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A large proportion of the population has become used to sharing private infor-
mation on the internet with their friends. This information can leak throughout 
their social network and the extent that personal information propagates depends 
on the privacy policy of large corporations.  In an era of artificial intelligence, 
data mining, and cloud computing, is it necessary to share personal information 
with unidentifiable people?  Our research shows that deep learning is possible 
using relatively low capacity computing. The research demonstrates promising 
results in recognition of human geospatial activity, in prediction of movement, 
and assessment of contextual risk when applied to spatio-temporal positioning of 
human subjects. A private surveillance system is thought particularly suitable in 
the care of those who may, to some, be considered vulnerable.  
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1 Background 

Advancements in mobile devices that can be worn and carried, their interconnectiv-
ity, and the improvement of artificially intelligent tools provide a significant oppor-
tunity to assist in the care of the aged.   In line with a human right to private life, meth-
ods have been examined to keep information private unless there is a moral argument, 
such as risk to that person, that justifies a breach in privacy. In this scenario, safety is 
paramount and in the interests of beneficence and non-maleficence an ethical policy in 
terms of design is employed which defines that personal information is precious; it 
should therefore not be shared on the internet.   

Dementia is a debilitating condition that is growing with the aging society. Contin-
uance with life in the community is encouraged, since social interaction and physical 
activity stimulates a healthy mental state in the person living with symptoms (PwS) and 
family carer. (The dyad: Persons living with Dementia (PlwD)). We seek bespoke Ar-
tificially Intelligent solutions for PlwD who wish to preserve independence of the PwS. 



Initial system infrastructure and findings are published in [1], the suitability of a mobile 
computer technology in tracking PwS and ethical aspects are previously discussed in 
[2]. The work described here contributes to the ethical debate regarding at which point 
information gathered when monitoring a PwS should be shared by introducing a tech-
nological solution that keeps data private until a threshold of risk to health is reached.   

To this end, a monitoring system is designed that requires the PwS to carry a mobile 
phone and wear a fitness tracker. It is understood that some may not be comfortable 
with this. While it is anticipated that the mobile technology component will ultimately 
be integrated in a single wearable device, these requirements restrict usefulness to PwS 
who are already comfortable with or habitually carry such devices.   

2 The problem 

The objective is to provide a cost-effective ‘electronic safety net’ that provides peace 
of mind to the carer while preserving independence of the PwS. Delayed residential 
care can reduce impact economically [3], but more importantly this can sustain the fun-
damentals of a family unit. 

2.1 Dementia 

Dementia is caused by a several diseases of the brain. There is a wide spectrum of 
symptoms, some of which may manifest in a propensity to walk independently at inap-
propriate times [4]. Literature indicates that this can lead to premature mortality [4, 5, 
6]. Actions to mitigate this risk can lead to increased dependence, to curtailment of 
social activities, and reduction in quality of life (QoL) [7]. Elopement episodes are a 
major reason for nursing home admission [8]; one study in Finland reports that this may 
be delayed, using assistive technology, by an average of eight months [9].  

2.2  Privacy 

On-line data privacy divides opinion: many elect to share very varied information 
about their lives publicly on the internet, but this is not always a conscious decision – 
‘small print’ tends to get lost to many users as they install yet another application on 
their phone. Consent in this way is referred to as informed – the potential for data prop-
agation may be mentioned in supplied information, but few consider this thoroughly.  

Leaks of private information have recently been in the headlines; data secured on the 
cloud is assumed to be safe, but human intervention and inadequate security measures 
both allow breaches. Advocates of privacy treat their own information very differently 
and do not share their information with people or organisations – certainly not a com-
puter system. In the case of care for persons who may be considered vulnerable it seems 
ethically correct that a data protectionist policy should be the default. 



3 A human rights-based approach 

The World Health Organisation advocates a human rights-based approach for PlwD 
[10].  In our study almost two years of data was collected, including GPS, nearby Wi-
Fi nodes, activity recognition, even indoor movement and logs of heart rate, steps, and 
sleep patterns.  This monitoring undoubtedly invades the right to private life; the track-
ing was described by the subject as a big-brother bad dream; on reflection the level of 
“invasion” depends on who can see the data.   

3.1 Cost effective hardware platform 

To reduce costs and to improve potential accessibility in the long term, the equipment 
used in a working prototype is a standard Android smart-phone and a home-based hub 
which uses a Quad-Core 1.2Ghz CPU with only 1Gb RAM. Networking between the 
two in ‘monitoring’ mode is via onboard Bluetooth and Wi-Fi only while at home.  

3.2 Unconventional Deep Learning 

Deep learning (DL) discovers intricate structure in large datasets, multiple processing 
layers learn representations of data [11]. Sequential and parallel information is pro-
cessed in a cyclical (recurrent) fashion by modifying internal weightings of input sig-
nals to produce an expected output signal [12, 13]. The hardware platform described 
may seem restrictive for a DL task in an age where we have got used to resources being 
server based and ubiquity being the norm.  Convention says that DL requires large 
computing capacity that is not available for the present use case. The goal is that human 
mobility patterns are learnt, and that perceived risk is assessed against a normality that 
is ‘safe’. A measure of risk is then used to determine the level of protection required on 
personal data.  Location data for one user is relatively small compared to conventional 
DL problems; to protect privacy, propagation of this information is restricted to a secure 
home network. No interaction with the wearable or phone is required of the PwS. 

3.3 Deep Learning using Recurrent Neural Networks (RNN) 

Long Short-Term Memory (LSTM) networks [14] are a type of RNN suitable for 
learning and predicting sequential patterns and trends in timelines. Using the on-board 
accelerometers, they are deployed in human activity recognition (HAR).  X-Y-Z accel-
erometer readings are interpreted over a defined time-period and then compared to 
those taken in a laboratory to determine probability that a categorised activity is taking 
place [15].  It has been possible for us to assimilate this using GPS sensor data; a dataset 
suitable for learning using an LSTM neural network was developed, and the resultant 
tensor was deployed to the Android platform to provide probability of being on a learnt 
trajectory or otherwise.   

The concept that surveillance need not be invasive is introduced. There is a host of 
literature relating to HAR [16], there are indoor monitoring studies with AI, e.g. [17], 



and study of wandering trajectories, e.g. [18].  None describe categorisation of where a 
person normally goes followed by discrete monitoring that keeps information private 
until anomalies are found. 

 
Data:  GPS data is collected from one subject using a standard HTC-10 smart-phone 

used just for that purpose.  Considerable data preparation is required using the minute-
by-minute location co-ordinates. The raw data of one trajectory can be visualised in a 
histogram as seen in Fig. 1, peaks signifying stops en-route.  Total data is compart-
mentalised based on total movement to date (tm). This is then divided by increment (i) 
after 2α, for example 1% of tm, is added in both dimensions to allow for noise on the 
extremities of tm. In Fig. 2. i = 20. 

 

  

Fig. 1. Spatio-temporal raw data, time at 
a place is represented as peaks with 
movement represented as single points. 

 
Fig. 2. Boundaries of the extent of total move-
ment for 3 months, i = 20.  
Map data: © Google.  
 

Destinations or latent time at a point can be recognised using centroids of clusters 
for each trajectory. Once destinations are recognised, it is preferred – for reasons of 
computational time later – that daily data is reduced for example from 1440 points to 
only the proportion that represents movement.   

 
Categorisation. Points within each segment (or compartment) are assessed for each 
trajectory and each segment’s points are compared using a kd-tree based nearest-neigh-
bour algorithm [19].  The degree of similarity is assessed giving a percentage, a thresh-
old gives a similarity decision. There is difficulty in some trajectories where, for exam-
ple, topographical, atmospheric or networking issues used in test data collection leads 
to sparse and noisy data. Sparse data was dealt with using 1d-univariate interpolation 
[20]; this is particularly important in the early days of training where there are few 
trajectories to compare.  Noisy data is essentially ignored at this time by adding a tol-
erance to the similarity decision just described which is explained in more detail below 
(Fig. 7.). The result of the comparison algorithm is a segment chain (string) for trajec-
tories with 1 or 0 signifying a match in each square. 



 

 

 

Fig. 3. A successful match of two segment chains. 
29 segments, i=10 

Fig. 4. Interpolation used to deal with 
sparse data causing accuracy issues  
Map data: © Google 

   
Categorisation by comparison of trajectory segment chains by only comparing 

matched segments significantly reduces the computational capacity required in terms 
of processing and memory. If a match is found, interpolated point data is added to a 
master repository with which future comparisons are made. An encoded polyline [21] 
reduces database size requirements and gives an advantage that trajectories may be 
stored as an entity.  In time the necessity for interpolation is reduced as the repository 
trajectory density increases. 

As seen in Fig. 4. interpolation may cause significant deviation from the route that 
is travelled, cutting corners and roundabouts, but this level of granulation is considered 
satisfactory at this point – matching segments rely on a nearest neighbour tolerance 
(nnT) and merging with subsequent trajectories eventually creates a dense category 
master.  
 

  
 

Fig. 5. a)  Increased tolerance leads to a better match 
            b) Interpolated points are merged to create a dense category master 
 

nnT set at 0.005, in decimal degrees which equates to just over 500m is used in the 
experiments. This tolerance can be linked to tm in further work as the extent of move-
ment defines the granularity required within the movement space. The resultant cate-
gories develop into a densely populated polyline seen in Fig. 5b. All movement within 
a data collection period are matched with destinations recognised in the initial cluster 
analysis. 



In addition to our own, the comparison algorithm was tested using seven users’ data 
from the Geolife (GL) data-set [22].  This contains better quality GPS trajectories and 
includes higher variance in modes of travel. With nnT applied to nearest neighbour 
algorithm it is observed that small deviations from a route are not a significant problem. 
As can be seen in Fig. 6., four separate tracks converge on a destination and in the 
extent of this day’s movement all points are within one segment.  

Noise, detours and differing distances included in two tracks taking Route 1 and 
Route 2 in Fig. 7., both arrive at the same place E1 and C2.  nnT allows for the eventu-
ality of C1 and D1 not matching Route 2.  Adding both to the master increases the pos-
sibility that subsequent trajectories match by widening the data-set.   

 
  

 

Fig. 6. Walking via different routes to a bus-
stop Map data: © GoogleMaps 
 

Fig. 7. Widening the category master by al-
lowing a nearest neighbour tolerance 

Bearing. Some GL users’ data highlighted the difficulty of recognising direction of 
travel in that only one-way trajectories are recorded.  Experimentation with inclusion 
of direction of travel gave complex results, consequently movement is treated as omni-
directional; the category master is essentially an amalgamation of history on that route. 
Time factor. This is an important consideration in the study scenario, but the likelihood 
of a person travelling a recognised trajectory at exactly the same time is low so predic-
tion of this is not required.  There are detours from a route, the method of travel may 
change, there may be traffic. These factors all have a significant impact on spatio-tem-
poral data.  Following extensive experimentation, it is concluded that data-point true 
timestamps cause confusion. Instead, each category master is indexed sequentially. 
Predictability.  Major studies in human mobility patterns find that there is a high de-
gree of temporal and spatial regularity [23]. In the data-sets investigated, this study 
concurs. Three regularly visited destinations in our data are selected for demonstration; 
these are travel to University (south), to visit family (west) and to a supermarket (east) 
seen in Fig. 8. 



 

Fig. 8. Three categories overlaid, interpolated; 3 x 10k records 

Pre-processing.  Category masters are exported and the number of records per category 
is equalised by interpolating (increased or reduced) to 10,000 records each.  Noise is 
amplified where outliers are interpolated. These outliers will be removed in later ver-
sions of the system. The data is stacked and normalised. Train:test split is 80:20. 
Machine Learning. Inspiration for this is credited to work using Convolutional Neural 
Network and LSTM RNN in mobile phone HAR applications.  The solution selected 
for our application is Tensorflow ‘BasicLSTMCell’ stacked with ‘MultiRNNCell’ with 
64 hidden units. The neural network is expected to learn geo-spatial data to predict 
categorisation (of the trajectory) when it is given further blocks.  Experimentation 
found that the number of time steps set at 10, in blocks of 10 gave acceptable results 
over 500 epochs in less than 1.5 hours.  
 

  
Fig. 9. LSTM training session over 1.4 hours. 90-97% accuracy 
 



Training was carried out using matched trajectories in the GL dataset with similarly 
acceptable results. 

 

 
Fig. 10. LSTM training session for 7 users (in 9 tests) using Geolife data-set 
 
Deployment. Using our data-set the resultant tensor is imported to an Android appli-
cation that sequentially passes arrays of 10 steps of a new trajectory in a timed fashion 
to a Tensorflow classifier. The probability of the array being Category 1, 2 or 3 gives 
results for the three trained classes. These predictions are logged on the phone.   
 
Mobile Results. 
Category 1: Correctly predicted with 98-99% certainty unless trajectories overlap. 
Category 2: Correctly predicted with 55-86% certainty. 
Category 3: Correctly predicted with 77- 90% certainty. 
 

a) b) 
 

c) 
 
Fig. 11.  Android category prediction results: The vertical scale on these graphs range from 0 
to 1 where 1=100% certainty.   
             a) Category 1 (dotted line) 
             b) Category 2 (dashed line) 
             c) Category 3 (solid line) 

 
The tensor gives reliable prediction of a route being tested in all cases. These are very 
satisfactory results. Overlap between two categories returning a 50:50 result in the 
Category 1 test is perfectly acceptable as the routes do overlap.   
 



3.4 Inferring an unknown location 

In this study the definition of an abnormal location is an important requirement, so an 
additional category is added specifically for this.  A convex hull polygon is formed for 
each segment in the geo-spatial area of movement, this is built as an output from the 
classification routine on the hub. If the current location is within a polygon the Tensor-
flow Classifier result is used in prediction of where the subject is going. If not, then risk 
is accumulated as follows: 

If the subject moves to a new space, the contextual risk of that action is assessed 
using time and known weather conditions.  If this is computed as simply walking in a 
new area on a sunny afternoon for a short time, this may be appraised as low risk and 
no information should be shared.  In Fig.12 a) movement along the test trajectory is 
outside known areas (shaded grey), distance and known temperature for the area is 
monitored (left graph above map).  Risk is visualised (right graph): as distance from 
home (start point) reduces, the system perceives this as returning, and risk is reduced.  
In Fig.12 b) a detour outside a known path instigates appraisal and logs this as a new 
place. Risk is reset when probability of normal movement is sensed as seen in Fig. 12 
c). In a real-life scenario, retraining will take place when the user returns home.  If 
uncharacteristic movement at a low risk level has been sensed this path is added to the 
category master. However, if a risk threshold has been breached it is likely that this 
event is not added as this would require intervention from the carer. 

 

 a)  b)  c) 
 

Fig. 12. a) Graphed representation of accumulating risk reducing with distance. 
              b) Risk increasing when taking a detour from the trained path. 
              c) Correct categorisation of trajectory with 99% accuracy – accumulated 
                   risk is reset. 
 
The predisposition of the PlwD is assessed using a fitness tracker that monitors sleep 
disturbances and heart rate.  Changes in trends in this data will be used to adjust the 
sensitivity of the described system in calculating the real-time contextual risk. 



4 Ethics 

The ethical debate regarding the point at which location data is shared and with 
whom is an interesting area to which our findings may contribute. If time, place or 
weather is appraised as high risk or ‘inappropriate’; a prior moral framework that rates 
safety and risk vs. privacy can justify that recent movement and current location may 
be shared.  This sharing can take the form of an SMS alert, or an alert via the internet 
with a map to a trusted carer.   In all other cases the PwS may continue independently. 

 
Several questions arise: 

• When applied to vulnerable persons who may decide this point and who de-
fines what is ‘inappropriate’? 

• Is normality really ‘safe’? 
• In production would an AI-based algorithm be trusted?  

 
Until now, surveillance of those who may be considered vulnerable lacks legislative 
control. There are barriers to the use of assistive technology and a DIY approach is 
being adopted by users [24]. Technological solutions fail to offer a considered techno-
logical approach to resolve well-known privacy issues.  A private monitoring system 
that uses AI to determine out-of-the-ordinary movement is novel and since it respects 
privacy, this surveillance is not intrusive. Development and implementation of such a 
system is likely to provide PlwD with an electronic safety net that may be used to im-
prove QoL by increasing independent living of the PwS, by providing peace of mind to 
the carer, and in the ideal case may be used to delay moving to a care home. 

5 Conclusion 

The research presented in this paper shows promising results both in recognition of 
human geo-spatial activity and in prediction of movement along normally travelled 
routes. A cost effective working prototype has been produced to demonstrate that deep-
learning techniques can be applied to spatio-temporal data after programmatically cat-
egorising normally travelled trajectories.  It has been found that when only part of a 
trajectory has been travelled, likely destinations may be inferred. The application is 
designed to restrict personal information propagation to a home network. The limita-
tions on computing capacity do not detract from the quality of results.  

The World Health Organisation recognises that surveillance is intrusive, that the hu-
man rights of PwS are denied and that abuse is present.  Locking doors to stop a person 
eloping violates their human right to liberty, but surveillance is contrary to their human 
right to private life. Risk, when deviations from known places are sensed, is assessed 
automatically on a smart-phone in the context of time and weather conditions. Human 
rights (of private life and liberty) of the person with symptoms will be respected until 
the point at which it is judged that a prior moral argument of safety and risk supersedes 
the importance of privacy. If this happens, alerts containing location and recent move-
ments are shared with an assigned carer, thus facilitating swift recovery.   



The potential of the AI system described here is considerable; it is likely that many 
that value the importance of privacy highly will welcome a surveillance system that 
monitors but does not divulge detail.  Predictions of likely trajectory of movement using 
real-time location data is novel, as is the concept of private surveillance as described.  
Availability of an internet connection or at least cellular coverage to deliver alerts is a 
requirement for an implementation of this concept. 

Ongoing work includes the processing of GPS data from recruited volunteers. The 
assessment of complex and intertwined trajectories and comparison of different scales 
of movement for one user will be carried out. A bespoke application will be deployed 
for testing in the field by the volunteers.  Findings will contribute to further dissemina-
tion after consultation with health professionals and PlwD. 
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