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Abstract—The following article addresses a software package
developed for working with data obtained during monitoring
the detection of material defects via the acoustic emission (AE)
method. Timely detection of cracks allows to prevent contin-
gencies and accidents at early stages. This paper describes the
architecture of this software, as well as the used calculation
methods, provides visualized results of their work, and com-
pares them with other analysis methods. The innovation of
this work is the use of the moving window method for AE data
analysis. Obtained results indicate the practical importance and
relevance of our research in this area.

I. Introduction

Evaluation of the current condition of varying indus-
trial and infrastructural objects is one of actual problems
of modern material science. These objects include, but are
not limited to the oil and gas and chemical industry equip-
ment, thermal and nuclear power equipment, aerospace
equipment, pipeline and railway transportation, bridge
constructions, and concrete and reinforced concrete struc-
tures. The risks of equipment failure increase substantially
after it has been in use for a long time under mechanical
and thermal loads. The development of methods that
allow to study the physical nature of material degradation
processes is an important task within the field of technical
diagnostics. Acoustic emission testing is prominent among
these methods. It allows to identify the coordinates and
estimate the danger level of defect-associated acoustic
emission sources that appear in a loaded object.

In this work we present a software package intended
for analyzing a large volume of specific data that is
being studied by a considerable number of researchers all
around the world. Our software is designed for analyzing
different impulse responses of AE signals (amplitude,
energy, length, etc) with the use of the moving window
method. By employing this method, the software identifies
the change dynamics of the arithmetic mean, median,
standard deviation, and b-value of these responses.

II. Acoustic emission method

Acoustic emission testing is an efficient method of
nondestructive testing. It is based on detecting elastic
waves during deformation of stressed material. These
waves travel from the source to sensors that transform
them into electrical signals. From the standpoint of the
AE method, a defect can produce its own signal [1]. The
AE testing devices measure these signals, and then display
data used for evaluating the condition and behavior of the

entire structure of the tested object. The sensitivity of
this method is sufficient to register even microscopic crack
growth (by 0.001 mm), which allows to detect cracks in
time. The AE method can be employed for testing of a
wide variety of technological processes, as well as processes
of changes in properties and condition of materials. This
broad spectrum of tasks and the variety of control objects
requires constant improvement of data processing tools.

III. Overview of existing solutions

There are several acoustic emission systems made by
different manufacturers. A review of the characteristics
of their software, technical parameters, capacity of their
AE equipment, and certain abilities for the analysis of
registered data is presented in study [2]. Unfortunately, the
post-experimental analysis capabilities of reviewed systems
are limited — mostly to creation of standard plots. For
example, in AMSY-5, it is easy to create an number
of impulses-amplitude histogram or an amplitude-time
correlation plot, but it is not always possible to implement
a custom user formula [3]. Moreover, the system itself is
quite expensive.

Furthermore, a considerable number of studies dedi-
cated to experimental and practical results of using AE
exists, for example: [4], [5], [6]. The moving window
method is widely applied in different scientific fields, such
as economics [7], geophysics [1], social networks analysis
[8], audio encryption, and so on.

Our software applies the moving window method to
three statistical quantities and one composite parameter
specifically during analyzing data of acoustic emission
testing of loaded structures. This allows to filter peak
values of these quantities and observe the trends in changes
of process phases in general.

IV. Software architecture

Currently, our software allows to build the trend of
a time series. We employ moving averaging for trend
determination. The calculations are performed on impulse
responses of acoustic signals — mainly amplitude values.
This parameter is one of the most informative, because it
indicates the detectability of a signal, which is why it is
frequently used during AE testing. For example, in [9], the
average amplitude of events is used for forming the P(R)
criterion used for determining the necessity of additional
testing of detected areas of AE activity.
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This software is written in C#. It accepts an input of
a file containing data from a certain time interval. Every
line of this file contains data collected from a single sensor,
in particular, registration time (up to a microsecond),
sensor number, and the value of the parameter chosen
for processing, e.g., amplitude. The user can set up the
parameters required for their research. The software allows
to select the sensor whose data will be analyzed to
localize the process, indicate whether the analysis will
be performed with respect to the number of signals or
time, designate the calculation method for one of the four
statistical indicators (arithmetic mean, median, standard
deviation or b-value). The selection of the window size
adjusts the accuracy grade of data evaluation and resolves
the problems associated with the possible non-uniformity
of data distribution in the time domain.

V. Experiments

In this study we use the data collected during two
experiments designed to model the use of real-life con-
structions with different load types. In the first experiment
(strength load) we have used steel-reinforced concrete
beam samples which were being bent according to a 3-
point scheme. The total volume of AE testing data we
have obtained is quite significant. Thus, in some figures
we have only plotted the data of sensor 2 (Fig. 1, 3, 5, 7,
10), and in others we have used the data of all four sensors
(Fig. 9, 8).

In the second experiment (strength-thermal load), we
have monitored a large-sized object contained in a cylin-
drical concrete construction. During the experiment, the
control object was uniformly heated to 400◦. The data
were being registered by ten sensors. Fig. 2, 4, 6, 11.

VI. Processing methods

The developed analysis system provides the ability to
average the processed parameter by calculating three indi-
cators: arithmetic mean, median, and standard deviation.
All of them are calculated with the use of the moving
window method. This method can be explained as follows:
the calculations are performed on same length sets of
consecutively registered data, which are shifted by one
value relatively to each other during consecutive scanning
of the entire measurement interval. The data set size
(moving window size) is determined by the user.

A. Simple moving average

Simple moving average (or arithmetic mean) is calcu-
lated as follows:

σt =

n∑
i=1

xi(t)

n
(1)

where t is the time interval; n is the smoothing interval;
xi(t) is the time series.

Fig. 1 and 2 present the plots of the simple moving
average. The smaller the size of the window, the faster
the moving window method identifies the new trend, but
with that, the final plot contains more false vibrations.

If the size is too large, then the trend will be identified
slower, however, there will be fewer false vibrations as well.

Fig. 1-6 display the plots of the moving average for the
first experiment (destructive testing of steel-reinforced
concrete beams), where the optimal window size is
100. This size has been identified via the possibility of
real-time adjustment of program parameters.

Hereinafter in this section, all plots are built with the
window size set to 100 signals, for time windows this size
is set to 100 milliseconds, used data slice — the entire
duration of the experiment.

Figure 1. Simple moving average. X-axis indicates the number of
signals, Y-axis indicates amplitude.

Figure 2. Simple moving average. X-axis indicates time (in millisec-
onds), Y-axis indicates amplitude.

B. Statistical median

Statistical median is the middle element of an ordered
sample. We use the following algorithm to determine the
median values: enumerate all values from 0 to N in an
ascending order, then the median values are the elements
indexed 0.5N and (0.5N+1) for an even N, and 0.5(N+1)
for an odd N. Fig. 3 and 4 display the plots of the medians.

C. Standard deviation

Standard deviation is calculated as follows:

σ =

√√√√
n∑

i=1

(xi(t)− x(t))2

n
(2)

where x(t) is the time series, x(t) is the arithmetic mean,
and n is the size of the moving window.

A larger standard deviation value indicates a larger
scatter in the presented sample. A smaller value points
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Figure 3. Statistical median. X-axis indicates the number of signals,
Y-axis indicates amplitude.

Figure 4. Statistical median. X-axis indicates time (in milliseconds),
Y-axis indicates amplitude.

to set values being aggregated around the mean (Fig. 5 и
Fig. 6). Standard deviation can be calculated in a different
way if variance, which is equal to the radicand in formula
2, has been found previously.

Figure 5. Standard deviation. X-axis indicates the number of signals,
Y-axis indicates amplitude.

Figure 6. Standard deviation. X-axis indicates time (in milliseconds),
Y-axis indicates the calculated indicator.

VII. Plot analysis

In the beam destruction experiment, the plots of the
simple moving average and the statistical median are
virtually the same. This is correct for both the time scale
of the entire experiment (Fig. 2 and 3) and smaller time
scales (Fig. 7). Our analysis has revealed that standard
deviation is the least significant parameter out of all three.
Although it is of theoretical interest, statistical median and
simple average have turned out to be more informative in
practice. These parameters help to trace the dynamics of
crack formation. According to the study [6], during static
loading of metal with a crack there is no increasing trend
in the time domain of AE signal amplitude, but there
are individual AE signals whose amplitude exceeds the
average by 45 dB. We observe a similar situation in the
beam loading experiment. This change of trend can be
observed on the resulting plots: in Fig. 7, which represents
the phase of active formation of main cracks, the averaged
amplitude values do not increase uniformly. Furthermore,
the increases of amplitude of certain signals are filtered
via the moving window method which allows to see the
whole picture of trend change.

Figure 7. Statistical median and simple average for a shorter time
slice. Windows size is set to 20.

The selection of an optimal size of the moving window is
important. Our software allows the user to make this choice
empirically for the whole duration of the experiment, and
then change this value proportionally to the total number
of signals in a particular smaller data slice. For example,
in the beam experiment, one sensor has registered 1700
events. The clearest picture was obtained with the size
of the window L = 100 events. Thus, for the macrocrack
formation period that contains 305 events, L was set to
305*100/1700 ≈ 18 (Fig. 7). Sometimes, it is reasonable to
reduce the window size, for example, to avoid missing the
registration of relatively rare events such as macrocrack
formation.

Consider Fig. 8. In this figure, arrows denote the
moments of crack formation that were registered directly
(visually) during the experiment. It is interesting that this
plot also contains similar decline peaks at different time
points. It is highly likely that those points correspond to
internal cracks in the structure that could not be identified
visually.
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Figure 8. Simple moving average for different stages of beam
destruction. X-axis indicates the number of signals, Y-axis indicates
amplitude.

VIII. b-value analysis

It is possible to use the Gutenberg-Richter law (widely
applied in seismology [1]) to study the scaling of the
amplitude distribution of AE signals that appear during
crack formation. In AE terms, this formula can be written
as follows:

log10N = a–b ∗AmaxdB (3)

where AmaxdB is the maximum amplitude in the window
(in decibels), a is an empirical constant value set to
4.8, b is a value obtained from this equation and then
multiplied by 20 to be comparable to the value used in
seismology[14]. The b-value is used for identifying the
predominate destruction type and determining trends in
construction damage development.

Figure 9. Plots of amplitude distributions for different stages of
beam destruction and their b-values

Fig. 9 provides an example of express analysis for b-
value estimation for the experiment conducted by non-
destructive testing specialists during test destruction of
a reinforced concrete construction. In this analysis, the
angle of inclination of a line (which is build via the
least squares method) determines the b-value. Fig. 9, (a)
shows the amplitude distribution for the stage that directly
precedes the destruction of reinforcement metal; at this
stage, macrocracks have already formed, the main material
has unloaded, and microcracks were forming intensively on
the last loaded area in the vicinity of the reinforcement
metal. Fig. 9, (b) displays the data for the stage of main
macrocrack formation. The obtained results correspond
with the notions of b-value evolution associated with the

change of the predominant destruction type that were
presented in the following studies: [13], [15], [16], [17].

We have implemented the ability to calculate the b-
value in our software package. In some cases, it turns
out to be a more informative evaluation parameter for
crack formation dynamics than other statistical indicators.
For example, in experiments with thermal or composite
(strength-thermal) loading of a large-size reinforced con-
crete structure, the change of b-value trends in regards
to the defect formation stage are more pronounced in
comparison to the experiments with strength loading of
small samples. Fig. 10 and Fig. 11 show the b-value plotted
by the system during analyzing the results of the strength
and thermal load experiments respectively.

Figure 10. Dependency of b-value on the number of signals. Strength
load experiment.

Figure 11. Dependency of b-value on the number of signals. Thermal
load experiment.

The resulting plots demonstrate the b-value fluctuating
in a significantly wider range for the second structure type.
However, its use is sufficiently informative for the objects
of the first type as well. It can be seen that destruction
processes of different intensity are being considered, which
is confirmed by the presented dependencies.

Analyzing these kinds of dependencies allows AE test-
ing specialists and material scientists to obtain useful and,
sometimes, unexpected information on the behavior of
materials under the influence of different kinds of loads
[18].

IX. Results and conclusions

The following results have been obtained:

1) We have developed a software package that
enhances an AE control analysis system with
several data analysis methods designed to
increase the informativeness of testing. This

64



software was tested on real experimental data.

2) The correctness of the employed algorithms is
confirmed by the obtained results matching the
previously known facts on the development of
defect formation.

3) Employing this software package allowed the AE
testing specialists to perform a more accurate
and detailed analysis of data, which substantially
increased the informativeness of testing.

In this paper, we have presented elements of analysis
of data collected during both a laboratory experiment
of loading and destruction of reinforced concrete beams
and real-world testing of a large-size reinforced concrete
construction. The conditions of conducting the first type of
experiments have made it possible for us to observe certain
key phases of the sample destruction process and identify
them with the corresponding AE testing data. Software
algorithms have performed well in these experiments: the
type of obtained dependencies corresponds to the real-
world processes that occurred in control objects according
to the known facts about the mechanics of destruction of
this type of materials. Thus, the proposed algorithms were
tested successfully.

During our research, we have corrected the moving
window size with respect to estimating the maximum
informativeness of this parameter during the destruction
stage. The resulting estimates are employed for the moving
window method in the developed software for both the
described experiment and other situations in which crack
formation (deformation or other internal destruction) pro-
cesses are obscured and occur inside of the object. In this
kind of experiments, the value of such analysis increases
due to the inability to visually observe material structure
degradation processes and having to resort to evaluating
them by indirect indicators.

The second kind of structure that was considered in this
study is an object of this type. The results of additional
examination of material structure via destructive methods
confirmed the correctness of conclusions that were made
during the AE testing with the use of our software.

The software of existing AE systems is generally limited
to a set of standard plots used for a formal representation
of testing results. It usually lacks advanced tools of data
analysis. This is typical even for the most modern AE
testing systems, such as AMSY-5 (developed in Germany)
[3], which was employed during the discussed experiments.

X. Conclusion

In this work we have developed a software package
intended for analyzing acoustic emission testing data.
We have shown that it can be successfully employed for
both laboratory experiments and large-size construction
testing. We should note that this kind of analysis requires
determining the optimal size of the moving window. All
of the required estimates of this value for the arithmetic
mean, median and standard deviation were obtained.

Using these estimates, we have performed the calculations
on data of impulse responses of acoustic signals. The final
results indicate the efficiency of the suggested moving av-
eraging methods in the task of analyzing acoustic emission
testing data and the practicability of using the considered
software.

In our further research we plan to perform the analysis
of data obtained in experiments with composite loads and
then generalize the results.

The development of methods for detecting signals
associated with defect growth with the use of information
theory methods could be a fruitful area for further work
as well.

References

[1] Lyubushin A.A. Analiz dannykh sistem geofizicheskogo i eko-
logicheskogo monitoringa. Moscow, Izd: Nauka (2007). (In Rus-
sian)

[2] Oglezneva L. A. Sravnitel’nye kharakteristiki akustiko-
emissionnykh sistem. Vestnik nauki Sibiri - Siberian Journal of
Science (2011) (In Russian)

[3] Metodika akustiko-emissionnogo kontrolya s ispol’zovaniem AE
sistemy AMSY-5 firmy Vallen-Systeme GmbH. Russia, Vol-
gograd (2010). (In Russian)

[4] Zotov K., Rastegaev V., Gomera V., Sokolov V., Fedorov A.,
Smirnov A. The Detection of Different Stages of the Delami-
nating in the Pressure Vessels by the Ultrasonic and Acoustic
Emission Technique. 19th World Conference on Non-Destructive
Testing (WCNDT), 13-17 June 2016, Munich, Germany, Book
of Abstracts, p.209.

[5] Nefedyev, E. J., Gomera, V. P., Smirnov, A. D. (2016). Use of
the Capabilities of Acoustic-Emission Technique for Diagnostics
of Separate Heat Exchanger Elements. In Advances in Mechan-
ical Engineering (pp. 183-194). Springer, Cham.

[6] Rastegaev I. A., Chugunov A. V., Vinogradov A. Y., Merson
D. L., Danyuk A. V. The specific features of acoustic-emission
testing of vessel equipment with a wall delamination of a
technological origin. Russian Journal of Nondestructive Testing,
51(5), 2015, pp. 280-291.

[7] Anantchenko I. V., Musaev A. A. Programma dlya torgovli
na rynke Foreks na osnove skol’zyashchikh srednikh. Vektory
razvitiya sovremennoy nauki (2014), pp. 14-18. (In Russian)

[8] Bagretsov G.I., Shindarev N.A., Abramov M.V., Tulupyeva
T.V. Approaches to development of models for text analysis of
information in social network profiles in order to evaluate user’s
vulnerabilities profile // Soft Computing and Measurements
(SCM), 2017 XX IEEE International Conference on. – IEEE,
2017. – P. 93–95.

[9] Nefed’yev E. Yu., Smirnov A. D., Gomera V. P. Razrabotka
metodicheskikh priemov dlya povysheniya effektivnosti AE kon-
trolya teploobmennikov. Modern Mechanical Engineering: Sci-
ence and Education, 4 (2014), pp. 408-418. (In Russian)

[10] Tikhonova O.A. Sravnitel’nyy analiz razlichnykh algoritmov
skol’zyashchego usredneniya s ispol’zovaniem kriteriya mini-
mal’nogo srednego kvadrata oshibok. DonNTU (2008). (In Rus-
sian)

[11] NDT Recource Center: https://www.nde-ed.org (accessed
17.04.2018)

[12] Vrije Universiteit Brussel: Damage testing, prevention and
detection in aeronautics, chapter 10, 2007.

[13] Golaski L., Gebski P., Ono K. – Diagnostics of Reinforced
Concrete Structures by Acoustic Emission - 25th European Con-
ference on Acoustic Emission Testing, Prague, Czech Republic,
2002, pp. I/207-I/215.

65



[14] Colombo S., Main I.G., Forde M.C. Acoustic emission for
bridges: experiments on reinforced concrete beams. 25th Euro-
pean Conference on Acoustic Emission Testing, Prague, Czech
Republic, 2002 pp. I/127-I/134

[15] Calabrese, L., G. Campanella, and E. Proverbio. "Use of
cluster analysis of acoustic emission signals in evaluating damage
severity in concrete structures." Journal of Acoustic Emission 28
(2010).

[16] Carpinteri A., Lacidogna G., Pugno N. Time scale effects on
acoustic emission due to elastic waves propagation in monitored
cracking structures. Physical Mesomechanics, 5, 2005. pp. 85-89.
(In Russian)

[17] Carpinteri A., Lacidogna G., Puzzi S. Prediction of cracking
evolution in full scale structures by the b-value analysis and Yule
statistics. Politechnico di Torino, 2008.

[18] Nefedyev E. Yu. Ispol’zovanie metoda akusticheskoy emissii s
primeneniem spektral’nogo analiza signalov dlya opredeleniya
parametrov techi v truboprovodakh ITER. Modern Mechanical
Engineering: Science and Education, 3 (2013), pp. 347-355. (In
Russian)

66


