApiType — usage of some library class (for example,
“BufferedReader”);

• ContextType — usage of some class as method argu-
ment.

During synthesis evidence is being passed through the
following transformation layers:
1) Evidence Embedding Layer: evidence sets (for each
evidence type separately) are converted into a nu-
meric vector;

2) Evidence Encoder Layer: obtained set of vectors is
encoded into an element of intent latent variable
space (also a numeric vector);

3) Intent Decoder Layer: obtained element is converted
into a sketch;

4) Combinatorial Concretization Layer: the sketch is
turned into code using random walk technique.

Evidence Encoder and Intent Decoder layers together
form Bayesian Encoder-Decoder (BED).

38

These layers are only a general description of the synthe-
sizer’s architecture. Depending on the task and its domain,
different algorithms can be used within Evidence Embed-
ding and Combinatorial Concretization layers, acceptable
evidence types also might differ.
We will call a set of algorithms and acceptable evidence

types a metamodel of the BSL synthesizer, and the result
of learning a particular metamodel is a model of the
BSL synthesizer. Currently there are two metamodels, for
Android SDK and for Java STDlib, and a fairly large
number of models for each of them.
Android SDK metamodel uses three types of evidence:

ApiCall, ApiType and ContextType. This metamodel is
optimized for models trained on Android SDK library
and is described in detail in [2]. Java STDlib metamodel
uses two types of evidence: ApiCall and ApiType. This
metamodel is optimized for models trained on Java STDlib
and is under development by researchers at this moment.
Now let us consider Bayou’s implementation. Bayou

is implemented as two web servers: a Java server and a
machine learning (ML) server. Input code is passed to the
Java server (a servlet within a Tomcat web server), where
it is parsed using Eclipse JDT2 and a set of evidence is
retrieved. Then this set is passed to the ML server, which is
implemented in Python. It runs embedding (using Scikit-
learn3), encoding and decoding steps (neural networks are
implemented with Tensorflow4). The resulting sketch is
serialized and passed back to the Java server, where Com-
binatorial Concretization via Eclipse JDT is performed,
and synthesized code is returned to the user.
Thus, reference implementation of Bayou’s BSL synthe-

sizer is a ready-to-use web service for code synthesis, but
it can not be integrated into IntelliJ IDEA as a plugin
without significant rework. IntelliJ IDEA does not require
installation of a Python interpreter, so most users might
not have it installed. All layers implemented in Python
must be re-implemented on the JVM platform. Moreover,
current Bayou architecture does not support configuration
of metamodels, each metamodel is implemented as a sep-
arate application.

II. A BSL

Unlike Bayou’s implementation, we want to build a
configurable BSL synthesizer — a BSL synthesizer capable
of running synthesis according to different metamodels.
We provide a mapping of existing abstract BSL synthe-
sizer’s layers to layers of our implementation. Each layer
of our implementation can be parameterized with different
algorithms, and such set of parameterizations of all layers,
as we defined above, forms a metamodel.
2Eclipse Java Development Toolkit: a tool for parsing and processing

Java code, URL: https://www.eclipse.org/jdt/.
3Scikit-learn: a machine learning library for Python, URL: http://

scikit-learn.org
4Tensorflow: a machine learning library for Python, URL: https://

www.tensorflow.org/

Complete Data Flow diagram of the suggested config-
urable BSL synthesizer is shown in Fig. 1.

Figure 1. Data flow diagram of the configurable BSL synthesizer

A. Input Layer
The purpose of Input Layer is to handle input data

(some code with evidence): extract evidence from the
code and create code’s intermediate representation for
Concretization Layer. This intermediate representation
will be used as context for synthesized code. There is
no such layer in the abstract BSL synthesizer, its role
here is strictly technical. Having input data processed in a
separate layer, we can pass evidence into the synthesizer
in different ways: embed it into code, or pass along with
code and a position to insert synthesized code into.

B. Embedding Layer
Embedding Layer handles embedding the evidence re-

ceived from Input Layer. Embedding Layer supports sev-
eral algorithms required by different metamodels: TF-IDF
and LDA for Android SDK and k-hot encoding for Java
STDlib. This layer corresponds to Evidence Embedding
Layer in the abstract BSL synthesizer’s architecture. It is
parameterized by evidence types accepted by the meta-
model and embedding algorithms for each evidence type.
In case embedding requires some additional data (an LDA

39

model, a k-hot encoding dictionary, etc.) they are also
added to layer’s configuration.

C. AST Synthesis Layer
AST Synthesis Layer performs synthesis of sketches’

ASTs by the embedded evidence. This layer can be pa-
rameterized with a number of hidden layers of encoder
and decoder, however this is not used currently for existing
metamodels.
This layer corresponds to both Evidence Encoder Layer

and Intent Decoder Layer. Within the AST Synthesis
Layer evidence is encoded into an intent latent variable
element and than decoded from this element into a sketch.
Two layers are combined into one because the change of
parameters or models of one layer is impossible without
corresponding changes to the other layer. AST Synthesis
Layer is parameterized by the BED model.

D. Quality Measurement Layer
Quality Measurement Layer measures quality of syn-

thesized sketches, deduplicates and ranks them. There is
also no such layer in the abstract BSL synthesizer, here
it is used to isolate quality measuring algorithms into
individual abstractions. Thus, we can use different ranking
algorithms for different metamodels, or even let our users
choose which quality metrics to use.

E. Concretization Layer
Concretization Layer turns sketches obtained from

Quality Measurement Layer and code’s intermediate rep-
resentation received from Input Layer into Java code. This
layer corresponds to Combinatorial Concretization Layer
in the abstract BSL synthesizer’s architecture. Concretiza-
tion algorithm has several parameters (for example, recur-
sive search depth while synthesizing method arguments),
however all existing metamodels use default settings.
It is worth noting that concretization is performed

taking surrounding code in account, so Concretization
Layer accepts not only an AST, but also an intermediate
representation of the input source code, and uses this
representation as context of synthesized code.
The result of Concretization Layer is a source code

fragment with synthesized code block inserted into it.

III. I BSL

Now let us consider implementation of the architecture
presented above. We start with the way models for the
configurable BSL-synthesizer were obtained.

A. Exporting the models
As mentioned earlier, researchers from the Rice Uni-

versity continue to develop Bayou and release improved
models regularly. Therefore, it seems reasonable to re-use
existing Bayou models and maintain compatibility with
the new ones.

Depending on the metamodel, a model contains different
data. Bayou’s source code was instrumented to export all
this data in runtime. For Android SDK version of the
Embedding Layer it was required to export LDA and TF-
IDF models from Scikit-learch objects for each type of
evidence. In case of TF-IDF, we export the dictionary and
IDF matrix [10]. In case of LDA, it is α, η values and ϕ
matrix [11]. For Java STDlib version of the Embedding
Layer only k-hot vector dictionary was exported.
For the AST Synthesis Layer both metamodels required

export of Tensorflow models. To achieve this, we name all
variables and output tensors of the Tensorflow model (oth-
erwise it will be difficult to access them when executing
the model) and save the model using Tensorflow’s export
capabilities.

B. Implementation of layers
Now we discuss implementation of each synthesizer’s

layer.
1) Input Layer: This layer currently has two implemen-

tations. Both implementations use Eclipse JDT to parse
input code and create its intermediate representation (as
JDT’s CompilationUnits).
First implementation is quite similar to the one pro-

posed in [2]. Evidence is passed directly within the code
as library functions calls. Using Eclipse JDT, the code is
parsed, evidence is extracted, and its position is marked for
subsequent code insertion. The evidence itself is removed
from the code.
Second implementation separately takes input code, an

evidence and a position to insert synthesized code into. It
has a slightly more convenient API, and this implementa-
tion is a little bit more efficient, since it does not need to
extract evidence from input code.
2) Embedding Layer: This layer also has two imple-

mentations: k-hot encoding for Java STDlib metamodel
and TF-IDF + LDA for Android SDK metamodel. The
layer even allows to use different embedding algorithms
for each type of evidence, but existing metamodels don’t
use this at the moment. All embeddings are parameterized
with Bayou’s exported models and satisfy specifications of
corresponding Scikit-learn algorithms.
The number of output dimensions for each embedding is

defined by embedding’s model (for example, k-hot vector’s
length will be equal to the dictionary’s length).
3) AST Synthesis Layer: This layer has a single imple-

mentation. It is parameterized with the exported Tensor-
flow model. The model itself is loaded and executed using
Tensorflow for Java.
At the encoding step, evidence vectors received from the

Embedding Layer are passed to the corresponding inputs
of BED encoder and the Tensorflow model is executed.
The result is the element of intent latent variable space
(ψ).
At the decoding step, this ψ element is passed to the

BED decoder (which is again a Tensorflow model). As a

40

response, the decoder returns a vertex — start of a pro-
duction path, which is described in [2] in detail. Then, in
accordance with the algorithm, an entire production path
is constructed. On each step of this algorithm, depending
on the given node, the construction of the production
path can branch out in several directions. For example,
“DBranch” node (the “if” node) will build paths for a
predicate, “then” and “else” branches. At the moment all
models support only “if”, “while” and “try ... catch” control
flow constructs.
AST Synthesis Layer’s result is a set of sketches’ ASTs,

their desired number can be specified in layer’s configura-
tion.
4) Quality Measurement Layer: This layer has several

implementations and their number continues to grow.
Currently following algorithms are used for all meta-

models: presence verification for all evidence, deduplica-
tion and ranking ASTs based on their occurrence frequen-
cies. Evidence presence verification walks through an AST
and collects API calls, types and contexts (types of method
arguments) present in the current sketch candidate. The
result is compared with the original evidence set. If some
evidence is missing, this candidate sketch is removed from
the result. Deduplication removes duplicate ASTs and
counts the number of occurrences for every individual
AST. Occurrences frequency is used for ranking: more
often an AST is met, more likely it will fit a given query.
However, this naive algorithm is not the only option.

We can also rank ASTs using standard code metrics, such
as LOC (lines of code), cyclomatic complexity [12], or
more complex ones. Depending on task’s domain, these
metrics can be selected to provide more relevant results
(for example, LOC could be used for generating examples,
which are preferred to be short according to [7]).
5) Concretization Layer: Finally, Concretization Layer

performs synthesis of the program. This layer has a single
implementation based on Eclipse JDT.
Concretization Layer takes an AST and code’s inter-

mediate representation as input. In our case the interme-
diate representation is an Eclipse JDT CompilationUnit
object. The concretization algorithm described in [2] is
executed on this CompilationUnit object. Then, combi-
natorial search is performed guided by several heuristics.
For example, functions without arguments are examined
earlier than functions with arguments, since functions with
arguments produce further search.
It is worth noting that current implementation is able

to synthesize a method, some arguments of which can not
be synthesized within current context. In such cases, a
variable of an appropriate type is created and initialized
with a null value. It is assumed that the programmer will
replace it with an appropriate initialization.
Finally, unreachable code or code that does not affect

the result of the function is removed (i.e. Dead Code
Elimination is performed), the code is formatted, fully
qualified class names are converted into simple class names

and import expressions. Resulting code fragments are
returned according to corresponding rank order of their
ASTs.

IV. I IJ IDEA

This section describes an IntelliJ IDEA plugin providing
user interface to the implemented BSL synthesizer. Firstly,
we mention several issues arising from such integration
that need to be resolved to make the synthesizer work in
IDEA’s environment.

A. Integrating BSL synthesizer with IntelliJ IDEA

There were two main challenges integrating imple-
mented BSL synthesizer into an IntelliJ IDEA’s plugin:
obtaining models and progress indication.
As mentioned before, a BSL synthesizer needs models

to perform. Unfortunately these files are quite large (~100
Mb for the Android SDK model and ~200 Mb for the
Java STDlib model), so we can’t distribute them with
the plugin directly. Currently, these models are stored
in an Amazon S35 repository along with a descriptor file
listing all supported models, paths to corresponding files
and MD5 hashes of these files. Each instance of the plugin
creates a directory for local repository. If the requested
model is missing on disk or corrupted it will be downloaded
from the remote repository.
Another issue is that code synthesis can take up to

10 seconds, and downloading the models could take even
longer, so the lack of progress indication during such tasks
will result in quite negative user experience. To handle
progress indication the synthesizer subsystem accepts a
special object: it is a data class object which fields are used
for storing currently executed process (e.g. “Generating
Sketches”, “Downloading TF-IDF Model”, etc.) and its
progress as a double from 0.0 to 1.0. Based on this object’s
state the UI thread shows and updates a progress indicator
when time-consuming operations take place.

B. User interface

User interface for IntelliJ IDEA’s plugins could be
implemented in a number of ways: using special window
dialogs, with a separate DSL to use in comments, or
as some language elements within Java code itself. We
decided to create two alternatives: an approach based on
method annotations defining required evidence (the same
approach is employed by numerous popular Java libraries,
for example, Project Lombok6) and an approach based on
a comment-based DSL.

5Amazon S3: an object storage by Amazon, https://aws.amazon.com/
s3.
6Project Lombok: a library for generation of utility methods in Java

classes. URL: https://projectlombok.org/

41

1) Method annotations: We have implemented a Java
library containing following annotations:

• BayouSynthesizer — annotation defining a meta-
model to use;

• ApiCall — annotation defining an API call evidence;
• ApiType — annotation defining an API type evi-
dence;

• ContextType — annotation, defining a context type
evidence (type of an API call argument).

Let us consider a request to the synthesizer, which
contains an “ApiCall” evidence with a value “readLine” and
an “ApiType” evidence with a value “FileReader”. Using
method annotations approach this query looks like this:

import tanvd.annotations.*;

import java.io.File;
import java.io.FileReader;

public class TestIO {
@BayouSynthesizer(type = SynthesizerType.StdLib)
@ApiCall(name = ”readLine”)
@ApiType(name = FileReader.class)
void read(File file) {
}

}

ApiType and ContextType annotations accept an object
of type Class<T> — class of a Java class and for them
IntelliJ IDEA automatically performs code completion.
But because of Java constraints, ApiCall annotation can
not accept objects of type Function<T>. Hence, ApiCall
should accept either a String or an enumeration, previously
created and describing all possible API calls of the current
model. For Java STDlib, this kind of enumeration can
not be created because the number of available API calls
exceeds maximum enumeration size. And obviously, there
is no auto-completion for String values in IntelliJ IDEA.
Another issue with this approach is the lack of strict typ-

ing. For example, it is possible to specify BayouSynthesizer
as StdLib (Java STDlib metamodel) and add ContextType
annotation which is not supported by this metamodel.
Thus, method annotations approach common to Java

programmers has significant drawbacks and should be used
only by programmers who are very well acquainted with
the synthesis system.
2) Domain Specific Language: The DSL was imple-

mented using Grammar Kit7. It contains the following
identifiers:

• STDLIB or ANDROID — initial identifier, defines a
metamodel to use;

• API — identifier for an API call evidence;
• TYPE — identifier for an API type evidence;

7Grammar Kit: a tool for custom language support for IntelliJ IDEA,
URL: https://github.com/JetBrains/Grammar-Kit

• CONTEXT — identifier for a context type evidence
(type of an API call argument).

The same query for a “readLine” call and a “FileReader”
type evidence will look like this using DSL approach:

import java.io.File;
import java.io.FileReader;

public class TestIO {
/*
STDLIB
API:=readLine
TYPE:=FileReader
*/
void read(File file) {
}

}

The domain specific language integrates well with In-
telliJ IDEA. Strict typing is available (for example, CON-
TEXT can not be used when Java STDlib metamodel
is chosen), and code completion for all of evidence types
values is active. Moreover, IntelliJ IDEA allows to extend
language’s grammar to show custom messages for some
specific grammar errors.
The resulting language is quite simple. Strict typing

and error prompts make it easy to learn even without
additional documentation.

V. E
Our plugin was tested on a number of generation tasks

mentioned in [2] for Android SDK and on a set of exam-
ples similar to those that are presented on http://www.
askbayou.com/ for Java STDlib. In total we have tried 20
generation tasks for Android SDK (e.g. code that works
with “BluetoothSocket”, code that works with “File”, etc.),
and 20 generation tasks for Java STDlib (code working
with Collection classes, “File” and different “Readers”).
All tasks were executed on latest builds of corresponding
Bayou applications and on our system. The results show
that our implementation is equivalent to Bayou’s: in all
cases both synthesizers produced the same result.
For instance, the following is a piece of code generated

from the example above that used “readLine” and “Fil-
eReader” as evidence:

import java.io.File;
import java.io.FileReader;

public class TestIO {
void read(File file) {

FileReader fr1;
String s1;
BufferedReader br1;
try {
fr1 = new FileReader(file);
br1 = new BufferedReader(fr1);

42

while ((s1 = br1.readLine()) != null) {}
br1.close();

} catch (FileNotFoundException _e) {
} catch (IOException _e) {
}
return;

}
}

This example shows that the synthesizer is able to gen-
erate code with non-trivial logic and could be applied to
generate supplementary functions working with libraries.

A. Known limitations
Surely, BSL synthesizers have their limitations. First

of all, they are not capable of generating code using two
metamodels simultaneously. For example, it is not possible
to generate code using both methods existing only in
Android SDK and methods that exist only in Java STDlib.
The only way to do this is to create a new metamodel
including the other two. As far as we understand, there is
also no research available showing how synthesis’ quality
depends on the growth of generated programs’ space. An
educated guess is that the quality will drop.
Secondly, BSL synthesizers are currently applied to

generate only parts of methods or whole methods. BSL
synthesizers could not be used to generate a whole class
or even a whole project. As far as we know, there is
no published research on generating pieces of code larger
than methods using BSL synthesizers. However, they are
a suitable tool to generate API-heavy code, which is
confirmed by evaluation in [2] and our experiments.

C
In this paper we present a configurable BSL synthesizer

compatible with Bayou models. It was implemented as
a plugin for IntelliJ IDEA providing two types of user
interface: Java annotations and built-in DSL. Our evalu-
ation shows that qualitatively and quantitatively our im-
plementation complies with Bayou’s experimental results
presented in [2].
As future work we plan to improve plugin’s user inter-

face, prepare models for some other libraries (e.g. IntelliJ
Platform SDK) and improve IDEA’s code completion sub-
system using synthesizer’s results providing users with a
tool to generate chains of API method calls. Furthermore,
we plan to integrate our BSL-synthesizer with DeepAPI
tool [13] to create a system capable of synthesizing code
from natural language queries.

R
[1] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton,

U. Schmid, and B. Zorn, “Inductive programming meets the real
world,” Communications of the ACM, vol. 58, no. 11, pp. 90–99, oct
2015.

[2] V. Murali, S. Chaudhuri, and C. Jermaine, “Bayesian sketch
learning for program synthesis,” CoRR, vol. abs/1703.05698, 2017.
[Online]. Available: http://arxiv.org/abs/1703.05698

[3] D. Barber, Bayesian reasoning and machine learning. Cambridge
University Press, 2012.

[4] A. Solar Lezama, “Program synthesis by sketching,” Ph.D. disser-
tation, EECS Department, University of California, Berkeley, Dec
2008.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013. [Online]. Available: https://arxiv.org/abs/1312.6114

[6] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu,
“Bing developer assistant: Improving developer productivity by
recommending sample code,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016,
pp. 956–961.

[7] R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press,
2012, pp. 782–792.

[8] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,” 2016.
[Online]. Available: https://arxiv.org/abs/1610.00502

[9] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley Interscience, 2005.

[10] A. Rajaraman and J. Ullman, Mining of Massive Datasets. Cam-
bridge University Press, 2012.

[11] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010, pp.
856–864.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[13] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,”
CoRR, vol. abs/1605.08535, 2016. [Online]. Available: http:
//arxiv.org/abs/1605.08535

43

