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Abstract. We consider the task of biclustering healthcare providers
(≈ 106), procedures (≈ 104), and drugs (≈ 103) based on 2015 counts
of claims by provider. The problem with many clustering methods is the
scale of the data and the sparse count data where the notion of “dis-
tance” is unclear. We use neural networks, which are frequently used
for representation learning, to represent the sparse high-dimensional in-
formation with a low-dimensional embedding. While previous work has
performed standard clustering methods in the embedding space, we in-
stead leverage a low-dimensional embedding with geometric constraints
that enables simultaneous image recovery and cluster determination.

1 Introduction

We consider the task of biclustering healthcare providers (≈ 106), proce-
dures (≈104), and drugs (≈103). Standard ontologies exist that group medical
providers, procedures, and prescriptions into categories, but these categories do
not always correspond to clusters that are relevant for every question of interest,
and some standard categories, like Internal Medicine, are quite broad. Instead,
we would like a tool that captures practice characteristics de-novo to compare
against collected measures and ontologies. This has several applications: we can
measure concordance of the existing hierarchies with those identified in data,
we can look at changes in practice patterns over time, we can investigate dif-
ferences in practice within and across nominal subgroups based on practice and
utilization, and we can investigate co-occurrence.

Many clustering methods perform poorly on this task because of the scale
of the data and because, in sparse count data, the most appropriate notion of
“distance” is not entirely clear. Additionally, centroid-based clustering in our
sparse count data space is problematic because identifying an appropriate cen-
troid location is non-obvious. Using the (possibly weighted) average value of
members assumes an L2 space which is problematic for high dimensional, sparse
count data. Moreover, it is well known that distances tend to be similar in high
dimensions, and this problem is only made worse by sparse count data.

In this work, we describe a method that learns a low-dimensional embed-
ding with geometric constraints that enables simultaneous image recovery and
cluster determination. We propose a generic architecture that simultaneously
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(1) optimizes image recovery in an autoencoding framework, (2) creates a low-
dimensional embedded representation of the high-dimensional space, (3) assigns
examples to clusters in a soft clustering, and (4) optimizes the quality of this
clustering.

Fig. 1. Autoencoder with clus-
tering module. Nodes are Input
(I), Output (O), Hidden (H), and
Cluster (C). H and O are con-
strained by batch cosine similar-
ity. H (h◦) and C are constrained
by batch cosine similarity.

Several authors have recently proposed
methods that are conceptually similar to our
contribution. For example, [5] also formulates
a method that integrates a clustering module
in a deep learning framework, as does [4]. How-
ever, both these methods are based on identify-
ing centroids in the latent space, which is not
appropriate for our data. Other related work
includes methods to learn metric embeddings
with neural networks, e.g., [2], but as these
methods do not incorporate a clustering objec-
tive in the neural network, the learned embed-
ding is not necessarily suitable for clustering.

In our application, cosine similarity is ap-
propriate, so we use it in our examples. Many
healthcare datasets consist of sparse count
data in high-dimensional spaces as a conse-
quence of counting visits, billing codes, proce-
dure codes, drug prescriptions, etc. Our tool is well-suited to data of this nature.

2 Method

Consider a sparse count matrix with N rows and K columns. Define M
an N ×K as a matrix with elements log transformed using the function f(x) =
log(1+x). We are interested in clustering over rows (providers) and columns (pre-
scriptions and procedures). We will consider clustering across rows and columns
separately. For each case, we construct an autoencoder consisting of an encoder
Ψ1 and a decoder Ψ2. Define the hidden representation h of size H such that
Ψ1(M) = h and M̂ as the reconstruction given by Ψ2 ◦ Ψ1(M) = M̂ . Define Ψ3

as the function transformation for the clustering module that takes as input h
and outputs cluster probabilities c: Ψ3(h) = c. Fig. 1 illustrates the framework
for the neural network.

For log-transformed sparse count data, cosine similarity is a useful distance
representation. However, computing the cosine similarity for all pairs may be
problematic when N is large: O(N2). We propose to learn a hidden represen-
tation h = {h◦, h||·||} where the cosine similarity between examples in M is
approximately preserved in h◦ of size H − 1 units and where the final unit h||·||

captures information in the norm. To achieve this, we define batch cosine simi-
larity (O(B2)) and its loss Lh◦,O as a penalization to the autoencoder loss.

Define batch size B such that hB and M̂B are of size B × {·} for H and M
respectively. Let δ(xi, xj) be the pairwise cosine similarity. Define δB the batch
cosine similarity, i.e. δB({x1, . . . , xB}) = [δ(xi, xj)]ij ∀i, j ∈ {1, . . . , B}. Then,

Lh◦,O = 1
B ||δB(h◦B)− δB(M̂B)||22.
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Layer Index Size Act.
(Input) – B ×K
Dense 0 B ×H LReLU
Haar wavelet – B ×H –
Expand, permute – B ×H × P –
Pool 1 B ×H –
Sum (0) and (1) – B ×H –
Batch norm – B ×H –
Dense – B ×H LReLU
Batch norm – B ×H –
Dense – B ×H LReLU
Batch norm – B ×H –
Dense – B ×H LReLU
Dense – B ×H LReLU
(Hidden) 2 B ×H
Dense – B ×H LReLU
Dense – B ×H LReLU
Dense – B ×K LReLU
(Output) – B ×K

Copy (2) – B ×H –
Dense – B ×H LReLU
Dense – B ×H LReLU
Dense – B × C Softmax
(Cluster) – B × C

Table 1. Deep network architecture

While Lh◦,O encourages matching

angles in h◦ and M̂ , two vectors in h◦

could have the same cosine angle but
different embedding locations. Note
this could be problematic because the
hidden vectors are used to learn clus-
ter membership probabilities c. To en-
courage approximate injectivity, we
introduce the loss L||·||=1 that penal-
izes hidden representations away from
the surface of the unit norm hyper-
sphere. We could enforce this as a
hard constraint, however, the ability
to violate the constraint may facilitate
alignment of the embedded represen-
tation angle with that of the output
space.

The hidden representation h◦ pre-
serves angular distances of the output
space, and its unit norm and approximate injectivity are useful for our cluster-
ing. Note that for a probability vector that sums to 1, its element-wise square
root vector has unit norm and can be interpreted as an angle. Therefore, we can
match the angular representation of c

1
2 to that of h◦ with batch cosine similarity.

Define cB = Ψ3(hB) the set of probability vectors indicating cluster mem-

bership. Note that the cosine similarity of cB
1
2 is non-negative and we are not

interested in incurring loss due to differences between 0 and negative cosine
similarities. We define Lc,h◦ = 1

B ||δB(cB
1
2 )−max(δB(h◦B), 0)||22.

We add two more loss terms to assist representation learning: h spread and
c entropy. For level sets of batch cosine loss, we prefer that embedded vectors
in h be spread apart to minimize coincidental overlap for suboptimally located
members of h and for future unseen points from the underlying distribution.
We also impose an entropy loss term to encourage cluster probabilities to be
spread across more than one cluster to encourage exploration in cluster mem-
bership and avoid local optima. Thus, our overall objective function is

∑
i λiLi

for Li ∈ {LM,M̂ ,L||h◦||=1,Lh◦,O,Lc,h◦ ,Lspread,Lentropy}. We set λi respectively:

λi ∈ {1, 10−1, 10−1, 1, 10−4, 10−4}.
The autoencoder framework we adopt is shown in Table 1. The permute-

pool layer [3] copies the tensor P times, permutes the values, and performs
max-pooling over the P dimension with size 3 and stride 2. For our experiments
we set B = 128, P = 4, and H = 128. We set C to be twice the desired
number of centroids, and in post-processing merge the clusters identified based
on maximum pairwise cluster cosine similarity.

3 Results

Evaluation on simulated data. We evaluate our method on real and
simulated data. First, on simulated data generated so as to be similar to our
target healthcare application, we show that our method typically finds a clus-
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Rand Jaccard Recall Precision
Data Ours OKM HKM Ours OKM HKM Ours OKM HKM Ours OKM HKM
baseline 1.00 0.84 1.00 1.00 0.12 0.99 1.00 0.14 1.00 1.00 0.58 1.00
samples=100 1.00 0.85 0.91 0.90 0.11 0.17 0.90 0.12 0.19 1.00 0.60 0.65
dims=100000 0.93 0.21 0.48 0.08 0.04 0.04 0.14 0.04 0.05 0.17 0.87 0.62
explode=1000000 1.00 0.84 1.00 1.00 0.13 1.00 1.00 0.14 1.00 1.00 0.59 1.00
centroids=100 0.99 0.81 1.00 0.47 0.03 0.95 0.47 0.03 0.96 1.00 0.64 0.99
sd=0.1 0.93 0.28 0.78 0.08 0.04 0.05 0.15 0.04 0.06 0.15 0.79 0.29

Table 2. Quantitative evaluation on simulated data, relative to the true cluster la-
bels. Data are generated as described in the text, with baseline parameters set at
centroids=25, samples=1000, dims=1000, sd=0.01, explode=10000, and varied in each
dataset as indicated. Data are clustered using our method (Ours), k-means in the orig-
inal, input space (OKM), and k-means in the hidden, embedded space we construct
(HKM). The best score is in boldface. Our method almost always outperforms k-means
in the original space, and usually outperforms k-means in the hidden space.

tering that, under several measures, is more similar to the ground truth labels
from the simulation than competing methods are.

We generate data as follows. Centroids are sampled from a multivariate nor-
mal N (0,1) and normalized onto the unit ball. We generate an equal number
of samples for each centroid by adding noise distributed according to N (0, σ2I).
Then we translate these points away from the origin by multiplying each point
by an “explosion” factor κ drawn from a random uniform on [1, κ]. Thus, the
simulation is parameterized by the number of centroids, the number of dimen-
sions, the explode factor, the number of samples, and the standard deviation of
the noise. We set each parameter to a baseline level and vary one at a time to
test our algorithm.

We cluster the data using our method, k-means in the original simulated
data space, and k-means in the hidden space. We evaluate results of these clus-
tering methods using precision, recall, the Rand index, and the Jaccard index,
all relative to the ground truth labels from the simulation. Results are shown in
Table 2. By these measures, our method almost always outperforms k-means in
the original space, and usually outperforms k-means in the hidden space.

Evaluation on real healthcare data. As a case study to demonstrate our
method’s real world significance, we used our method to bicluster healthcare
providers, prescriptions, and procedures based on the number of prescriptions
and procedures administered by each provider, and the number of providers
administering each prescription or procedure as recorded.

Specifically, we used Medicare Provider Utilization and Payment Data: Part
D Prescriber Summary Table CY2015 [1], which tabulates all prescriptions given
under the Medicare Part D program in 2015 in the United States. In the interest
of space, we only show results for a clustering of providers based on the pre-
scriptions they gave. Our physician authors assessed the quality of the resulting
clusters.

The clusterings formed by our method and by k-means, each with 20 clusters,
are shown in Table 3. Our method produces qualitatively better clusters than
k-means does. For example, our clustering consistently includes a larger frac-
tion of specialists in the specialist cluster, e.g., Dentist (85k), Psychiatry (21k),
Emergency Medicine (20k). Our clustering, unlike k-means, also identifies clean
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obstetrics and hematology oncology clusters. K-means identifies a cardiology and
interventional cardiology cluster that our method does not, however our clus-
tering identified this cluster and merged it (Cardiology (18k), Nurse Prac (3k),
Internal Medicine (2k)) into the internal medicine subgroup in post-processing.

(a) Our Clustering (Top 3 Specialties)

Dentist (85k); Oral Surgery (3k); Podiatry (1k)
Internal Med (82k); Family Practice (82k); Nurse Prac (44k)
Psychiatry (21k); Nurse Prac (9k); Psychiatry & Neurology (6k)
Emergency Medicine (21k); Orthopedic Surgery (15k); Phys Asst (15k)
Optometry (18k); Ophthalmology (17k); Student (<1k)
Obstetrics/Gynecology (17k); Nurse Prac (2k); Phys Asst (<1k)
Gastroenterology (12k); Nurse Prac (3k); Internal Med (3k)
Dermatology (10k); Phys Asst (3k); Nurse Prac (1k)
Neurology (10k); Nurse Prac (1k); Psychiatry & Neurology (1k)
Urology (9k); Phys Asst (1k); Nurse Prac (1k)
Nurse Prac (8k); Phys Asst (6k); Emergency Medicine (6k)
Pulmonary Disease (7k); Allergy/Immunology (3k); Otolaryngology (2k)
Hematology/Oncology (6k); Nurse Prac (2k); Medical Oncology (2k)
Internal Med (5k); Emergency Medicine (3k); Nurse Prac (2k)
Phys Asst (4k); Nurse Prac (4k); Orthopedic Surgery (2k)
Dentist (3k); Emergency Medicine (2k); Phys Asst (2k)
Infectious Disease (3k); Obstetrics/Gynecology (2k); Nurse Prac (2k)
Pharmacist (2k); Nurse Prac (1k); Internal Med (1k)
Podiatry (2k); Nurse Prac (1k); Optometry (1k)
Physical Med/Rehab (2k); Podiatry (2k); Nurse Prac (2k)

(b) K-Means Clustering (Top 3 Specialties)

Dentist (52k); Nurse Prac (1k); Phys Asst (1k)
Nurse Prac (35k); Phys Asst (27k); Internal Med (27k)
Family Practice (23k); Internal Med (17k); Nurse Prac (10k)
Family Practice (22k); Internal Med (20k); Nurse Prac (4k)
Emergency Medicine (20k); Orthopedic Surgery (13k); Phys Asst (12k)
Dentist (19k); Oral Surgery (3k); Maxillofacial Surgery (1k)
Internal Med (16k); Nurse Prac (12k); Family Practice (9k)
Family Practice (16k); Nurse Prac (13k); Internal Med (11k)
Cardiology (14k); Nurse Prac (1k); Interventional Cardiology (1k)
Dentist (14k); Oral Surgery (<1k); Infectious Disease (<1k)
Optometry (12k); Ophthalmology (5k); Student (<1k)
Ophthalmology (11k); Optometry (2k); Student (<1k)
Internal Med (11k); Family Practice (10k); General Practice (1k)
Psychiatry (10k); Nurse Prac (3k); Psychiatry & Neurology (1k)
Psychiatry (8k); Psychiatry & Neurology (3k); Nurse Prac (3k)
Urology (8k); Phys Asst (1k); Nurse Prac (1k)
Neurology (7k); Nurse Prac (<1k); Phys Asst (<1k)
Pulmonary Disease (6k); Allergy/Immunology (2k); Otolaryngology (1k)
Neurology (3k); Nurse Prac (1k); Physical Med/Rehab (1k)
Rheumatology (2k); Physical Med/Rehab (2k); Nurse Prac (2k)

Table 3. Provider clustering by (a) our method, (b) k-
means; clusters (rows) with top specialties (number).

Our method also pro-
vides insight in regard
to providers in ontology
specialties that are not
as common. For exam-
ple, our method’s urol-
ogy cluster also includes
a large fraction of the
radiation oncologists in
our dataset. On detailed
assessment of this clus-
ter, we found that urol-
ogy medications tam-
sulosin and finasteride
were most commonly
prescribed in this clus-
ter and that radiation
oncologists most com-
monly prescribed tam-
sulosin, followed by hy-
drocodone/acetaminoph-
en and dexamethasone,
possibly for prevention
and treatment of ra-
diation therapy related
complications. Our clustering identified radiation oncologists and urologists as
being similar according to the drugs they commonly prescribe, a finding that
would not be identified through the use of a standard ontology alone. Future
work will involve exploration of comparisons with other scalable clustering meth-
ods and of pertinence to clinical and workforce questions, including nurse prac-
titioner and physician assistant implicit specialty characterization and opioid
prescription networks.
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