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Eye Gaze Feature Classification for Predicting Levels of 
Learning

Abstract 
E-Learning courses reach online to millions worldwide. Amidst 
the geo-flexibility of registering students, the main challenges are 
instructor feedback and student retention. Ability to predict 
difficult content in real time enables eLearning systems to adapt 
content to students' needs dynamically. Recently, we examined 
eye responses as an indicator of levels of learning and introduced 
a non-parametric, non-probabilistic and statistical feature 
weighted linguistics classifier (FWLC) capable of predicting 
difficult words (terms) and concepts. FWLC achieved 85% 
accuracy for predicting levels of learning of big words using eye 
responses. In this paper, we analyze the performance of FWLC 
with five machine learning classifiers. FWLC has a higher true 
positive rate (TPR) and a lower ratio of FNR/FPR (the novel is a 
positive class). FWLC achieves a TPR gain of 43% over the best 
performing machine learning classifier. Prediction accuracy of 
FWLC for big words is lower by 6.6% than the best performing 
machine learning classifier. However, this accuracy tradeoff is 
worth the higher TPR of FWLC as the objective is to predict novel 
words (positive class) more accurately so that content can adapt 
to student's need. 

CCS Concepts 
• Human-centered computing → Human computer 
interaction (HCI) → HCI theory, concepts and models; 
Applied computing → Education → E-learning 

KEYWORDS 
Predicting levels of learning; eye and pupil response analysis; e-
learning, machine learning classification. 

1 Introduction 
E-Learning has transformed the way we deliver education to 

students across the globe. E-learning classrooms have a diverse 
group of students from various demographics. Self-paced learning 
is a popular eLearning model, and its primary challenge is to 
address to students' concern in real time. Lack of immediate 
teacher feedback to a student’s learning concern causes delay and 
interruptions in learning. E-Learning needs to be adaptive to the 

student's learning level. Content adaptation requires prediction of 
difficult content (words, visual elements or concepts causing 
learning difficulty). Cognition is an individual characteristic, 
dependent on readers' skill such as logical reasoning, quantitative 
analysis, and verbal skills. These skills vary because of 
demographics, culture, experience, education and biological 
factors such as cognition, working memory capacity, 
psychomotor skills, ocular deficiency, oculomotor dysfunctions, 
and reading disorders [1-5]. Ability to predict students' learning 
difficulty (difficult term/concept) in real time enables e-learning 
systems to dynamically adapt content, provide online 
supplementary material, and classify learners into various 
learning groups. 
Recent developments have made it possible to use eye trackers to 
track eye movements to assess emotional and cognitive state 
during learning, scene perception, program debugging, and 
building dynamic online teams for projects. [4], [6-12]. Eye 
trackers show the exact visual element (text, a graphic on display) 
that is causing the response. Eyes receive visual inputs and send 
it to the visual cortex for creating a perception. To predict learning 
difficulty, we do a spatio-temporal analysis of eye responses and 
stimulus (visual element: term/concept) that is causing the 
response. We hypothesize that variations in eye responses to the 
same concept over time are indicative of learning level. 
Prior research had analyzed various eye response signals such as 
fixations and saccades for learning assessment [6], [13-17]. 
Fixation is a virtual point in the visual field, where we fixate to 
read or look at a scene and saccade is the movement of eyes from 
current fixation to the next one in the visual field. These prior 
research studies analyzed eye response signals to generalize the 
emotional, cognitive or affective state of learners. However, eye 
response to a stimulus is an individual characteristic, driven by 
individuals' cognition and perception. There is no known work, 
where eye responses of individuals were extracted as features and 
used by machine learning classifiers for predicting levels of 
learning 
In our previous work, we applied the theories of 
psycholinguistics, information context processing, and human 
visual system to develop 12 eye movement features [1]. All 
features may not contribute equally to indicate learning level 
because eye response to reading is an individual characteristic. 
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Therefore, we had proposed a feature weighted linguistics 
classifier (FWLC) that uses a feature selection method (either 
ReliefF, Information Gain or Ensemble) to assign weight to each 
eye response feature based on its relevance [1]. Three FWLC 
variants: FWLC-ReliefF, FWLC-InfoGain, and FWLC-Ensemble 
used their corresponding set of weighted features for predicting 
learning level for a word/concept. FWLC-ReliefF achieved 85% 
prediction accuracy for big words, which was 24% greater than 
baseline, a majority voting classifier, which assigns equal weight 
to features for making a prediction decision [1]. In this paper, we 
analyze the prediction performance of three FWLC variants with 
five popular classifiers Naïve Bayes, SVM, KNN, decision trees 
(C4.5), and random forest. FWLC does show 6.6% lower accuracy 
than the best performing machine learning classifier however the 
tradeoff is worth the high true positive rate and low false negative 
rate shown by all three FWLC variants.  It means that FWLC 
predicts novel words (novel is a positive class) more accurately, 
which is more desirable for adapting content to a students' level. 
We have organized the paper into three sections. Section two 
briefly provides the list of eye response features used for this 
study and the overview of our FWLC classifier. A detailed 
description of FWLC can be found in [1]. We describe the 
experimental setup in section three, discuss results in section four 
and conclusion in section five. 

2 Eye Movement Features and Overview of 
FWLC Classifier 

2.1 Eye Response Features 
Eye response to visual content is driven by cognition and 

perception of individuals'. Therefore, eye response measures 
derived from a large population are not suitable for predicting 
learning difficulty for individuals [1]. Eye response to reading 
depends on individual characteristics. For example, dyslexic or 
non-native readers read a word at a syllable level, and this reading 
behavior causes more fixations on a word and shorter saccades. 
Whereas, skilled readers learn a word at morpheme/word level 
and as a result, have fewer fixations and longer saccades [3]. 
Dyslexia readers show more top-down processing delay of visual 
signals and are more prone to delayed sentence comprehension 
(slow learners) [2]. 
Hence reading behavior will directly influence the fixations and 
saccades on a word. Fixation is a point in the visual field, where 
the reader fixates for a short duration to read the word/visual 
content. The word read during a fixation triggers bottom-up 
processing of the visual signal. The signal received by 
fovea/parafovea is sent to visual cortex for creating the 
perception. On receiving visual signals, the upcoming input is 
anticipated even before receiving the next bottom-up visual 
information. The result of anticipation controls the saccadic 
movement of eyes to the next point (saccade) in the visual field 
(This process is often called as the top-down processing of visual 
signal) [18], [1-2]. Readers make longer saccades when 
anticipation matches the upcoming visual information and gaze 
moves to the next word following the parafoveal word otherwise 

gaze moves to the parafoveal word or remaining part of the foveal 
word (shorter saccade). Hence, the number of fixations, fixation 
duration, and saccade length on a term/concept is reader specific. 
Familiar term/concept attracts no fixations or fewer fixations of 
shorter duration in comparison to novel terms [6] [19]. Word 
familiarity also varies individually. More fixations of longer 
duration on a term/concept may represent learning difficulty [20], 
[4]. Even pupil response varies as per content familiarity and 
complexity. On reading a novel term/concept, perceiving a 
complex scene, or processing complex tasks, the pupil may dilate 
due to higher cognitive load [15], [21-22], [11]. However, a 
term/concept which a reader perceives as novel during first pass 
(first time reading) of the term may not always remain novel after 
reading its information context; as readers may derive its meaning 
by looking at the context [23], [1]. The reading of information 
context causes regressions (relook or rereading of the content). 
Regression demonstrates various reading patterns. In our 
previous work, we had derived five reading patterns, and three 
eye movement features related to reanalysis (regressions) [1]. 
Hence, we modeled fixation, fixation duration, saccade and 
regression as eye response features. 
By theories of psycholinguistics, contextual information 
processing, anticipatory behavior analysis, recurrence fixation 
analysis and pupillary response, we had derived 12 eye response 
features that indicate learning level [1]. We divided the 12 features 
into two groups: (i) six first pass features and (ii) six reanalysis 
features. We computed first pass features from eye responses 
collected during first pass reading of a word and the reanalysis 
features from eye responses recorded during rereading or 
revisiting a word during subsequent passes. We list the first pass 
eye response features in Table 1 and reanalysis features in Table 
2. Nine features are quantitative, and three are categorical with 
two categories: observed/not observed. The eye response to a term 
is captured in a term-response map using its' associated 12 eye 
response features. 
 

Table 1: First pass eye response features [1] 
Feature Name Feature 

Type 
Description 

Single fixation 
duration (SFD) 

Quantitative It represents the total amount 
of time spent during a single 
fixation on a target word. 

First fixation 
duration (FFD) 

Quantitative Amount of time spent by a 
reader on the first fixation; In 
this case, total no of fixations 
on a word is higher than one. 

Gaze duration 
(GD) 

Quantitative Sum of the duration of all 
consecutive fixations on a 
target word from the first 
fixation until the first time 
that reader moves the gaze 
away from the word. 

Mean fixation 
duration (AFD) 

Quantitative Mean of the total duration of 
all first pass fixations on a 
target word. 

file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib3
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib2
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib18
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib2
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib6
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib19
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib20
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib4
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib15
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib21
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib22
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib11
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib23
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23tb1
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23tb2
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23tb2
file:///C:/Users/CSE42/Documents/umap%20workshops/PALE-revised%20paper%20final%20package/sparikh_new.docx%23bib1


Eye Gaze Feature Classification for Predicting Levels of Learning  
 

 3 

Fixation count 
(FC) 

Quantitative Total no of fixations on a 
word during first pass reading 
of the word. 

Mean pupil 
diameter of left 
eye/right eye 

(FPPupilDiaLeft/ 
FPPupilDiaRight) 

Quantitative Mean of all pupil diameters of 
the left/right eye, which is 
measured during the entire 
duration of all fixations on a 
specific term recorded during 
first pass reading of a term. 

Source: Parikh et al. [1] 
 

Table 2: Reanalysis eye response features [1] 
Feature 
Name 

Feature Type Description 

Regressions 
(RC) 

Quantitative Measured as a number of look 
backs to the target word after 
the reader's initial encounter 
with the word or context has 
ended. 

Second pass 
time (SPT) 

Quantitative Amount of total fixation 
time spent on the target 
word after leaving the word 
and later revisiting it second 
time before navigating to 
next term/concept 

Look back 
Fine Detail 

(LFD) 

Categorical. 
Two 

categories: 
Observed / Not 

Observed. 

The reader makes brief 
fixation during the first pass 
and revisits term in more 
detail (more fixations) during 
the second pass. 

Look back  
re-glance 

(LRG): 

Categorical.  
Two 

categories: 
Observed / Not 

Observed. 

Reader visits term/context in 
more detail during the first 
pass and takes a re-glance at it 
during the second pass. 

Determinism 
(Dm) 

Categorical.  
Two 

categories: 
Observed / Not 

Observed. 

Eye movements show 
recurrence of fixation 
sequences both during first 
and second pass reading for 
establishing an association 
between lexical co-occurrence 
of novel words. 

Mean pupil 
diameter of 

left eye/right 
eye 

(RAPupilDiaL
eft/RAPupilDi

aRight) 

Quantitative Mean of all pupil diameters of 
the left/right eye, which is 
measured during the entire 
duration of all fixations on a 
specific term recorded during 
reanalysis. 

Source: Parikh et al. [1] 

2.2 FWLC Classifier 
Figure 1 depicts the conceptual model of the levels of learning 

prediction system.  A detailed description of this system is at [1]. 
The levels of learning prediction system have two phases: training 

phase (reading surveys) and prediction phase. During the training 
phase, subjects read slides with easy passages containing terms of 
high frequency and common words (two term classes). We had 
derived the word frequencies from [24]. Tobii pro x2-60 eye 
tracker was used to capture eye responses at a rate of 60 samples 
per second. We extracted words from slides using our "slide words 
extraction engine" and mapped eye responses on the words using 
the word-to-eye-response-mapping engine. The words with its 
eye responses (term-response map) are given to the training 
engine. During the training phase (please refer left section of 
Figure 2), we compute 12 eye response features for each term 
(term-response map). We group term-response maps by term 
class and compute the feature thresholds across the related term-
response maps of the same class. We call this map as term-class 
response threshold map in the paper. We input term-response 
maps to three feature selection methods: ReliefF, Information 
Gain, and Ensemble. These methods assign feature weight to 
features on the basis of its relevance. We call these three sets of 
feature weights as ReliefF-FW, InfoGain-FW, and Ensemble-FW 
and the corresponding FWLC variants as FWLC-ReliefF (FRF), 
FWLC-InfoGain (FIG) and FWLC-Ensemble (FEN). Training phase 
gives three set of feature thresholds, one set for each term length 
class (big/mid/small) and three set of feature weights: ReliefF-FW, 
InfoGain-FW, and Ensemble-FW for each subject. 
 

 

Figure 1. Conceptual model of our levels of learning 
prediction system 

During prediction phase (please refer right section of Figure 2), 
subjects read separate passage slides containing words of three 
categories: low-frequency, high-frequency and common. Term-
response map is created for each word. We clean the maps having 
no fixation count or pupil responses, The FWLC classifier with 
linguistics knowledge uses the set of feature thresholds and any 
one set of feature weights (training data) to classify a 
term/concept of prediction phase as novel or familiar. FWLC 
assigns different weights to features using one of the Feature 
selection methods. We also input the same term-response maps of 
prediction phase to majority voting classifier (baseline). The 
baseline classifier uses the threshold maps from training phase 
and assigns equal weights to all features.  Detailed classification 
process of both baseline and FWLC classifiers can be found at [1]. 
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Figure 2. Block diagram depicting levels of learning 
prediction process (training and prediction phases) 

3 Experiment 

3.1 Subjects and Dataset 
Ten subjects (undergraduate/graduate students) participated 

in our experiment. Their age is 21 to 32. We removed data for two 
human subjects' due to data collection error. During the training 
phase, subjects read six passage slides and five slides during 
prediction phase. Subjects answered questions related to word 
comprehension and pronunciation difficulty, and we used this 
subjective assessment data as the ground truth for measuring the 
performance of the classifier.  During the prediction experiment, 
subjects looked at a total of 56 big size words (word of length > 
eight letters). 28 each were low frequency and high-frequency big 
words. Subjects fixated on an average of 60% words. Subject’s 
dataset is the term-response maps for big words. 

3.2 Selection of Machine Learning Classifiers 
FWLC, a non-parametric classifier does not use a fixed set of 

features for classification. Relevant features are selected using 
feature selection methods on training data. Hence, subject wise, 
the set of relevant features used may increase or decrease 
depending upon its relevance for each subject because reading is 
an individual characteristic and all features may not be relevant 
for all subjects. As observed in [1], FWLC-InfoGain considers only 
five out of 12 features as relevant for making a prediction, and it 
works best for a specific group of readers whereas ReliefF-FWLC 
used 12 relevant features for prediction [1]. We compared the 
classification performance of the nonparametric FWLC with a 
popular simple non-parametric classifier, KNN. It uses K nearest 
neighbors for classification typically with majority voting method 
for assigning the most common class from its K nearest neighbors.  
Moreover, in this paper, we have used three nearest neighbors 
(3NN) and have assigned a weight of 1/d (d is the distance from 
the object) to the neighbors so that the nearest neighbors will have 
more contribution in the classification decision. FWLC is not a 
probabilistic classifier as it does not assign the probability to 
classes but outputs the most likely class from the observation. 
Hence, we have compared the performance of FWLC variants 

with a non-probabilistic classifier, SVM, and also with a 
probabilistic classifier, naïve Bayes. 
Statistical classifiers such as decision trees (C4.5) are good 
performers when a labeled training set of observations is available 
for learning.  As our training set has labeled observations, we have 
selected C4.5 (j48) for comparing the prediction results with 
FWLC. However, C4.5 is known for overfitting its decision to the 
training set because prediction from a single tree is sensitive to 
noise in the training set. Random forest, an ensemble learning 
classifier corrects this characteristic of C4.5 and can overcome the 
low bias and high variance (overfitting) scenario of decision trees 
by using bagging procedure. It trains many trees with randomly 
selected parts of the training sets, and the average prediction of 
many trees will be less sensitive to noise as trees are de-correlated 
by showing different training sets. Hence, we have also selected 
random forest classifier with bagging and 100 iterations. 
The focus of this paper is to compare the classification results of 
FWLC variants with five machine learning classifiers: Naïve Bayes 
(NB), KNN, SVM, C4.5 and Random forest (RF) for predicting 
levels of learning using eye responses. 

3.3 Cost-Sensitive Classification 
Weka 3.7.11 tool [25] was used to evaluate the performance of 

machine learning classifiers. The test mode used was 10-fold 
cross-validation.  We divided our labeled dataset of each subject 
(term-response maps) into ten subsets. Out of 10 subsets, we 
randomly selected a testing subset during ten iterations (folds). 
Each classifier predicts a level of learning for a term and classifies 
it into two levels of learning: a novel (positive class) or familiar 
(negative class). The overall purpose of the experiment is to detect 
learning difficulty during a learning exercise and adapt content. 
Hence, we consider predicting novel terms as familiar (false 
negative) more expensive than predicting familiar terms as novel 
(false positive) and therefore, we applied a double classification 
cost to false negatives than false positives. We used the knowledge 
flow tool of Weka to run the selected cost-sensitive classifiers and 
the cost-sensitive classification process is described below.  

 The eye response dataset (term-response maps) is converted 
to ‘arff’ format using Weka. 

 Term-response map (‘arff’ record) has nine quantitative and 
three categorical features and one class attribute. We have 
listed six features each in Table 1 and Table 2. 

 Subject-word-assessment' (subject's self-learning assessment 
for the word), a categorical response variable was selected as 
a class attribute (class assigner).   

 We selected the novel class as a positive class (class value 
picker). 

 We added 10-fold cross validation evaluator method to the 
flow. 

 Five classifiers: SVM, 3NN, J48, Random Forest and, Naïve 
Bayes were selected with their cost matrix.  False negatives 
(FN) were assigned double cost than the false positives (FP). 

 We ran the five cost-sensitive classifiers and noted the 
prediction accuracy for predicting levels of learning for big 
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words and the corresponding TPR, FNR, TNR, and FPR for 
each subject separately and finally computed the mean 
prediction accuracy, mean TPR, FNR, TNR, and FPR across 
all subjects. 

4 Results 
The primary objective of our study is to predict levels of learning 
in real time and adapt content as per the learning level. Hence we 
consider predicting novel word as familiar more expensive then 
predicting familiar word as novel (false negatives are more 
expensive than false positive). Table 3 shows subject wise True-
positive rate (TPR) for all classifiers. TPR is the proportion of total 
novel words, which are correctly classified as novel. All FWLC 
variants are performing better for predicting novel words than the 
five machine learning classifiers. FWLC-InfoGain shows the 
highest mean TPR of 0.91 followed by FWLC-ReliefF and 
Ensemble with 0.76. Random forest performed the worst for 
predicting novel words. For four subjects (S3–S5 and S7) the three 
FWLC variants show similar best performance.   
Table 3 shows the subject-wise best-performing classifiers in 
bold-italics and the highest performer from machine learning 
group in bold. FWLC-InfoGain, the best performing classifier 
achieves a mean TPR gain of 43% in comparison to SVM, the 
highest scoring machine learning classifier from the machine 
learning group. 
 
Table 3: True Positive Rate (TPR) [Actual Novel word predicted 

as Novel] 
True Positive Rate (TPR) [Class: Novel] 

Subject 
ID 

Baselin
e 

Proposed FWLC 
Classifier 
Variants 

Machine Learning 
Classifiers 

MV FRF FIG FEN NB KNN RF SVM J48 
S1 0.33 0.50 0.67 0.50 0.29 0.14 0.14 0.14 0.29 
S2 0.25 0.50 0.75 0.50 0.25 0.50 0.00 0.50 0.50 
S3 0.67 1.00 1.00 1.00 0.00 0.00 0.00 0.33 0.33 
S4 0.60 1.00 1.00 1.00 0.83 0.67 0.33 0.83 0.50 
S5 0.00 1.00 1.00 1.00 0.33 0.07 0.00 0.33 0.00 
S6 0.83 0.67 1.00 0.67 0.50 0.17 0.17 0.33 0.33 
S7 0.00 1.00 1.00 1.00 0.17 0.00 0.00 0.67 0.67 
S8 0.63 0.38 0.88 0.38 0.38 0.69 0.50 0.69 0.69 

Mean 
TPR 

0.41 0.76 0.91 0.76 0.34 0.28 0.14 0.48 0.41 

 
Table 4 shows the subject wise and mean prediction accuracy of 
all classifiers. FWLC-Relief performs slightly better than other 
FWLC variants. However, SVM shows the best overall prediction 
accuracy of 91.29%, an improvement of 6.6% over the best 
performing FWLC variant (FWLC-ReliefF). Subject wise 
performance of classifiers shows that J48 performs better for 
subjects S1 and S2. FWLC variants perform better for S3.  SVM 
works better for S4, S6 and, S7. KNN works better for S5 and S8, 
and even J48 shows similar performance for S8. No one classifier 
shows the best performance for the majority of the subjects. Naïve 
Bayes performs worst among the machine learning group. The 

slightly higher prediction accuracy of machine learning classifiers 
in comparison to FWLC comes with a cost because they increase 
the number of false negatives. Machine learning classifiers predict 
more novel terms as familiar (false negatives), and hence this 
conditions is not desirable for adapting eLearning content as 
providing supplementary learning content may be skipped due to 
incorrect prediction of novel content as familiar (prediction of 
false negatives). 

Table 4: Prediction Accuracy 
% Prediction Accuracy 

Sub. 
ID 

Baselin
e 

Proposed FWLC 
Classifier variants Machine Learning Classifiers 

MV FRF FIG FEN NB KNN RF SVM J48 

S1 57.89 86.84 86.84 86.8
4 84.09 85.23 88.64 88.63 92.04 

S2 66.67 83.33 88.89 83.33 80.00 93.33 91.66 90.00 91.66 
S3 76.92 92.31 92.31 92.31 88.57 82.85 91.42 85.71 88.57 

S4 44.00 84.00 80.00 80.00 88.31 92.20 92.20 96.10 88.31 

S5 55.17 79.31 72.41 75.86 94.73 97.36 96.05 97.36 85.52 
S6 63.89 86.11 88.89 86.11 89.13 89.13 91.30 93.47 86.95 
S7 72.41 79.31 75.86 79.31 86.07 86.07 89.87 92.40 88.60 

S8 75.56 86.67 84.44 86.67 89.62 89.62 88.88 86.66 89.62 
Mean 
Pred. 
Acc. 

64.06 84.74 83.71 83.80 87.57 89.47 91.25 91.29 88.91 

 
Table 5 shows the subject wise and mean false negative rate of all 
classifiers. All FWLC variants show lowest mean FNR in 
comparison to all the machine learning classifiers. FWLC-
InfoGain with lowest mean FNR performs the best and random 
forest is the worst performer. The graph of Figure 3 shows that all 
FWLC variants are good at predicting novel terms (minority class) 
more accurately (Achieving highest TPR and lowest FNR). Figure 
4 shows the ratio of FNR and FPR plot where FWLC variants 
achieve lowest FNR at negligible cost of FPR and perform best in 
comparison to all machine learning classifiers. SVM achieves 
highest prediction accuracy in comparison to FWLC variants and 
other four machine learning classifiers. However, it performs 
worst for predicting novel terms. 
 

Table 5: False Negative Rate (FNR) [Actual Novel word 
predicted as Familiar] 

False Negative Rate  (FNR) [Novel word predicted as Familiar] 

Sub. 
ID 

Baseline 
Proposed FWLC 

Classifier variants 
Machine Learning 

Classifiers 
MV FRF FIG FEN NB KNN RF SVM J48 

S1 0.67 0.50 0.33 0.50 0.71 0.86 0.86 0.86 0.71 
S2 0.75 0.50 0.25 0.50 0.75 0.50 1.00 0.50 0.50 

S3 0.33 0.00 0.00 0.00 1.00 1.00 1.00 0.67 0.67 
S4 0.40 0.00 0.00 0.00 0.17 0.33 0.67 0.17 0.50 
S5 1.00 0.00 0.00 0.00 0.67 0.33 1.00 0.67 1.00 
S6 0.17 0.33 0.00 0.33 0.50 0.83 0.83 0.67 0.67 

S7 0.00 0.00 0.00 0.00 0.83 1.00 1.00 0.33 0.33 
S8 0.38 0.62 0.13 0.63 0.63 0.31 0.50 0.31 0.31 

Mean 
FNR 

0.46 0.24 0.09 0.25 0.66 0.65 0.86 0.52 0.59 
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Figure 3. Mean TPR / Mean FNR plot for all classifiers 

 
Figure 4. Mean FNR / Mean FPR plot for all classifiers 

5 Conclusion 
FWLC variants perform better for predicting novel terms at a 

low cost of predicting false positives. Learning level prediction in 
real time will help eLearning systems to adapt the content as per 
student's learning level and hence predicting novel terms 
correctly in this scenario is highly desirable. This model may work 
best for assessing learning level of students from diverse 
demographics and adapt learning content for an individual on a 
need basis using eye responses. FWLC performance looks 
promising for making content adaptation decisions in real time. 
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