
A Simple Abstract Interpretation for Petri Net
Queries

Karsten Wolf

Universität Rostock, Institut für Informatik
karsten.wolf@uni-rostock.de

Abstract. We propose a simple but effective method for the detection
of duplicates in state predicates for Petri nets. We map sub-formulas
to integer numbers using a mapping abstr. The assignment guaran-
tees that abstr(φ1) = abstr(φ2) implies equivalence of φ1 and φ2 while
abstr(φ1) = − abstr(φ2) implies equivalence of φ1 and ¬φ2. The obtained
knowledge can be used for reducing the size of a formula that is obtained
by expensive constructions such as the transformation into disjunctive
normal form. The method is implemented in our tool LoLA 2.0.

1 Introduction

Formulas in temporal logic [4], as used in model checking [1], are based on state
predicates. For Petri nets, state properties refer to places (e.g. “the marking on
place p is less than 2”), transitions (e.g. “transition t is fireable”), or the whole
marking (e.g. “marking m is a deadlock”). They can be aggregated using Boolean
operations and form the basis of temporal logics such as CTL or LTL.

Several tasks in model checking and other verification approaches require
an involved rewriting process on state predicates. For example, one can use
the state equation of Petri nets as a tool for verifying reachability [6]. This
approach, however, works only for convex formulas (i.e. conjunctions of inequa-
tions and equations). For applying the method to a general formula, it needs
to be rewritten into disjunctive normal form. Then every convex sub-formula
can be checked separately using the state equation approach. Rewriting may
lead to a replication of sub-formulas. We propose a simple but quite effective
abstract interpretation that supports an easy detection of a large number of
duplicates during state property transformation. This way, resulting state pred-
icates become smaller and evaluating them during state space verification takes
less time. We have implemented the method in our tool LoLA 2.0 [5, 7] available
at service-technology.org.

2 Petri nets

We consider place/transition nets. A place/transition net N consists of finite and
disjoint sets P (places) and T (transitions), an arc relation F ⊆ (P×T )∪(T×P ),
a weight function W : F → N \ {0}, and an initial marking m0. A marking m is



a mapping m : P → N. Transition t is enabled in m iff, for all p ∈ P , [p, t] ∈ F
implies m(p) ≥W ([p, t]).

We skip the definition of the behaviour of Petri nets since this is not relevant
for this paper.

3 State Predicates

A state predicate φ is a logical formula that represents a property of markings.
Applied to a marking, it yields true or false. State predicates are used for the
specification of verification queries, typically as part of a formula in some tempo-
ral logic. Most verification tools for Petri nets support the specification of state
predicates in one or the other syntax. Most competitions in the model checking
contest (MCC) [3] involve state predicates. Our considerations are based on the
following syntax and semantics.

Definition 1 (State predicate). A state predicate can have any of the follow-
ing shapes (ki are integer numbers, pi are places, ti transitions, ∼∈ {<,>,≤,≥
,=, 6=}, and φi state predicates):

– TRUE, FALSE: true for all markings (no marking, respectively);
– k1p1+ · · ·+knpn ∼ k0: true for marking m iff k1m(p1)+ · · ·+knm(pn) ∼ k0;
– FIREABLE(ti): true for m iff ti is enabled in m;
– DEADLOCK: true for m iff no transition is enabled in m;
– INITIAL: true for m iff m = m0;
– φ1∧· · ·∧φn, φ1∨· · ·∨φn, ¬φ1, φ1 =⇒ φ2, φ1 ⇐⇒ φ2: evaluated according

to the usual interpretation of Boolean logic.

State predicates can be represented as a tree, with the Boolean operators as
inner nodes and the remaining predicates (called atomic) as leaves. We assume
that a conjunction φ1 ∧ · · · ∧ φn is represented as a single node with n children
for the sub-formulas φi. The same applies to disjunctions.

4 Sources of duplicates

There are several transformations that involve replication of subformulas:
Rewriting Boolean operators. Even if all Boolean operators are permitted in

specifications, internal representations are usually restricted to conjunction and
disjunction. That is, φ1 ⇐⇒ φ2 may be replaced with (φ1 ∧ φ2) ∨ (¬φ1 ∧ ¬φ2)
and causes a replication of sub-formulas φ1 and φ2. Similar rewriting rules apply
to formulas in temporal logic, causing replication of involved state predicates.

Rewriting atomic predicates. Tools typically try to internally use as few as
possible atomic state predicates. So FIREABLE(t) can be replaced by

∧
p:[p,t]∈F p

≥ W ([p, t]). INITIAL can be replaced with
∧

p∈P p = m0(p). DEADLOCK is
equivalent to

∧
t∈T ¬ FIREABLE(t). The overwhelming majority of Petri net

models is ordinary (all arc weights are equal to one) and a considerable amount

164 PNSE’18 – Petri Nets and Software Engineering



of models is safe (at most one token on any place in all reachable markings).
For example, the “known models” of the MCC in 2017 comprised of 65 ordinary
nets versus 12 non-ordinary nets. 39 nets are safe, compared to 38 non-safe net
models.

predicates like p > 0 and p = 1 may occur several times (e.g. once for every
transition connected to p).

Frequently used predicates.Many specifications frequently use expressions like
“place p is marked (p > 0)” or “p is unmarked (p = 0)”. Hence, these predicates
may occur more than once in a predicate.

Transformation into disjunctive normal form. Verification techniques that
are based on linear algebra, for instance the exploitation of the state equation
[6], are restricted to convex properties (i.e. conjunctions of inequations). Hence,
FIREABILITY and other predicates must be unfolded and the resulting property
must be transformed into a disjunction of conjunctions of inequations. Then, the
individual conjunctions can be fed to the state equation separately. Generation
of a disjunctive normal form involves the application of the law of distributivity:
(φ1 ∨φ2 ∨φ3)∧ (φ4 ∨φ5) is to be rewritten to (φ1 ∧φ4)∨ (φ1 ∧φ5)∨ (φ2 ∧φ4)∨
(φ2 ∧ φ5) ∨ (φ3 ∧ φ4) ∨ (φ3 ∧ φ5).

Translation from other formalisms. Place/transition nets representing inter-
esting systems, together with their verification queries, are often generated by
translation from other specification languages. Translations are based on pat-
terns and often induce duplicates of state predicates or sub-formulas. Consider,
for instance, the translation from a place p of a Coloured Petri Net with domain
{1, 2, 3} into three places p1, p2, and p3 of a place/transition net. Assuming that
addition is not supported, formula p = (three tokens on p) could be translated
into

(p1 = 0∧p2 = 0∧p3 = 3)∨(p1 = 0∧p2 = 1∧p3 = 2)∨· · ·∨(p1 = 3∧p2 = 0∧p3 = 0)

This formula contains a lot of replications of elementary comparisons.
Consequently, a verification tool may expect the presence of duplicates in

the state predicates it is given for verification. It generates additional duplicates
in its internal transformations. Since place/transition nets are a formalism with
low-level modelling primitives (transitions actually represent simple vector ad-
dition), automatically generated predicates may involve huge conjunctions and
disjunctions. Generation of disjunctive normal form may easily explode. Detec-
tion of duplicates helps in reducing the size of resulting formulas thus speeding
up subsequent use of the state predicates.

5 Abstract Interpretation

The idea of abstract interpretation [2] is to map certain entities into another
(abstract) domain where some considerations can be verified more easily. Ab-
straction must be faithful (every result derived in the abstract domain must be
correct in the original domain) but not necessarily precise (there may be results
that hold in the original domain but cannot be derived in the abstract domain).

Wolf: A Simple Abstract Interpretation for Petri Net Queries 165



Loss of precision is the price to be paid for easier approaches in the abstract
domain.

We propose to use the set Z of integer numbers as abstract domain. We aim
at assigning a number abstr(φ) to every state predicate φ such that the following
results may be reliably derived:

– if abstr(φ1) = abstr(φ2) then φ1 is semantically equivalent to φ2;
– if abstr(φ1) = − abstr(φ2) then φ1 is semantically equivalent to ¬φ2;
– if abstr(φ1) = 1 then φ1 is a tautology (true for every marking);
– if abstr(φ1) = −1 then φ1 is a contradiction (false for every marking);

We do not attempt to meet the converse of any of these statements. That is,
there may be semantically equivalent formulas with different values for their
abstraction.

We explicitly store abstr(φ) for every state predicate φ and every of its sub-
formulas. Hence, once computed, abstr(φ) can be derived from φ in constant
time.

6 Abstraction of Atomic State Predicates

In this section, we discuss the assignment of abstract values to atomic state
predicates (all but the Boolean combinations). The following assignment reflects
the frequent occurrence of certain propositions. Without loss of generality, we
assume that P = {p1, . . . , pm} and T = {t1, . . . , tn}.

– abstr(TRUE) := 1;
– abstr(FALSE) := −1;
– abstr(DEADLOCK) := 2;
– abstr(INITIAL) := 3;
– for all pi ∈ P , abstr(pi > 0) := 3 + i and abstr(pi = 0) := −3− i;
– for all tj ∈ T , abstr(FIREABLE(tj)) := m+ 3 + j.

For the remaining atomic propositions, we assign consecutive numbers. To
this end, we introduce a “function” new() that returns, whenever called, a fresh
(previously unused) number greater than 3 + m + n. That is, if any compari-
son, except the ones just mentioned, is used twice in a state predicate, the two
incarnations get different values (and we do not detect their equality).

– abstr(k1p1 + · · ·+ knpn ∼ k0) := new();

For soundness, it is important that indeed every call to new() returns a dis-
tinct value. In a threaded context, this can be achieved without synchronisation:
let every call to new() in thread k of an n-threaded program return only values
that are congruent to k modulo n. Obviously, the proposed setting meets the
requirements mentioned in Section 5.

166 PNSE’18 – Petri Nets and Software Engineering



7 Boolean combinations

For simplicity, we consider only conjunction, disjunction, and negation. We basi-
cally assume that equivalence and implication leave the scene early in the game
using well-known rewrite rules. Negation can be handled quite easily. abstr(¬φ)
can be naturally set to − abstr(φ), so the value can be inherited from the sub-
formula.

Next we consider a conjunction with k sub-formulas. We proceed inductively,
starting with a conjunction that has 0 sub-formulas. During this process, we
combine the definition of the abstract value of the conjunction with the detec-
tion of duplicates among the subformulas. An empty conjunction is treated as
TRUE, so it receives abstract value 1. Assume that we want to add φi to a given
conjunction C = φ1 ∧ · · · ∧ φi−1. We distinguish the following cases:

– abstr(C) = 1: Then abstr(C∧φi) := abstr(φi), and φ1, . . . , φi−1 are removed
from the formula;

– abstr(C) = −1: Then abstr(C ∧ φi) := −1, and φi is not added to the list of
subformulas of C;

– abstr(φi) = 1: Then abstr(C ∧ φi) := abstr(C), and φi is not added to the
list of subformulas of C;

– abstr(φi) = −1: Then abstr(C ∧ φi) := −1, and φ1, . . . , φi−1 are removed
from the formula;

– abstr(C) = abstr(φi): Then abstr(C ∧ φi) := abstr(C), and φi is not added
to the list of subformulas of C;

– abstr(C) = − abstr(φi): Then abstr(C ∧ φi) := −1;
– There is a j < i with abstr(φj) = abstr(φi). Then abstr(C ∧φi) := abstr(C),

and φi is not added to the list of subformulas of C;
– There is a j < i with abstr(φj) = − abstr(φi). Then abstr(C ∧ φi) := −1;
– Otherwise, abstr(C ∧ φi) := new().

The assignment reflects simple laws of Boolean logic: φ∧φ is φ and φ∧¬φ is false.
Hence, the assignment reflects the specification in Section 5. The approach relies
on the assumption that formulas are constructed only by adding sub-formulas.
It does not work for a process that involves the removal of a sub-formula.

For a disjunction, the assignment can be naturally derived from the consid-
erations for conjunction and negation: φ1 ∨ φ2 is equivalent to ¬(¬φ1 ∧¬φ2). In
particular, the empty disjunction should get value -1.

Using the above definition, the abstract value may depend on the order in
which subformulas appear in a conjunction or disjunction. Assuming abstr(φ1) =
10, abstr(φ2) = −10, and abstr(φ3) = 25, then abstr(φ1 ∧ φ2 ∧ φ3) = −1 while
abstr(φ1 ∧ φ3 ∧ φ2) would be the result of another call to new(), e.g. 1001.
Both values are correct but naturally −1 is the preferable value. Hence, a clever
implementation would always assign−1 when values k and−k appear as abstract
values in the list of subformulas of a conjunction. Disjunctions can be handled
similarly.

The described process can be used for updating abstract values while compos-
ing a formula from its constituents. This is the case for the original construction

Wolf: A Simple Abstract Interpretation for Petri Net Queries 167



of the predicate, but also for the construction of a disjunctive normal form. There
are a few constructions where we assign the abstract value differently. When we
copy a predicate (for instance when rewriting an equivalence), the copy gets
the same abstract value as the original predicate. When we transform a FIRE-
ABILITY, DEADLOCK, or INITIAL predicate into a Boolean combination of
inequations, the resulting predicate inherits the abstract value of the original
formula as well. When we turn a predicate into its negation (e.g. when applying
de Morgan’s rule for eliminating negation symbols), the resulting predicate gets
the inverse of the original value.

8 Examples

Consider the formula p = 1 ⇐⇒ q = 0 where p and q are assumed to be places.
Internally, we support only ≤, so we would rewrite the formula to (p ≤ 1 ∧ 1 ≤
p) ⇐⇒ q ≤ 0 (assume that we detect q ≥ 0 to be a tautology since q cannot
get a negative number of tokens). Further, we normalise the formula such that
only ∧ and ∨ is used. We apply the rewrite rule that replaces A ⇐⇒ B with
(A ∨ ¬B) ∧ (¬A ∨B). We obtain:

((p ≤ 1 ∧ 1 ≤ p) ∨ 1 ≤ q) ∧ (p ≤ 0 ∨ 2 ≤ p ∨ q ≤ 0)

This is the formula that we normally use for state space verification. Since
the rewrite rule introduced copies of A and B, the two copies (and their sub-
formulas) get the same value which is than inversed through negation in one
of the two copies. This way, we preserve some knowledge about the origin of
sub-formulas.

If, subsequently, we want to include the state equation (i.e. linear program-
ming) approach, we transform the formula into a disjunctive normal form since
linear program can handle only conjunctions of inequations. We proceed by first
transforming the left part, resulting in

(p ≤ 1 ∨ 1 ≤ q) ∧ (1 ≤ p ∨ 1 ≤ q) ∧ (p ≤ 0 ∨ 2 ≤ p ∨ q ≤ 0)

Then we apply the law of distributivity to the whole formula. Doing that in the
brute-force way, would result in in a disjunction of 12 subformulas:

(p ≤ 1 ∧ 1 ≤ p ∧ p ≤ 0)∨
(p ≤ 1 ∧ 1 ≤ p ∧ 2 ≤ p)∨
(p ≤ 1 ∧ 1 ≤ p ∧ q ≤ 0)∨
(p ≤ 1 ∧ 1 ≤ q ∧ p ≤ 0)∨
(p ≤ 1 ∧ 1 ≤ q ∧ 2 ≤ p)∨
(p ≤ 1 ∧ 1 ≤ q ∧ q ≤ 0)∨
(1 ≤ q ∧ 1 ≤ p ∧ p ≤ 0)∨
(1 ≤ q ∧ 1 ≤ p ∧ 2 ≤ p)∨
(1 ≤ q ∧ 1 ≤ p ∧ q ≤ 0)∨
(1 ≤ q ∧ 1 ≤ q ∧ p ≤ 0)∨
(1 ≤ q ∧ 1 ≤ q ∧ 2 ≤ p)∨
(1 ≤ q ∧ 1 ≤ q ∧ q ≤ 0)

168 PNSE’18 – Petri Nets and Software Engineering



Our abstraction, however, recognises that p ≤ 0 is the negation of 1 ≤ p, p ≤ 1 is
the negation of 2 ≤ p, and q ≤ 0 is the negation of 1 ≤ q since the abstraction of
one the the formulas is −1 times the abstraction of the other one. The detection
does not depend on the simplicity of these formulas since the abstraction takes
care of copying and negation in the process of transforming the original formula.
As soon as a formula and its negation appear in a conjunction, the conjunction
is replaced by false and thus disregarded in the resulting formula. This way, first,
second, 5th, 6th, 7th, 9th, and 12th subformulas Furthermore it recognises the
duplicate appearance of 1 ≤ q in the 10th and 11th sub-formulas, so we would
produce the normal form

(p ≤ 1 ∧ 1 ≤ p ∧ q ≤ 0)∨
(p ≤ 1 ∧ 1 ≤ q ∧ p ≤ 0)∨
(1 ≤ q ∧ 1 ≤ p ∧ 2 ≤ p)∨
(1 ≤ q ∧ p ≤ 0)∨
(1 ≤ q ∧ 2 ≤ p)

Our approach reduced a formula with 36 literals to a formula with 13 literals.
Instead of 12 conjunctions, only 5 conjunctions need to be shipped to the linear
programming tool. One might argue that formula would not have exploded in
the first place if the equivalence A ⇐⇒ B would have been rewritten by
(A ∧ B) ∨ (¬A ∧ ¬B). Using that rule, however, the negated formula would
explode instead, so the choice of the rule for rewriting equivalence does not solve
the problem of duplication.

9 Experience and Conclusion

We implemented the abstract interpretation in our tool LoLA 2 [5, 7]. Our main
focus was to reduce the size of disjunctive normal form generation which is a
pre-requisite for applying the state equation based method of [6]. The abstract
interpretation yields a sufficient condition that sub-formulas can be merged. We
jointly apply a hash-based technique that yields a sufficient condition for sub-
formulas to be at least syntactically different. Whenever none of the two criteria
applies, we investigate the sub-formulas recursively to look for additional dupli-
cates. The abstract interpretation costs virtually no time, so we are convinced
that it establishes a nice tool for handling state predicates in verification. Using
special codes for frequently occurring atomic predicates, the method is in fact
Petri net specific.

References

1. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, 2001.

2. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511–547, 1992.

Wolf: A Simple Abstract Interpretation for Petri Net Queries 169



3. F. Kordon et al. Homepage of the Model Checking Contest. http://mcc.lip6.fr/,
June 2017.

4. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent sys-
tems - specification. Springer, 1992.

5. K. Schmidt. Lola: A low level analyser. In ICATPN, LNCS 1825, pages 465–474,
2000.

6. H. Wimmel and K. Wolf. Applying CEGAR to the Petri net state equation. Logical
Methods in Computer Science, 8(3), 2012.

7. K. Wolf. Petri net model checking with lola 2. In Accepted for: Petri Nets 2018,
pages 465–474, 2000.

170 PNSE’18 – Petri Nets and Software Engineering


