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ABSTRACT
Tax regulations and statutes are long, complex, and difficult to un-
derstand, and thus present the opportunity for undetectable legal
avoidance. Our project goal is to facilitate a new approach to statute
composition wherein a logic representation of existing law would
be extended and checked before its translation to natural language.
We envision a software pipeline that would automatically parse
a requested section of the Internal Revenue Code (IRC) and accu-
rately express it with a default logic representation. Herein, we
evaluate the effectiveness of an end to end assembly of existing
software tools. This pipeline uses regular expression search on the
Code’s common structural text patterns and conducts semantic
parsing with various open-source natural language parsers. Using
IRC Section 163(h) which we have manually expressed in default
logic, we evaluate the resulting intermediate logic representations.
We observe that the semantic complexity of tax regulations over-
whelms the parsers’ capabilities. Their shortcomings will have to
be addressed as a prerequisite to a component that will, starting
from the intermediate logic, automatically express the default logic.
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1 INTRODUCTION
United States tax law, as represented in the Internal Revenue Code
(IRC) and its accompanying regulations, is notoriously complicated.
This complexity increases the cost of tax compliance. Even more
alarming, both individuals and corporations take advantage of the
law’s complexity to reduce their taxes by engaging in legal avoid-
ance. Legal avoidance describes actions that are technically legal
but which do not fall within legislators’ intentions. Fundamentally
we are interested in the way in which tax law fails to prevent legal
avoidance. Our central research question is how formulations of
statutes and regulations can be improved to reduce legal avoidance.

Tax avoidance occurs because taxpayers are able exploit ambigu-
ities within the law or take advantage of disparate legal treatment
of similar concepts (i.e., engage in regulatory arbitrage) to reduce
their tax owed in a way that is legal but is unintended by the law.
Because it is almost impossible to foresee avoidance by manually
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examining tax regulations and statutes, multiple law and technol-
ogy projects have modeled the law and used artificial intelligence to
enlist computers for automatic reasoning, see [1, 17, 19, 24, 25]. Ap-
proaches vary in whether they manually or automatically interpret
the meaning of the IRC text and whether they resort to an ad hoc
representation of it or different logical formalisms. Modeling tax
law is challenging because tax law is represented in the IRC with
natural language. Natural language is obviously useful for humans
to read and interpret. However, it is very difficult for computers.
Thus, a critical step is to convert the law from its natural language
representation to some formal representation that a computer can
read and use for inference, i.e. semantically parse it.

Our project proposes to: (1) Employ a version of default logic
(DL) to represent a portion of tax law relevant to the study
of avoidance. This encompasses the work of Lawsky et. al. [14],
which advocates formalizing tax law, and philosophical logic [7] pre-
senting a version of DL that may be particularly well suited to for-
malizing the tax law. (2) Provide a software system that collab-
oratively helps a legal expert to reason about legal logic in
this new formalism.We envision designing software that trans-
lates and represents relevant sections of the IRC or proposed new
statutes as DL to whatever extent that is feasible. In infeasible cir-
cumstances, the system teams upwith its expert to accomplish tasks
more efficiently and with improved ease. The expert is expected
to query the logic system they have set up to determine whether
avoidance is possible under its meaning.

We defer our rationale and description of our DL to prior contri-
butions [14, 15]. Here, we focus on automation technology. To date
we have conceptually designed an end-to-end IRC-to-default-
logic1 pipeline that translates IRC code in XML into supernormal
DL, see Figure 1. We have interfacing components which allow us
to focus on two stages independently. The goal of the first stage is
to automatically parse the text of the relevant regulations into an
intermediate logic representation. In this contribution we report
our progress in implementing the first stage. The aim of the second
stage is to accurately transform the intermediate logic representa-
tion to background theory and the ordered default rules that are
supported by a theorem prover, allowing queries and propositions
to be tested around taxation concepts such as deductibility. To date,
we have assembled a solver and set it up to handle simple examples
of our DL, but have deferred the most challenging task of accurate
transformation.

1https://github.com/mpertierra/irc_to_default_logic

https://github.com/mpertierra/irc_to_default_logic
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Figure 1: Project pipeline, script: pipeline.py.

For the first stage, parsing the regulations, we have taken two
specific strategies: (1) We exploit the style guidelines for drafting
legislation [18] to extract definitions and rules from the IRC text
by pattern matching with regular expressions, a relatively simple
and a semantically superficial approach. (2) We leverage existing
natural language processing semantic parsers to extract formal
representations from text. These currently expect relatively simple
input sentences. As a result, we must evaluate their capacity. Our
evaluation is on the definitions, rules and DL representation of
elements of Section 163(a), previously identified by an expert [15].

The contributions of this paper are: (1) The introduction of our
project with its goals and approach, encompassing a version of DL
supporting the expression of tax statues relevant to our focus on
legal avoidance. (2) The introduction of IRC-to-default-logic,
open source software that automates our approach. (3) A demonstra-
tion and evaluation of IRC-to-default-logic. This has revealed
the merits and open issues arising from stepping off with existing
software tools.

In § 2, we discuss related work. In § 3, we present our method.
In § 4 we present the results. In § 5 we conclude.

2 RELATEDWORK
To express natural language completely and precisely in a formal
representation upon which a computer can meaningfully act, we
need to capture its semantics. This can be partially accomplished by
patternmatching and by semantic parsing.We also face the question
of what formalism is best suited as a target output representation.
We review: § 2.1 text extraction and ad hoc representations. § 2.2
formalisms for representing law, as well as the version of DL we
use. § 2.3 relevant existing semantic parsers.

2.1 Extraction & Ad Hoc Representation
Previous work has focused on pattern-based rule extraction from
law, see e.g. [25]. These efforts have typically focused on extracting
higher level elements from text, such as exception phrases, rather
than translating to a formal representation. A tax avoidance project
named Stealth does manual formalization and translation [11] and
uses an ad hoc rule-based representation that supports tax calcu-
lations. The Tax Knowledge Adventure [1] ontology reuses the
WordNet and LKIF-Core ontologies for a set of terms extracted
from in the “open-text” from IRC and Tax resources. IRC sections
301, 302, 317 are represented as concepts in the ontology. Rules
are “too complicated” for OWL assertions; instead, rules are class
member functions in an object oriented programming language.

2.2 Formal Represention of Statute Law
Standard formal logic is not the best representation to accommo-
date statutory reasoning. One better choice is defeasible reasoning,
i.e. reasoning that may result in conclusions that can be defeated

by subsequent information [14]. This reasoning is modeled by DL
in [12], a non-monotonic logic. A metarule is required in the DL
system to indicate how to reason about apparently conflicting statu-
tory rules. The DL formalization fits with the IRC structure making
it easier to accurately express the statutory meaning. Much of this
meaning can be found by paying attention to the level-based style
or structure of the IRC, e.g. general rules are followed by excep-
tions.2 There may be a variety of different interpretations of law,
depending on the precise question one is asking. DL’s formaliza-
tion provides appropriately different answers by depending on the
priority the formalizer gives to the various rules.

There have been various attempts to formalize legal text, whether
that be via some programmable representation, an ontological repre-
sentation, or some other semi-formal representation that is not tied
to any implementation. For example, Sergot et. al. [19] translated
the British Nationality Act into Prolog [8]. This entailed manually
extracting the meaning from the Act then programming the Prolog
rules. Using the logic of Prolog presented difficulty because the
British Nationality Act expresses non-monotonic logic [19]. Other
work has explored the use of non-monotonic logics, e.g. Defeasible
Logic [24], to express the law, which is tested on a selection of Sec-
tion 8.2 of Australia’s Telecommunications Consumer Protections
Code (2012) on complaint management.

2.3 Semantic Parsers
Another body of work has focused on automatic translation of tax
law to formal representation using semantic parsers. A semantic
parser takes text as input and outputs a formal representation, e.g.
first-order logic. Semantic parsers are usually initialized with ma-
chine learning. They are trained on pairs of sentences and their
corresponding logical representations. Much work focuses on train-
ing models for specific domains. Others are trained on a variety of
corpora to achieve wide coverage. Semantic parsers include:

1. C&C/Boxer Combining C&C tools [6]3 and Boxer [5]4.
2. JAMR A graph-based parser [9] for Abstract Meaning Rep-

resentation (AMR) [4].
3. Cornell AMR A CCG-based parser for AMR [3].
4. Cornell SPF A semantic parsing framework that uses CCG

to implement various algorithms. [2]
5. CAMR A transition-based, AMR parser. [22]
6. NL2KR A platform with a CCG-based parser. [21]
The lack of a large machine learning data set available for law

texts (training pairs of input text and output formal representation)
makes it difficult to train a semantic parser specific to legal text.
In [17], McCarty proposes a semi-supervised learning approach
based on word embeddings computed from legal texts that could
potentially be used to overcome this problem; however, this is still
theoretical and has yet to be implemented.

Some research has taken a different approach by experiment-
ing with wide-coverage semantic parsers. Work by Wyner et. al.
[23] shows that this is not entirely unreasonable for short, simple
sentences from legal texts, using C&C/Boxer parser. Gaur et al.
[10] attempt the same task with their own semantic parser, NL2KR.

2The IRC does not necessarily follow the recommended structure.
3Consists of a POS-tagger, Named-Entity Recognition, and a CCG [20] parser.
4Maps CCG derivations output to Discourse Representation Structure [13]
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[16] seek to show that the distinction between logical and statistical
approaches is being closed with the development of models that
can learn the conventional aspects of natural language meaning
from corpora and databases.

3 METHOD
We have designed IRC-to-default-logic, an open source soft-
ware pipeline, see Figure 1. The top level code, pipeline.py, takes
as input the number of a specific section (or lower level unit) of the
IRC to be parsed and a desired final representation. The pipeline
consists of 4 functional modules:

1. Crawl: irc_crawler.py, Input: XML formatted IRC code. Out-
put: A pipeline level data structure that mimics the level structure
of the IRC.

2. Extract: definition_extractor.py& rule_extractor.py,
Output: first-order logic of definitions and text segments of rules.

3. Parse: candc_boxer_api.py and parse_amr.py Input: a “sen-
tence” aka text segment, Output: an intermediate formal represen-
tation.

4. Order: Output: DL.
The modules in IRC-to-default-logic are:

1. Crawl This module references the IRC in its XML format
and isolates an element at any specified level. We represent the
IRC in terms of abstract elements called “levels”. Each level can be
one of the following: section, subsection, paragraph, subparagraph,
clause, sub-clause, item, sub-item, sub-sub-item. These are in hi-
erarchical order; each level can be nested in levels that precede it.
Each level can optionally contain any of the following: heading,
chapeau, content, sub-levels, continuations. The heading indicates
that this paragraph states a general rule. The chapeau sets up the
beginning of the rule. The sub-levels, in this case sub-paragraphs,
provide conditions on the contract mentioned in the chapeau, and
the continuation states the conclusion of that rule.

2. Extract This module pattern matches and extracts (1) defined
terms using a single regular expression, (2) definitions given the
retrieved terms using a single regular expression (3) “general rules”,
“exceptions”, and “special rules”, by searching for levels with headers
matching those terms. It outputs defined terms and first-order logic
expressions representing ontological relations between defined
terms. It outputs text for extracted rules.

The regular expressions are based upon the style guidelines for
drafting legislation in a manual entitled “House Legislative Counsel’s
Manual on Drafting Style” [18]: (1) General rule – State the main
message. (2) Exceptions – State the persons or things to which the
mainmessage does not apply. (3) Special rules – Describe the person
or things – (a) to which the main message applies in a different
way; or (b) for which there is a different message.

Themanual lists three phrases that are generally used to “lead in”
a definition: • “For purposes of this [provision]” • “In this [provision]”
• “As used in this [provision]”, where [provision] is a placeholder for
the level type, such as “paragraph”. The manual also indicates that
drafters should begin a definition (after the lead in) with the phrase
“the term”, preceding it. The word or phrase following “the term”
will specify the type of definition. There is no explicit guideline in
the manual for what this should be. However, through using regular
expressions, we have observed that the vast majority of definitions

use the word “means” after the defined term. Other less common
phrases used instead are “has the meaning”, “includes”, “does not
include”, “shall include”, and “shall not include”.

3. Parse This component parses initially with C&C Boxer. It
displays the result in both Discourse Representation Structure (DRS)
and First-Order Logic. The parser will fail on sentences that are
too long (of which there are a few in the IRC). CAMR is called if
C&C/Boxer fails, and outputs the result in AMR.

4. Order We use NLTK’s logic package to parse and represent
the first-order logic expressions that make up the background the-
ory and default rules of our supernormal DL. We use NLTK’s in-
ference package to access the library’s theorem prover as well as
interface with the Mace4 model builder, which we use to process
default rules, and query the supernormal DL.

After the pipeline completes (1–4), it is possible to query and
prove the resulting DLwith default_logic.py. This will reference
background theory and default rules. The background theory is a
set of first-order logic expressions that express any information
that is already established. The default rules are a list of rules,
expressed using first-order logic, that are ordered by priority. These
default rules are processed, starting with the highest-priority rule,
and we extend our theory using these rules. We stop processing
default rules once a default rule being processed is inconsistent with
our current theory [7]. The query formal representation we use is
supernormal DL, a variant of DL, particularly suited for statutory
law as detailed in [15].

4 EXPERIMENTS
Our experimental starting point is a set of elements in Section 163
that have been represented as DL in [15]. We worked first to achieve
as complete and accurate extraction and parsing as possible of
this set, using the expert translation as ground truth. We then
applied the regular expression(s) we used in extraction to the rest
of the IRC. We are interested in how many relevant rules and
definitions can be parsed and represented in the entire IRC. More
broadly we are looking for hints as to howmuch knowledge beyond
the IRC we may need. For example, “interest” is not defined in
the IRC but its definition is important. For that extra knowledge,
we are interested in learning how much may need to be elicited
from experts versus from another digital resource. We present our
experiments following the IRC-to-default-logic pipeline.

4.1 Definition & Rule Extraction
The pattern-based approach has shown some promising results.
Although the lead-ins listed in Section 3 are used in many sections
of the IRC, we find that the majority of definitions do not follow
the style manual. The pattern: the term (?:("[^"]+")|(âĂŸ[^âĂŹ]+âĂŹ))5 re-
trieves 4971 matches in the entire IRC (not including notes, repealed
sections, omitted sections). Some of these matches are not found in
definitions and are instead just references to a defined term. When
we refine the pattern:

the term (?:("[^"]+")|(âĂŸ[^âĂŹ]+âĂŹ)) (?:means|includes|does not include|has the meaning|

shall include|shall not include)

we retrieve 4710 matches in all of the IRC, about 94.75% of all
occurrences of the first pattern.

5See https://docs.python.org/2/library/re.html

https://docs.python.org/2/library/re.html
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total # of sentences: 423
min: 4, median: 48, mean: 64, std: 54, max: 509

outlier cutoff: 300
# of outliers: 3

# of sentences that crash: 91 

total # of sentences: 904
min: 3, median: 45, mean: 55, std: 46, max: 882

outlier cutoff: 300
# of outliers: 2

# of sentences that crash: 135 

total # of sentences: 1136
min: 2, median: 51, mean: 65, std: 55, max: 471

outlier cutoff: 300
# of outliers: 13

# of sentences that crash: 286

(a) Frequency of tokens in IRC different rules.

total # of sentences: 4701
minimum token count: 6
median token count: 50
mean token count: 63
standard deviation: 59

maximum token count: 1863
outlier cutoff: 300
# of outliers: 28

# of sentences that crash: 1117

(b) Frequency of tokens in IRC definitions

Figure 2: Output from our analysis scripts for IRC rules and
definitions.

Because the number of tokens in a sentence is a limit for the
parsers we use, we also count the number of tokens we retrieve
for exceptions, special and general rules. Figures 2a and 2b show
histograms of the number of tokens found in each rule (Figure 2a)
and definition (Figure 2b), as well as some statistics of token counts
for the extracted rules and definitions6.

4.2 Semantic Parsing
Subsection 163(a) is a general rule, as indicated by its header “GEN-
ERAL RULE”. It states “There shall be allowed as a deduction all
interest paid or accrued within the taxable year on indebtedness.”.
This sentence is one of the shortest sentences in the entire sec-
tion, and C&C/Boxer and CAMR were unable to correctly parse it.
They generated different outputs. The DRS outputs generated by
C&C/Boxer are shown in Figure 3a and the converted first-order
6Note that crashes in IRC-to-default-logic comes from C&C/Boxer calls.

(a) C&C/Boxer DRS output

(b) C&C/Boxer FOL output

(c) CAMR AMR output

(d) CAMR FOL output

Figure 3: Parser outputs for section 163, subsection a.

logic in Figure 3b. From Figure 3a, we see that the operands of the
“or" were wrongly parsed into “There shall be allowed as a deduction
all paid" and “accrued within the taxable year on indebtedness", as
indicated by the two boxes separated by the | symbol. However,
the two innermost boxes separated by the -> symbol bear some
semblance to a simpler statement of the rule that if x is an inter-
est then x is deductible. Figure 3c shows CAMR outputs in AMR
representation and Figure 3d the converted first-order logic. From
Figure 3c, we see that CAMR’s output is an invalid AMR graph,
as the x4 node contains two edges with the same relation ARG1. It
also misrepresents the “or" operation, as its operands have concepts
“all interest", “pay", and “accrue". The “or" operation should have
operands “pay" and “accrue", and should be modifying “all interest".
However, it did capture the fact that a deduction should be allowed,
and the representation is less convoluted than that of C&C/Boxer.

4.3 Default logic representation
Figure 4 shows the DL representation for Section 163 (h), used for
determining whether interest, such as personal interest or qualified
residence interest, is deductible. The background theory includes re-
lations between defined terms, extracted by definition_extractor.py.
Not all of these expressions in the background theory are necessary
for determining whether personal interest and qualified residence
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Figure 4: DL representation’s background and default rules,
from pipeline.py, for Section 163, subsection (h).

interest are deductible. Also, the expression personal_SPACE_interest(y)
is one that we hand-coded, as this represents the query that one
might inject into the background theory to query the DL the-
ory about whether or not “personal interest" is deductible or not.
However, the expression all x.(personal_SPACE_interest(x)
-> interest(x)) also had to be hand-coded; the term “interest"
is not a defined term, and so this relation was not extracted by
definition_extractor.py. The default rules shown were also
hand-coded, as our semantic parser approach was not able to parse
the sentences corresponding to these rules.

5 CONCLUSIONS & FUTUREWORK
In this paper we have presented software tools that make use of
existing work in the field of semantic parsing, as well as having
shown how we exploit the drafting style of the law to make use of
regular expressions for extracting rules and definitions. We take
our first step towards automatically converting the law from its
natural language representation to a DL, that a computer can easily
read and use for inference.

We extract formal representations from definitions and rules,
by exploiting common structural patterns in the IRC. We are able
to extract some simple formal representations from definitions in
certain sections. However, extracting rules is not straightforward,
most rules do not have an easily exploitable pattern and require
deeper analysis.

Wemake use of existing natural language parsing algorithms that
are capable of extracting formal representations from text. These
parsers will only work adequately when the input text consists
of short, simple sentences. Unfortunately, tax law in its textual
representation consists of long, complex sentences that are difficult
even for humans to understand. As a result, this approach has been
only marginally successful.

As future work, we will investigate whether software could han-
dle a large number of cases while flagging ambiguities it encounters.
These ambiguities could be passed to an expert for assistance. This
task could be sourced to law students or a pool of experts.
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