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Abstract. Advance care planning, which includes clarifying and doc-
umenting goals of care and preferences for future care, is essential for
achieving end-of-life care that is consistent with the preferences of dying
patients and their families. Physicians document their communication
about these preferences as unstructured free text in clinical notes; as a
result, routine assessment of this quality indicator is time consuming and
costly. In this study, we trained and validated a deep neural network to
detect documentation of advanced care planning conversations in clinical
notes from electronic health records. We assessed its performance against
rigorous manual chart review and rule-based regular expressions. For de-
tecting documentation of patient care preferences at the note level, the
algorithm had high performance; F1-score of 92.0 (95% CI, 89.1-95.1),
sensitivity of 93.5% (95% CI, 90.0%-98.0%), positive predictive value of
90.5% (95% CI, 86.4%-95.1%) and specificity of 91.0% (95% CI, 86.4%-
95.3%) and consistently outperformed regular expression. Deep learning
methods offer an efficient and scalable way to improve the visibility of
documented serious illness conversations within electronic health record
data, helping to better quality of care.

Keywords: deep learning, end-of-life care, palliative care, natural lan-
guage processing, clinical notes, electronic health records

1 Introduction and Related Work

To ensure that patients receive care that is consistent with their goals, clinicians
must communicate with seriously ill patients about their treatment preferences.
More than 80% of Americans say they would prefer to die at home, if possible.
Despite this, 60% of Americans die in acute care hospitals and 20% die in an In-
tensive Care Unit (ICU)[1]. Advance care planning, which includes clarifying and
documenting goals of care and preferences for future care, is essential for achiev-
ing end-of-life care that is consistent with the preferences of seriously ill patients
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and their families. Inadequate communication is associated with more aggressive
care near the time of death, decreased use of hospice and increased anxiety and
depression in surviving family members[2–5]. Several studies have demonstrated
the potential of advanced care planning to improve end-of-life outcomes (e.g.,
reducing unintended ICU admissions and increasing hospice enrollment). In the
absence of explicit goals of care decisions, clinicians may provide clinical care[6]
that does not provide a meaningful benefit to the patient[7] and, in the worse
case, interferes with the treatment of other patients[6]. For these reasons, it is
recommended that care preferences are discussed and documented in the EHR
within the first 48 hours of an ICU admission[8, 9].

In recent years a consensus has emerged that such conversations are an es-
sential component of practice and must be monitored to improve care quality.
However, the difficulty of retrieving documentation about these conversations
from the electronic health record has limited rigorous research on the preva-
lence and quality of clinical communication. For example, the National Quality
Forum (NQF) recommends that goals of care be discussed and documented in
the EHR within the first 48 hours of an ICU admission, especially for frail and
seriously ill patients. This was one of only two Centers for Medicare and Med-
icaid Services recommended palliative care quality measures for the Medicare
Hospital Inpatient Quality Reporting program[10]. Yet, despite widespread sup-
port, routine assessment of this and similar quality measures have proven nearly
impossible because the information is embedded as non-discrete free-text within
clinical notes. Manual chart review is time-consuming and expensive to scale [11–
13]. Consequently, many end-of-life quality metrics are simply not assessed, and
their impact on distal and important patient outcomes have been insufficiently
evaluated.

The emergence of omnipresent EHRs and powerful computers present novel
opportunities to apply advanced computational methods such as natural lan-
guage processing (NLP)[14] to assess end-of-life quality metrics including doc-
umentation of ACP. NLP enables machines to process or understand natural
language in order to perform tasks like extracting communication quality em-
bedded as non-discrete free-text within clinical notes[15].

Two main approaches to NLP information extraction exist. Rule-based ex-
traction uses a pre-designed set of rules[14], which involves computing curated
rules specified by experts, resulting in algorithms that detect specific words or
phrases. This approach works well for smaller defined sets of data such as when
searching for all the brand names of a generic medication (e.g., if X is present,
then Y=1). However, rule-based approaches fail when the desired information
appears in a large variety of contexts within the free text[16].

Recent advances in machine learning coupled with increasingly powerful com-
puters have created an opportunity to apply advanced computational methods,
such as deep learning, to assess the content of free-text documentation within
clinical notes. Such approaches possess the potential to broaden the scope of
research on serious illness communication, and when implemented in real-time,
to change clinical practice.
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In contrast to rule-based methods, deep learning does not depend upon pre-
defined set of rules. Instead, these algorithms learn patterns from a labeled set
of free-text notes and apply them to future datasets[16]. A deep learning-based
approach works well for tasks for which the set of extraction rules is very large,
unknown, or both. In deep learning, algorithms can learn feature representations
that aid in interpreting varied language.

In this study, we used deep learning[17] to train models to detect documenta-
tion of serious illness conversations, and we assess the performance of these deep
learning models against manual chart review and rule based regular expression.

2 Data

2.1 Data Source

We derived our sample from the publicly available ICU database, Multi Pa-
rameter Intelligent Monitoring of Intensive Care (MIMIC) III, developed by the
Massachusetts Institute of Technology (MIT) Lab for Computational Physiol-
ogy and Beth Israel Deaconess Medical Center (BIDMC)[18]. It is a repository
of de-identified administrative, clinical, and survival outcome data from more
than 58,000 ICU admissions at BIDMC from 2001 through 2012. Between 2008
and 2012, the dataset also included clinical notes associated with each ICU ad-
mission. The Institutional Review Board of the BIDMC and MIT have approved
the use of the MIMIC-III database by any investigator who fulfills data-user re-
quirements. The study was deemed exempt by the Partners Institutional Review
Board.

2.2 Cohort

The study population included adult patients (age ≥18) who were admitted
to the medical, surgical, coronary care, or cardiac surgery ICU. The training
and validation set included physician notes from patients who died during the
hospital admission to ensure that we would have sufficient examples of docu-
mentation of care preferences. We excluded patients who did not have physician
notes within the first 48 hours because these patients either died shortly after
admission or transferred out of the ICU.

2.3 Clinical domains

Our main outcome was to identify documentation of care preferences within 48
hours of an ICU admission in seriously ill patients. We aimed to detect the bi-
nary absence or presence of any clinical text that fit specified documentation
of domains: patient care preferences (goals of care conversations or code status
limitations), goals of care conversations, code status limitations, family com-
munication (which included communication or attempt to communicate with
family that did not result in documented care preferences), and full code status.
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Domains were chosen by board-certified, experienced palliative care clinicians
through a lengthy and iterative process. They determined categories that are
both relevant to widespread existing palliative care quality measures and in-
teresting to future research questions. The specifications of each domain are
outlined (Table 1).

Table 1. Clinical domain specifications.

Domain Documentation example

Patient care preferences
Fulfills criteria for goals of care conversations and/or code

status limitations

Goals of care
conversations

Explicitly shown preferences about the patients goals,
values, or priorities for treatment and outcomes. Does NOT
include presumed full code status or if obtained from other

sources.

Code status limitations
Explicitly shown preference of patients care restricting the
invasive care. Includes taken over preference from previous

admission.

Communication with
family

Explicit conversations held during ICU stay period with
patients or family members about the patients goals,

values, or priorities for treatment and outcomes.

Full code status

Explicitly or implicitly shown preference for full set of
invasive care including intubation and resuscitation.

Includes presumed full code status or if obtained from
other sources.

2.4 Annotation

We developed a set of abstraction guidelines to ensure reliable abstraction be-
tween annotators. Each annotator identified clinical text that fit specified com-
munication domains and labeled the portions of text identified for a domain,
with no restrictions on length of a single annotation.

A gold standard dataset, considered to contain true positives and true neg-
atives, was developed through manual annotation by a panel of four clinicians.
Annotation was done using PyCCI, a clinical text annotation software developed
by our team. Each note was annotated by at least two clinicians and annota-
tions were then validated by a third clinician. Similar to previously published
chart abstraction studies performed for this measure, the abstraction team had
real-time access to a US board certified hospice and palliative medicine attend-
ing physician-expert reviewer, met weekly, and used a log to document common
questions and answers to facilitate consistency[11, 19].

The clinician coders manually annotated an average of 239 notes each (SD,
196), for a total of 641 notes. Each note contained an average of 1397 tokens
(IQR, 1004-1710). The inter-rater reliability among the four clinician annotators
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was kappa > 0.65 at the note level for each domain. The performance of each
clinician coder was varied–for example, they identified documentation of care
preferences with a sensitivity ranging from 77-92% (in comparison to the final
gold standard).

3 Methods

3.1 Pre-processing

Annotated notes were pre-processed for both rule-based regular expression and
neural network methods. First, texts were cleaned to remove any extraneous
spaces, lines, or characters. Each cleaned note was tokenized, which means it was
split into identifiable elements–in this case, words and punctuation. We used the
Python module spaCy in order to tokenize intelligently, based on the structure
of the English language[20]. Labels were associated with individual tokens and
datasets were split out by domain, as each method was run separately.

3.2 Regular expression

Our baseline model is a simple regular expression based on pre-curated rules for
each domain. Appendix A shows the rules used for each domain. These rules
are keywords that the regular expression program identifies as belonging to its
corresponding domain, taking into account varieties in punctuation and case.
To create the regular expression library, we identified tokens that were sensitive
and specific for each prediction task. We calculated sensitivity by evaluating the
proportion of a token’s total number of occurrences that were labeled for each
domain. We evaluated specificity by evaluating what proportion of a token’s
total number of occurrences were in a note that was in an unlabeled note for each
domain. A board-certified clinician used these data points–sensitivity, specificity,
frequency that each token appeared on the labeled text and frequency in texts
outside of the domain–and their clinical knowledge to generate a list of terms
that could likely be generalized.

Regular expressions identify patterns of characters exactly as they are spec-
ified in a set of rules. If text in the note matches a keyword in the regular
expression library for the domain, it is labelled as positive for that concept. This
method acts as a baseline to compare our algorithm against. We used a regular
expression program, ClinicalRegex, also developed by our lab[30]. ClinicalRegex
is easily accessible and intuitive to navigate, which makes it an efficient choice for
groups that are not able to employ computer scientists. We have chosen to com-
pare our deep learning methods against an easily understandable and accessible
method to illustrate the benefits of more complex methods.

3.3 Artificial neural network

Deep learning involves training a neural network to learn data representation
and fulfill a specified task. We trained algorithms to identify clinical text doc-
umentation of serious illness communication. During the training process, the
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neural network learns to identify and categorize tokens (individual words and
symbols) as belonging to each of the pre-specified domains and maximizes prob-
ability across predicted token labels[21].

The specific neural network used, NeuroNER, was developed by Dernoncourt
et al. for the purpose of named-entity recognition[22]. NeuroNER has been eval-
uated for use in the de-identification of patient notes[21]. It allows for each token
to be labelled only with a single label. However, tokens in our study were of-
ten associated with multiple labels. For example, a sentence could indicate that
both communication with family occurred and that goals of care were discussed.
In order to allow for multi-class labelling, a separate, independent model was
trained per domain. For each domain, the data set was split up into randomized
training and validation sets, with 70% (449 notes) of the set in training, and
30% (192 notes) in validation.

With the parameters derived from this training process, the model is run
on the validation data set to examine its performance on a data set it was not
specifically tuned to fit. Performance on the validation set also determines when
training converges, indicating that the model is optimally trained. Training con-
verges when there has been no improvement on the validation set performance
in ten epochs. The neural network ultimately determines domain labels for each
token. From the predicted token-level results, a note-level classification is deter-
mined by the presence or absence of labelled tokens by domain in each note.
We used Tensorflow version 1.4.1 and trained our models on a NVIDIA Titan X
Pascal GPU. Below are the hyperparameters selected for our use:

– character embedding dimension: 25
– character-based token embedding LSTM dimension: 25
– token embedding dimension: 100
– label prediction LSTM dimension: 100
– dropout probability: 0.5

For our experiments, we were able to compare our gold standard labels,
derived from manual annotation by clinicians as described in Section 2.4, to the
predicted output to evaluate the performance of the neural network and the
regular expression method.

4 Results

4.1 Evaluation metrics

Algorithm performance was determined at two levels: token-level and note-level,
referring to the binary absence or presence of a label at these levels. Token-level
results are more specific and allow accurate identification of relevant text within
clinical notes. Note-level results allow determination of whether documentation
of communication occurred. At both of these levels, we calculated the following
metrics: sensitivity, specificity, positive predictive value, accuracy, and F1-score.
The F1-score is the harmonic average of positive predictive value and sensitivity.
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It allows us to determine the success of our algorithm both in identifying true
positives as well as true negatives.

The 95% confidence intervals for all metrics were determined via bootstrap-
ping[23]; each trained network model was validated for 1,000 trials in addition to
the reported performance point. During each trial, a validation set of 192 notes
was created by random sampling with replacement of the original validation set
of 192 unique notes. This creates an approximate distribution of performance
for the model. In basic bootstrap technique, the 2.5th and 97.5th percentiles of
the distributions for each metric are taken as the 95% confidence interval[24].

4.2 Performance

Table 2 summarizes the performance of the regular expression method and Table
3 summarizes the performance of the neural networks in identifying documenta-
tion of serious illness communication at the note level, for each clinical domain,
on the validation set. Figure 1 displays a comparison in the F1-scores for each
domain. For identification of documentation of patient care preferences, the al-
gorithm achieved an F1-score of 92.0 (95% CI, 89.1-95.1), with 93.5% (95% CI,
90.0%-98.0%) sensitivity, 90.5% (95% CI, 86.4%-95.1%) positive predictive value
and 91.0% (95% CI, 86.4%-95.3%) specificity. For identification of family com-
munication without documentation of preferences, the algorithm achieved an
F1-score of 0.91 (95% CI, 0.87-0.94), with 90.7% (95% CI, 86.0%-95.9%) sensi-
tivity, 90.7% (95% CI, 86.5%-94.8%) positive predictive value and 92.5% (95%
CI, 89.2%-97.8%) specificity. Token-level performance is displayed in Appendix
B.

At the note-level, we have been able to achieve high accuracy for all domains
and see that in the validation set, the neural network outperforms the regular
expression method in every domain for F1-score, significantly so in identifying
patient care preferences, goals of care conversations, and communication with
family. These domains contain more complex and diverse language, which are
successfully identified by the neural network. A static library is not able to
capture the diversity in these domains, necessitating the use of machine learning.

4.3 Error analysis

A review of documentation that the neural networks identified as serious ill-
ness conversations that was not labeled serious illness conversations in the gold
standard (false positives) showed that the algorithm identified documentation
that clinician coders missed. Though our gold standard was rigorously reviewed
and validated, there still remains room for human error. Comparing the iden-
tified text from the neural network and regular expression methods, we found
that as expected, the neural network was able to identify complex and unique
language that the regular expression method was not. Doctors employ diverse
and non-standardized language in clinical notes; we require more flexible and ex-
tensible methods in order to efficiently process this information. Static libraries
cannot capture the full complexity of language without sacrificing sensitivity or
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Table 2. Performance (%) of the regular expression method on the validation data
set.

Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

76.0 78.6 70.7 82.3 86.0

Goals of care
conversations

37.2 57.8 26.1 64.9 87.0

Code status
limitations

94.3 96.4 98.3 90.6 95.5

Communication
with family

43.6 67.7 27.9 100.0 100.0

Full code status 90.9 88.5 84.6 98.2 96.8

Table 3. Performance (%) of the neural networks on the validation data set. Values
in parentheses are 95% confidence intervals.

Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

92.0
(89.1-95.1)

92.2
(89.6-95.1)

93.5
(90.0-98.0)

90.5
(86.4-95.1)

91.0
(86.4-95.3)

Goals of care
conversations

85.7
(80.4-90.3)

89.1
(85.6-92.4)

85.1
(78.4-91.5)

86.3
(80.0-93.0)

91.5
(87.7-95.7)

Code status
limitations

95.9
(93.0-98.7)

97.4
(95.8-99.2)

98.3
(96.9-100.0)

93.5
(89.2-97.7)

97.0
(95.0-98.9)

Communication
with family

90.7
(87.4-93.9)

91.7
(89.1-94.4)

90.7
(86.0-95.9)

90.7
(86.5-94.8)

92.5
(89.1-95.9)

Full code status
98.5

(97.5-99.4)
97.9

(96.6-99.2)
100.0

(100.0-100.0)
97.0

(95.1-98.9)
93.5

(89.2-97.7)

specificity–they must be curated such that library terms are not too broad and
they are not able to utilize context. All note-level identification can be traced to
the detection of specific words with examples of text for each method provided
in Appendix C.

4.4 Effect of training set size

In order to determine how smaller training sets related to the performance of the
trained algorithms, we trained multiple networks with varying number of notes.
We plotted training dataset size against algorithm performance for 8 sample sizes
(Figure 2). The performance seemed to plateau at around 200 notes (around
250,000 tokens), which suggests that annotation efforts can be efficiently lever-
aged to generalize the models to varied health systems.
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Fig. 1. Comparison between the F1-score of the regular expression method and neural
networks by domain.

5 Discussion and future work

We describe a novel use of deep learning algorithms to rapidly and accurately
identify documentation of serious illness conversations within clinical notes.
When applied to identifying documentation of patient care preferences, our algo-
rithm demonstrated high sensitivity (93.5%), positive predictive value (90.5%)
and specificity (91.0%), with a F1-score of 92.0. In fact, we found that deep
learning outperformed individual clinician coders both in terms of identifying
the documentation and in terms of its many-thousands-time-faster speed.

Existing work has shown that machine learning can extract structured enti-
ties like medical problems, tests and treatments from clinical notes[25, 26], and
unstructured image-based information in radiology, pathology and opthamology[27–
29]. Our study extends this line of work and demonstrates that deep learning
can also perform accurate automated text-based information classification.

Up until now, extracting goals of care documentation nested within free-text
clinical notes has relied on labor-intensive and imperfect manual coding[11]. Us-
ing the capabilities of deep learning as demonstrated in this paper would allow
for rapid audit and feedback regarding documentation at the system and individ-
ual practitioner level. This would result in significant opportunities for quality
improvement that are currently not being met. Deep learning models could also
improve patient care in real-time by broadening what is available at the point of
care in the EHR. For example, clinicians could view displays of all documented
goals of care conversations, or be prompted to complete documentation that was
not yet available.

Important limitations must be noted. Deep learning algorithms only detect
what is documented. It is not fully understood to what extent documentation
reflects the actual content of a patient-clinician conversation surrounding serious
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Fig. 2. Neural network performance on validation set for detection of note-level docu-
mentation of patient care preferences by number of notes used for training.

illness care goals. However, documentation is the best proxy we have to under-
stand and to track these conversations. This is also a single institution study,
which may limit its generalizability. Future work will involve the investigation of
how extensible models are to clinical notes from different health system. Varia-
tions in EHR software and the structure of clinical notes in different institutions
makes it essential to further train and validate our methods using data from
multiple healthcare systems. This should be imminently possible, as our learn-
ing curve suggested that the neural network needed to train on as few as 200
clinician coded notes to perform well. Future research should also focus on opti-
mizing deep neural networks to further improve performance, and on determining
the feasibility of operationalizing this algorithm across institutions.

6 Conclusion

This is the first known report of employing deep learning, to our knowledge, to
identify serious illness conversations. The potential of this technology to improve
the visibility of documented goals of care conversations within the EHR and for
quality improvement has far reaching implications. We hope such methods will
become an important tool for evaluating and improving the quality of serious
illness care from a population health perspective.
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A Regular expression library

Domain Keywords

Patient care preferences

goc, goals of care, goals for care, goals of treatment, goals
for treatment, treatment goals, family meeting, family
discussion, family discussions, patient goals, dnr, dni,
dnrdni, dnr/dni, DNI/R, do not resuscitate,
do-not-resuscitate, do not intubate, do-not-intubate, chest
compressions, no defibrillation, no endotracheal intubation,
no mechanical intubation, shocks, cmo, comfort measures

Goals of care
conversations

goc, goals of care, goals for care, goals of treatment, goals
for treatment, treatment goals, family meeting, family
discussion, family discussions, patient goals

Code status limitations

dnr, dni, dnrdni, dnrdni, DNIR, do not resuscitate,
do-not-resuscitate, do not intubate, do-not-intubate, chest
compressions, no defibrillation, no endotracheal intubation,
no mechanical intubation, shocks, cmo, comfort measures

Communication with
family

Explicit conversations held during ICU stay period with
patients or family members about the patients goals,
values, or priorities for treatment and outcomes.

Full code status full code

B Token-level performance

Table 4. Performance (%) of the neural network on the validation data set at the
token-level.

Domain F1-score Accuracy Sensitivity
Positive

Predictive
Value

Specificity

Patient care
preferences

76.0 99.6 75.8 75.2 99.8

Goals of care
conversations

70.4 99.6 70.0 69.9 99.8

Code status
limitations

76.3 99.8 72.7 80.5 99.9

Communication
with family

68.2 99.7 62.0 76.4 99.9

Full code status 90.9 99.8 88.3 93.6 99.8
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C Examples of identified text

Below are examples of correctly identified serious illness documentation by the
neural network and regular expression methods in the validation dataset. Cor-
rectly identified tokens are bolded. Typographical errors are from the original
text. Each cell includes an example of identified tokens in the same text and an
example of documentation identified by the neural network that was missed by
the regular expression method, if relevant.

Domain Neural Network Regular Expression
Goals of care
conversations

Hypercarbic resp failure:
family meeting was held with
son/HCP and in keeping
with patients goals of care,
there was no plan for
intubation.Family was
brought in and we explained
the graveness of her ABG and
her worsened mental status
which had failed to improve
with BiPAP. Family was
comfortable with removing
Bipap and providing
comfort care including
morphine prn.

family open to cmo but pt
wants full code but also
doesn’t want treatment or
to be disturbed.

Hypercarbic resp failure:
family meeting was held
with son/HCP and in keeping
with patients goals of care,
there was no plan for
intubation.Family was brought
in and we explained the
graveness of her ABG and her
worsened mental status which
had failed to improve with
BiPAP. Family was
comfortable with removing
Bipap and providing comfort
care including morphine prn.

family open to cmo but pt
wants full code but also
doesn’t want treatment or to
be disturbed.

Code status
limitations

CODE: DNR/DNI,
confirmed with healthcare
manager who will be
discussing with official
HCP

CODE: DNR/DNI,
confirmed with healthcare
manager who will be
discussing with official HCP
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Communication
with family

Dr. [**First Name (STitle) **]
from neurosurgery held
family meeting and
explained grave prognosis
to the family.

lengthy discussion with
the son who is health care
proxy he wishes to pursue
comfort measures due to
severe and
unrevascularizable cad
daughter is not in
agreement at this time but
is not the proxy due to
underlying psychiatric
illness

Dr. [**First Name (STitle) **]
from neurosurgery held family
meeting and explained grave
prognosis to the family.

lengthy discussion with the son
who is health care proxy he
wishes to pursue comfort
measures due to severe and
unrevascularizable cad
daughter is not in agreement
at this time but is not the
proxy due to underlying
psychiatric illness

Full code
status

Code: FULL; Discussed
with daughter and HCP
who says that patient is in
a Hospice program with a
”bridge” to
DNR/DNI/CMO, but
despite multiple
conversations, the patient
insists on being full code

CODE: Presumed full

Code: FULL; Discussed with
daughter and HCP who says
that patient is in a Hospice
program with a ”bridge” to
DNR/DNI/CMO, but despite
multiple conversations, the
patient insists on being full
code

CODE: Presumed full


