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Abstract—Gait phase recognition systems are widely used in
medicine to control devices aimed at restoration of patients’
motor functions and have an increasing interest in scientific
society. Use of electromyography as a source of information
for such systems gives considerable advantages in comparison
with other data sources at the cost of complex signal processing
needed. In this paper, the author outlines these advantages
and suggests a method that uses discrete wavelet transform
to retrieve muscle activity shape and a novel double-threshold
detector to find the regions of activity. Then a robust statistical
treatment is performed following a dimensionality reduction.
As a result, a set of classification objects is retrieved that are
suitable for further use in various clustering and classification
techniques. The introduced method was tested in the Movement
Physiology Laboratory of I. P. Pavlov Institute of Physiology,
Russian Academy of Sciences and proved its applicability on
real electromyography data.

I. INTRODUCTION

Gait phase can be used as an integral time characteristic
of complex body and limb movements during the walk.
Therefore, in medicine gait phase information can be used
to control exoskeletons [1]-[4] or provide stimuli for spinal
cord or muscles so as to restore patient’s motor functions [3],
[5]-[7]. Nowadays, there are various techniques for gait phase
recognition that differ mainly in the data source they are based
on. This paper addresses the use of electromyography (EMG)
signals for this purpose in the context of developing a gait
phase recognition software.

The author suggests a method that uses discrete wavelet
transform to retrieve muscle activity shape and a novel double-
threshold detector tolerable to amplitude hopping to find the
regions of activity. Then a robust statistical treatment based
on interquartile range calculation is performed following a
dimensionality reduction. This results in a set of classification
objects that are suitable for further use in various clustering
and classification techniques. In his bachelor thesis [8], the
author used end-to-end approach which included fuzzy C-
means clustering and classification using adaptive neuro-fuzzy
inference system (ANFIS). Although fuzzy techniques are a
reasonable choice for EMG signals since their nonstationary
nature, the method suggested in this paper does not set any
limitations that would impede other classification techniques
that are typically used for EMG-related tasks (support vector
machines (SVM), linear discriminant analysis (LDA), artificial
neural networks (ANN) etc) [9], [10].

A. EMG as Data Source for Gait Phase Recognition

The process of gait phase recognition is built around sensors
that are used to retrieve the data during walk. According to
the overview [11] by Muro-de-la-Herran et al. sensors for gait
analysis can be divided into wearable and non-wearable groups
of devices. The latter “require the use of controlled research
facilities where the sensors are located and capture data on the
gait while the subject walks on a clearly marked walkway”
[11]. In contrast, wearable sensors make it possible to capture
gait information during the person’s everyday activities. Thus
the systems that are based on wearable sensors can be used
outside the laboratory which is the crucial advantage of the
wearable approach.

When capturing the data during walk, different physical
quantities can be measured. Based on such quantities one can
divide wearable sensors into lots of categories: accelerometers,
gyroscopic sensors, magnetometers, force sensors, extensome-
ters, goniometers, EMG sensors etc. [1], [11].

This paper addresses the use of electromyography to retrieve
the information about gait phase. The benefits provided by this
approach include the following:

« the least response time to the start of muscle activity [12]
since the electrical activity is measured by EMG sen-
sors directly whereas other sensors measure the physical
quantities that change as a consequence of movements
caused by that activity (according to Wentik et al. the
use of EMG allows to predict movements “up to 138ms
in advance in comparison to inertial sensors”);

o the ability to detect movement intention [13], [14] as
electrical activity in muscles exists even if its power is
insufficient to initiate the movement (e.g. as a result of
nervous connection injury);

« the possibility to use EMG sensors for amputees because,
in most cases, EMG signals of large muscles can be
measured from patient’s stump [12].

The main disadvantage of using EMG is the need for high-
quality instrumentation as EMG signals “are invariably very
small (in the order of 0.00001 to 0.005 of a Volt)” [11] and
thus are strongly influenced by noise.

Considering all the pros and cons, electromyography signals
appear to be a reliable and rich data source for gait phase
recognition systems. To prove this concept the software pack-
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Fig. 1. Gait phase representation within the limits of a gait cycle.

age was developed and tested [8] on real electromyography
data showing promising results which are discussed later in
this paper.

Some researchers have already used EMG for solving gait
phase recognition [15], [16], movement pattern classifica-
tion [17], [18] or locomotion mode identification problems [9],
[19]. Typical techniques incorporate extraction of such aggre-
gate features as mean absolute value, root mean square, num-
ber of zero crossings etc in a moving window and forming a
feature vector via combination of these features extracted from
several EMG-channels. Some authors [17] have successfully
used wavelet transform to extract numerical features related to
wavelet-coefficients. The resulted classification objects were
then used in conjunction with ANN, SVM, LDA and other
classification techniques.

EMG processing technique proposed by the author produces
essentially different classification objects. Not only a combina-
tion of some aggregate values calculated from EMG samples
are they but also an image in the feature space that describes
EMG fragments containing muscle activity by their shape in
the time-domain. The basis of this approach is stated in the
next sections of the paper.

B. Paper Structure

The paper structure is as follows:
o Gait phase representation.
o Experimental setup and raw data analysis.
o Preparation of classification objects:
1) retrieval of muscle activity shape;
2) muscle activity detection;
3) statistical analysis;
4) dimensionality reduction.
o Results and discussion.

II. MATERIALS AND METHODS
A. Gait Phase Representation

Within the limits of a gait cycle gait phase can be repre-
sented as a continuous monotonically increasing function of

TREADMILL

(b)

Fig. 2. Experimental setup and HL signal acquisition: real setup (a) and its
schematic representation (b).

time. It is important to fix the transition from stance to swing
hence the representation showed on Fig. 1 was chosen: gait
phase is measured in conventional units from O to 200 where
range 0-99 applies to the stance phase and the range of 100-
200 applies to the swing phase.

Such a representation is very useful to detect transitions
between steps and between stance and swing phases within
a step, as well as it can be easily constructed and efficiently
processed since its linear nature.

B. Experimental Setup and Raw Data Analysis

Electromyography data used in the research was acquired
in the Movement Physiology Laboratory of I. P. Pavlov
Institute of Physiology, Russian Academy of Sciences in the
course of acute experiments on healthy and decerebrate cats.
Their locomotion was aroused by epidural stimulation of the
spinal cord (dorsal surface) with the optimum frequency (5-
10 Hz) [20] for stepping pattern.
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Fig. 3. Raw experimental data example. Dashed lines mark step boundaries.
Y-axes labels are names of EMG channels. HL signal has its maxima at step
boundaries and its minima at transitions between stance and swing. This very
feature was used to construct the reference phase line.

Raw data used in the research was acquired using experi-
mental setup showed at Fig. 2. Electromyographic activity was
taken from healthy and decerebrate cats that were walking on
a treadmill during the experiment. The following muscles were
observed: lateral gastrocnemius, tibialis anterior, adductor,
gluteus, gracilis, sartorius anterior, vastus medialis, rectus
femoris and muscles of back. Bipolar electrodes used for EMG
acquisition were implanted bilaterally into the hind limbs.
Amplification of signals was performed using differential
amplifier (A-M Systems Model 1700) in the range from 30 Hz
to 10 kHz. Analog-to-digital conversion was done with the
help of an ADC by National Instruments.

Apart from EMG there also were used some other signals.
The most important one is the signal of hind-limb potentiome-
ter (HL signal) that represents the position of a foot endpoint
in the sagittal plane (Fig. 2, 3) [21]. The shape of this signal
makes it possible to unambiguously detect step boundaries
and transitions between stance and swing phases. As a result,
some reference phase line can be constructed according to the
chosen representation (Fig. 1).

Electromyographic signal consists of separate “batches”, i.e.
intervals in the EMG where muscle activity presents and the
power of EMG signal has an increase. These batches have

different shape and duration depending on a channel. However,
within a channel each batch has roughly the same duration
and position relative to the step boundaries. The shape of a
batch is defined by the temporal distribution of power during
muscle activity, its beginning and ending (according to some
threshold) times depend on the biomechanics of gait which
has a stereotyped nature.

Thus one can draw a conclusion that the beginning or ending
time of a batch (within the limits of a gait cycle) can be
determined based on the shape of that batch. The gait phase
that takes place on that time can be registered using the HL
signal. As a result, a definite gait phase dependence on the
shape of the EMG signal can be established. This idea leads
to the gait phase recognition method based on classification
of batches taken from the EMG signal.

C. Preparation of Classification Objects

According the suggested concept, muscle activity batches
should be divided into some clusters. Each cluster of batches
is supposed to correspond to some gait phase value that is
derived from EMG signal during the learning stage of a gait
phase recognition system.

Therefore, in order to be used as an inputs for a classifier,
i.e. classification objects, muscle activity batches must undergo
some preparation. Steps of this preparation are described
below.

1) Retrieval of Muscle Activity Shape: The first step of the
suggested gait phase recognition method consists in retrieval
of muscle activity shape meaning some raw EMG signal
processing that will facilitate the following steps of muscle
activity detection and dimensionality reduction.

This paper suggests using discrete wavelet transform
(DWT) [22] to expose muscle activity shape. At the beginning
of the process the EMG signal is rectified. Then the exposure
is done in the following way:

1) perform DWT to a high level of decomposition so as to
extract large-scale components of the signal;

2) discard wavelet-coefficients of the lower levels;

3) reconstruct the signal using the remaining wavelet-
coefficients.

As a result, there will be constructed a smooth curve —
an envelope — that correctly [23] describes the shape of a
batch preserving the most powerful peaks while not containing
the high-frequency spectrum region. In this research the best
results were achieved using the 3rd Coiflet (coif3) as the
mother wavelet and decomposition was performed at level 7.
The low-frequency nature of the envelope makes it possible to
perform decimation on the subsequent steps of the gait phase
recognition method.

In author’s previous work [8] the comparison was performed
between DWT and other methods that can be used to retrieve
muscle activity shape. As a result of this comparison, the
approach based on DWT was considered as the most flexible
and accurate.
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Fig. 4. Flow chart describing the algorithm (loop body) of the double-
threshold detector implementation introduced in this paper. Variables that
are used in symbols: th — the 1st threshold (defined as amplitude), Ton —
time duration when input signal must exceed th so as to batch beginning
is registered, Tof — time duration when input signal must not exceed th so
as to batch ending is registered, con and co — time counters in the states
where batch beginning and ending are pending, aon and au — arrays to store
beginning and ending times of detected muscle activity batches, these are the
output variables for a learning stage. Boolean variable D is used as an output
when gait phase recognition system is functioning in real-time.

2) Muscle Activity Detection: In order to perform clustering
and classification of the muscle activity batches it is essential
to detect these batches in the EMG signal. Constructing an
envelope on the previous step makes detection much simpler
than if a raw EMG signal was used as an input for a detector.

According to Reaz et al. one should use double-threshold
methods to detect motor-related events in EMG signals [23].
Single-threshold approach was shown to produce generally
unsatisfactory results [24]. Moreover, using a double-threshold
method one “can tune the detector according to different
optimal criteria, thus, adapting its performances to the charac-
teristics of each specific signal and application” [23]. This
tuning ability is especially useful as EMG channels have
decent differences in muscle activity shape and power.

In this research a novel implementation of a double-
threshold detector is introduced: the author suggests to define
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Fig. 5. Comparison of three detectors used on a sample of rectified EMG
signal. (a) Single-threshold detector (th = 0.1 V) has detected 636 regions of
activity. (b) Simple double-threshold detector (thy = 0.1V, thy = 0.2 V) has
detected 308 regions of activity. (¢c) Double-threshold detector with amplitude
and time thresholds (th; = 0.15 V, Ton = 1 ms, Toi = 100 ms) has detected
5 regions of muscle activity which is the correct result.

the second threshold in the time domain (instead of amplitude)
and make it use two possibly different values - one to detect
beginning of a batch, and another one to detect the ending.

The use of a time-domain threshold as described above
makes the detector much more tolerable to amplitude hopping
in the middle of a batch and hence its low probability of false
detections. A flow chart of the detecting algorithm is shown
at Fig. 4.

Fig. 5 illustrates a comparative test of three detectors
performed on a sample of raw EMG signal: a single-threshold
(with th = 0.1 V), a simple double-threshold (th; = 0.1 V,
thy = 0.2 V) and the one suggested by the author (th; =
0.15 V, Ty, = 1 ms, Ty = 100 ms). The latter has detected
all activity regions without false positives while others have
given unsatisfactory results: instead of five continuous regions
they have produced hundreds of narrow intervals. Despite
the fact that, being applied to an envelope instead of raw
EMG, the simple detectors are likely to produce acceptable
results, the advantage of the novel detector shown in the
unfavourable conditions makes it much more suitable for gait
phase recognition systems based on EMG signals.

3) Statistical Analysis: Detected batches of muscle activity
need to be adjusted to the single length (in samples). This
requirement follows from the fact that all classification objects
must be described as a feature vectors that belong to the feature
space of a fixed dimensionality. This is not required for all
classification algorithms but facilitates the application of the
typically used ones (SVM, LDA, ANN, ANFIS etc) [9], [10].

After the previous step, there is a selection of batches that
form a statistical sample that needs to be conditioned before
performing adjustment to the single length. The conditioning
implies omitting outliers that are usually incorrectly detected
batches or some artefacts in the EMG signal. These outliers,
if present in the sample, differ greatly from the majority of
batches in their length even considering natural variation in
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Fig. 6. Illustration of the IQR-based rule in comparison with three sigma rule.
The author suggests using the former to make the conditioning of batches
robust and independent of the distribution of their lengths.

the duration of step and its phases [8].

A common method of omitting outliers is estimation of the
standard deviation across the sample and using the three sigma
rule to set the acceptable parameter bounds (length of a batch).
However, the author suggests to use interquartile range (IQR)
as a robust alternative to the three sigma rule because the latter
rule is based on the assumption that the sample is distributed
normally. In contrast, using IQR makes it is possible to find
and discard outliers even in case the sample does not comply
to the normal law.

When the IQR is computed, the acceptable value bounds
are defined as:

(Q, —15IQR, Qs + 1.5 IQR), (1)

where Q; and Qg are the estimates of the 1st and the 3rd
quartiles respectively. This rule is illustrated at the Fig. 6.

After omitting the outliers, the single length of batches is
chosen as the maximum across the remaining elements in the
sample. Then the adjustment of all remaining batches to that
length is performed.

D. Dimensionality Reduction

The final step in the process of preparation of classification
objects is their decimation in order to reduce dimensionality of
the feature space. The decimation is possible because batches
are represented by the envelope that does not contain high-
frequency spectrum region.

Raw data used in this research was captured with sampling
frequency of 1 kHz and the batch length was 500 samples
on average. An envelope constructed after DWT in II-C1
had only low-frequency components of 10-20 Hz so the
decimation factor was chosen to be 20. As a result, a feature
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Fig. 7. Example of clusters (in columns) that were found in the resulting set
of batches produced by the suggested EMG processing method. In the top
row there are batches represented by the fragments of envelope constructed
using DWT, thick black curve stands for the average muscle activity shape
for each cluster. In the bottom row fragments of gait phase line are presented
that took place at the same time with the batches above, the rightmost phase
value is assigned to each cluster and can used for training a classifier.

space dimensionality was reduced to the value of 25 that is
acceptable for further use in clustering and classification.

III. RESULTS AND DISCUSSION

Gait phase recognition systems which are based on elec-
tromyography require complex processing of EMG signals.
This paper has covered steps of such processing that result
in a set of classification objects derived from the EMG and
suitable for the following use in clustering and classification.

Fig. 7 shows an example of clusters that were found in
the EMG of the gluteus muscle. One can see the shapes of
this muscle activity fragments (batches) that were retrieved
via the method suggested in II-C1 before decimation. As a
consequence of natural nonstationarity, these batches keep
substantial variations in shape even inside a cluster so there is
a need for wise decisions on classification methods to use [25].

In [8] a gait phase recognition software based on EMG
was developed utilizing adaptive neuro-fuzzy inference system
(ANFIS) as classifier. The results of classification, matching
phase value and its derivative, were used to construct an
approximate phase line in accordance with an ad-hoc algo-
rithm. Fig. 8 shows a comparison between real (blue) and
approximate (red) phase lines on a time interval spanning three
consecutive steps. Data from 6 EMG-channels (coinciding
with the muscles listed in II-B) and a sample consisting of
35 locomotor cycles were used there.

The accuracy of the developed system was estimated using
the normalized integral criterion (2) and a set of qualitative
measures (3)—(5) of time misalignment:

SN | (Prear(i) = Papprox(i)”
YL, P2y (i)

where B, — samples of the real phase line, Pypprox — samples
of the approximate phase line, N — total number of samples;

E =

; @)
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Fig. 8. Gait phase line construction in the system based on the EMG processing method suggested in this paper. Circles point out gait phase values calculated
by the classifier and arrows represent values of phase derivatives at those points. These values were used to construct the approximate phase line (red) using
an ad-hoc algorithm. The blue line representing the real gait phase is quite close to the approximate proving the functionality of the system and applicability

of the suggested method.

TABLE I
TIME MISALIGNMENT ESTIMATES ACHIEVED USING THE SUGGESTED
EMG PROCESSING METHOD

Absolute estimates Relative estimates

Estimate Value Estimate Value, %
) 13+ 14 ms 5/a 1.3+1.4
Oabs 42 + 8 ms Oabs/a 4.2+0.8
(Omax) 60 £20ms  (dmax)/a 6.0+ 2.0
(bmin)  —36+11ms  {(Spin)/a  —3.6+1.1
Omax 210 ms Omax/a 21.0£0.8
Omin —132 ms Omin/a —13.2+£0.5
€ 11.6

1 & 1 «

52%2@ 5abs=£2;\5i| 3)
i= i=

(Omax) = % Z(sym
i=1

max
Omax = mlax 0;

1 - min
<5min> - H ; 52’ (4)
Omin = min 5", (5)

where §;, 5;‘““ and 6" equal to mean, minimum and maxi-
mum time misalignment within a gait cycle respectively; n is
the total number of steps.

The values of (3)—(5) are also of interest relatively to the
mean duration of a gait cycle (for the examined experimental
subject) which was equal to a = 1000 £ 40 ms (with the
confidence probability of ¢ = 0.90). The results obtained by
the author in [8] are presented in Table I.

One can see that all mean estimates by their absolute value
are not greater than 60 ms which is 4-8% of the mean gait
cycle duration. The integral criterion value that is equal to
11.6% also proves good approximation of the gait phase.

The above-mentioned results were achieved to a consid-
erable degree with the help of the EMG processing method

suggested in this paper. The constructed classification objects
enabled the system to train on and analyse real EMG data
which resulted in successful gait phase recognition [8].

Since assessment of the proposed technique with respect to
the state of the art can be of interest, the author has made a
comparison between the results achieved in his own work [8]
and that presented in four other papers [9], [15]-[17] consider-
ing mean classification error as the quality estimate that can be
compared with the normalized integral criterion (2). In general,
one cannot directly compare results achieved by different
researchers since they use dissimilar gait phase representations
and sometimes solve problems which are closely related to gait
phase recognition but are not exactly the same. However, use
of classification makes it possible to compare EMG processing
techniques indirectly via comparison of mean classification
errors. The results of the comparison are presented in Table II.

In sum, the suggested method gives accuracy at the level
of other state-of-the-art techniques but it has some crucial
advantages over them, viz. automatic moving window size
choice (as a result of statistical analysis), flexible and reliable
detector, robustness to artefacts in EMG and potential to utilize
classification techniques used in image recognition since the
structure of feature vectors produced by the suggested method.

IV. CONCLUSION

As a result of the research covered by this paper, an EMG
signal processing method was developed that facilitates the use
of electromyography for gait phase recognition systems. The
suggested method makes it possible to retrieve classification
objects from raw EMG data and can be used during learning
stage of the gait phase recognition system as well as the stage
of its real-time functioning.
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TABLE 11
COMPARISON WITH OTHER GAIT RECOGNITION SYSTEMS

Authors Features extracted from EMG Classification method used Number of used  Mean classifi-
EMG channels cation error, %

Huang et al. MAV, ZC, WL, SSC, RMS, AR and other  Linear discriminant analysis 6* 14.0

Li et al. MAV, Variance Support vector machine 4 11.2

Meng et al. MAYV, WwLT Hidden Markov model 8 8.5

Yu et al. DWT-based aggregates Artificial neural network 9 10.0

G. Zhemelev  DWT-based activity shape Adaptive neuro-fuzzy inference system 6 e=11.6

The abbreviations are defined as follows: MAV — mean absolute value, ZC — zero crossings, WL — waveform length, SSC — slope sign
changes, RMS - root mean square, AR — autoregression coefficients, DWT — discrete wavelet transform. * In the research of Huang et al.
experiments with 6, 8, 10 and 16 EMG channels were conducted. Here the result for 6 channels is shown to match the number used by the
author. T Meng et al. studied different combinations of features, here presented the one that led to the best results.
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