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Abstract 

Biochips present a new technology that allows to 
analyze the level of expression of genes, among the 
techniques that are applicable on this technology is 
the biclustering. The main objective of the latter is 
to extract groups of genes taking into account the 
coherence between all the conditions that 
characterize them. There are a variety of 
biclustering algorithms that have already been 
proposed in the field of biochips. Each of these 
algorithms differs from the others by a set of 
characteristics. In this paper, we focus on the 
BicFinder algorithm, where we propose to make 
improvements in order to make it faster. In the first 
place, we will present a fast variant of this 
algorithm. Then we will present our version of 
algorithm named BicOPT followed by a set of 
experiments applied to real data. 

Keywords biochips, biclustering, BicFinder, 
BicOPT, Evaluation functions, experimental study. 

1  Introduction 

In a data matrix, we can find links between the set of rows 
or between the set of columns, or between the set of rows 
and columns simultaneously. A technique called clustering 
only allows us to detect the first and second cases. So, this 
technique remains too simplistic to determine the third 
case. Another more interesting technique, called 
simultaneous classification, cross-classification or block 
classification. It is also referred to as a biclustering [8,9] 
hence the objective of this approach is to extract the groups 
of rows while taking into account the consistency with all 
the columns. This technique can be used in several fields, 
among which we mention that of Bio-chips. 

The input file for a biclustering algorithm of biochip data is 
a data matrix, where the rows are filled by the names of the 
genes and the columns are the conditions. So, let a data 

matrix M where n is the number of rows and m is the 
number of columns. A bigroupe B is a set of pairs (I, J), with 
I is a subset of rows of M and J is a subset of M columns, all 
of these subassemblies have a sub matrix called bigroupe. 

The aim of the clustering algorithms is to produce a 
coherent, stable and homogeneous bigroup. The 
homogeneity criteria vary from one algorithm to another. 
Generally, the biclustering problem is NP-difficult. We then 
used heuristic algorithms to construct biclusters close to the 
optimal. The problem of biclustering can be formulated as 
following [2]: 

𝑓(𝐵𝑜𝑝𝑡) = max 𝑓(𝐵) (1)
  

with • BBC(M) 

• f  is an objective function measuring the 

quality i.e., the degree of coherence, of a 

group of bigroupes. 

• BC(M) : is the set of all groups of possible 

bigroupes associated with M 

 

Madeira et Oliveira [9] propose to classify the algorithms of 
biclustering according to the approaches used for their 
construction. These approaches are classified according to 
five categories [7]: IRCCC (Iterative Row and Column 
Clustering Combination), DC (Divide and Conquer), GIS 
(Greedy Iterative Search), EBE (Exhaustive Bicluster 
Enumeration) et DPI (Distribution Parameter 
Identification). BicOPT is based on the BicFinder algorithm 
following the Greedy Iterative Search approach of a 
polynomial complexity O(n⁴m). So, in this paper we will 
present in the first place the BicFinder algorithm. In the 
second place, we will detail our BicOPT contributions and 
we will pass to the illustrations of the experimental study of 
our approach, we will end with a conclusion. 



2  BicFinder 

BicFinder is a systematic greedy algorithm, its polynomial 
complexity is equal to O(n⁵m), based on the construction of 
an acyclic directed graph (DAG). BicFinder allows to extract 
and produce a set of bigroupes close to what a biologist can 
do by looking for the maximum homogeneous zones. The 
stage of generation of bigroupes passes through 4 essential 
steps first of all the discretization of matrix M in M' (see 
equation 1), then the construction of DAG from M', then the 
extraction by applying the function ACSI (see equation 2) 
and validation using the ASR function (see equation 3). 

Algorithm 1. BicFinder [1] 

1: Input: M, α, β ; Output: B 
2: Discretize M using Equation 7 to obtain M'// 
Step of discretization 
3: Build the DAG associated with M'// 
Construction Step 
4: B = Ø // Extraction step 
5: For any nᵢ in the DAG do 
6: I′ᵢ=Ø; J′ᵢ=Ø; // Bi = (I′ᵢ , J′ᵢ) 
7: Sort arcs of nᵢ in decreasing order according to 
the number of true 
8: For any edge (nᵢ,nᵏ) do 
9: Ic=I′ᵢ U {gᵢ,gk}; Jc=J′ᵢ ᴜ {cl,cl+1 with T(M′[i, l] = 
M′[k, l]) = true}; 
10: If ACSIᵢ(Ic, Jc) >= α then Bᵢ = (Ic, Jc) 
11: End 
12: B = B U Bi 
13: End 
14: For any bigroupe Bi = (I′i , J′i) in B do // 
Selection step 
15: If ASR(I′i , J′i) < β then B = B\Bi 
16: End 
17: Return B 
 

Group extraction processes are subdivided into four main 

steps (see Figure 1). 

 

Figure 1.BicFinder algorithm process 

2.1 Discretization 

To compute ACSI, we must first discretize the initial matrix 
M (I, J), I = {1, 2, ..., n} and J = {1, 2, ..., m} Matrix M '(see 
equation 7). 

𝑀′[𝑖, 𝑙] {

1 𝑖𝑓 𝑀[𝑖, 𝑙] < 𝑀[𝑖, 𝑙 + 1]

−1 𝑖𝑓 𝑀[𝑖, 𝑙] > 𝑀[𝑖, 𝑙 + 1]

0 𝑖𝑓 𝑀[𝑖, 𝑙] = 𝑀[𝑖, 𝑙 + 1]
 

(2)
  

With i[1, 𝑛] and l[1. . 𝑚 − 1] 

The discretization allows us to know the shape of the gene 
expression profile (which can be either monotonically 
increasing or monotonically decreasing ...). 

2.2 Construction of DAG 

Our graph is associated with the matrix M ', where each 
node nᵢ has a gene gᵢ. Two nodes nᵢ and nⱼ are connected by 
an arc if and only if (i> j). CSl ᵢ, ⱼ is assigned for each arc (nᵢ, 
nⱼ). 

 

Figure 2.  Example of DAG 

2.3 Extraction: ACSI 

Is a extraction function based on Concordance Index (CI) 
[12]. To calculate ACSI, the CSI function must be calculated 
for each arc of the graph (Dag) (see equation 3). 

𝐶𝑆𝐼(𝑖, 𝑗, 𝑘)

=
∑ 𝑇(𝑀′[𝑖, 𝑙] = 𝑀′[𝑗, 𝑙] = 𝑀′[𝑘, 𝑙])𝑚−1

𝑖=1

MaxCSLᵢ
 

(3)
  

 

with i [1. . n − 2], j[2. . n − 1], k[3. . n], 1[1. . m

− 1]and i < j < k 

 

𝐴𝐶𝑆𝐼ᵢ(𝐼′, 𝐽′)

= 2 ∗
∑ ∑ 𝐶𝑆𝐼(𝑖, 𝑗, 𝑘)𝑘∈𝐼;𝑘≥𝑖+1𝑗∈𝐼;𝑗≥𝑖+1

|I′′|(|I′′|  −  1)
 

(4)
  

 
Our bigroup starts with an initial arc (MaxCSL ᵢ, ⱼ) and at 
each iteration we add an arc if and only if ACSIᵢ (I ', J')> = α 
otherwise we pass to the next arc. 

2.4 Evaluation: ASR 

The last step used is the evaluation of bigroupes generated 
by applying ASR function. 



𝐴𝑆𝑅(𝐼′ , 𝐽′)

= 2 max {
∑ ∑ 𝑝𝑖𝑗𝑗∈𝐼′;𝑗≥𝑖+1𝑖∈𝐼′

|𝐼′|(|𝐼′| − 1)
,
∑ ∑ 𝑝𝑖𝑗𝑙∈𝐽′;𝑙≥𝑘+1𝑘∈𝐽′

|𝐽′|(|𝐽′| − 1)
} 

(5)
  

 

with 
pᵢⱼ = 1 −

6 ∑ (𝑟𝑘
𝑖  (𝑥𝑘

𝑖 ) − 𝑟𝑘
𝑗
 (𝑥𝑘

𝑗
))2𝑚

𝑘=1

𝑚(𝑚2 − 1)
 

(6)
  

 
A bigroup is valid if its ASR> = β. 

2.5 Clustering: K-medoids 

After the presentation of the algorithm and the explanation 
of its operating principle, we describe, in this section, the 
BicFinder process using an illustrative example. 

So, we fix the parameter α which controls the extraction and 
addition of the arc and the parameter β which controls the 
validation of bigroupes. Let the parameters α = 0.75, β = 0.5. 

Table I. Data Matrix M 

 C0 C1 C2 C3 C4 C5 

g0 13 7 5 20 10 -5 

g1 15 10 20 30 -2 15 

g2 15 9 8 20 10 10 

g3 3 8 10 9 15 4 

g4 13 15 17 8 3 1 

g5 20 8 12 25 27 1 

g6 13 15 17 8 3 1 

Table II. Matrix M' after discretization 

 C0 C1 C2 C3 C4 

g0 -1 -1 1 -1 -1 

g1 -1 1 1 -1 1 

g2 -1 -1 1 -1 0 

g3 1 1 -1 1 -1 

g4 1 1 -1 -1 -1 

g5 -1 1 1 1 -1 

g6 1 1 -1 -1 -1 

The DAG is constructed from the matrix M '. The arcs are 
sorted in decreasing order relative to the weight associated 
with each edge (with the weight equal to the sum of true). 

 

Figure 3. DAG associated with the matrix M ' 

For the first node g0 we have CSL (g0) = {(b), (a), (e), (d), (f), 
(c)}. So we take the first two arcs "b" and "a" 

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎) =
CSI(0,1,2)

2(2−1)/2
=

3/4

1
= 0.75   We have ACSIg0 (b, 

a) = α so we add the arc "e" 

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑒) =
CSI(0,1,2) + CSI(0,1,5) + CSI(0,2,5)

3(3 − 1)/2

=

3
4

+
2
4

+
2
4

3
= 0.58 < α 

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑑) =
CSI(0,1,2) + CSI(0,1,4) + CSI(0,2,4)

3(3 − 1)/2

=

3
4

+
1
4

+
1
4

3
= 0.41 < α 

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑓) =
CSI(0,1,2) + CSI(0,1,6) + CSI(0,2,6)

3(3 − 1)/2

=

3
4

+
1
4

+
1
4

3
= 0.41 < α 

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑐) =
CSI(0,1,2) + CSI(0,1,3) + CSI(0,2,3)

3(3 − 1)/2

=

3
4
3

= 0.25 < α 

We apply the same processes on the rest of the nodes and 
we obtain as a result: B= 
{( {g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4} ) ; 
({g3, g4, g6}; {c′0, c′1, c′2, c′3, c′4, c′5})}. Only the bigroups 
who have a score ASR >= β Will be selected. 
𝐴𝑆𝑅({g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4}) > β and 
𝐴𝑆𝑅({g3, g4, g6}; {c′0, c′1, c′2, c′3, c′4, c′5})< β. Finally, we 
obtain: B= {({g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4})}. 

3  BicOPT 

The BicFinder algorithm has shown better performance 
compared to other bicluster algorithms [1]. The results 
obtained prompted us to study and improve this algorithm. 

 



3.1 Optimization 

The BicFinder algorithm resulted in better performance 
compared to other bicluster algorithms [1]. These results 
present a motivation for us to study and improve this 
algorithm. 

3.1.1  Main Program 

The temporal complexity of the extraction step is O (n⁵,m) 
[1], which is rather complex. The second and third 
equations show that for a single node the minimum 
complexity time for the extraction step is O (n²m) but we 
need to browse the whole data file so we have as a time of 
minimal complexity O (n3m). Our main algorithm is divided 
into five steps (see algorithm 2): 

• Discretization 

• Construction of DAG 

• Extraction of bigroupes 

• Evaluation of bigroupes 

• Results Visualization 

Algorithm 2. Main program 

1: F : File // Initial file 
2: M : Integer // Number of columns 
3: N : Integer // Number of rows 
4: α, β,Ɣ : Integer // parameter 
5: Mat : matrix // Matrix after discretization  
6: T : Table // table of DAG 
7: Begin 
8: Mat =Discretization(F) ; 
9:T=DagTree(Mat) ; 
10:B=Extraction(T,Mat) ; 
11:B=Evaluation(B); 
12: Visualization(B); 
13: End 

3.1.2 Function “Extraction” 

The extraction function uses equation 3. We have already 
mentioned that this equation has a minimum complexity 
time which is equal to O (nᶟm), so we tried to implement this 
equation with a time of complexity less than O (n⁵m ) (See 
algorithm 3.). 

 

Algorithm 3. Extraction(T ,Mat) 

1: A,B,C,Arc : table 
2: tab : table //Contains the detected arcs for a 
bicluster 
3: nbrLine: integer //Number of rows for a 
bicluster 
4: Begin 
5: For i :=0 to n-2 do // browse all the lines of 
the input file 
6:        Arc[]:= extractionEntier(T[i],’,’) ; // Arc[] : 
Table   contains all the arcs of a selected node  

7:        nbrLine:=0 ; 
8:        Tab[0]:=arc[0] ; 
9:        int  j:=1 ; 
10:     While (j< arc.length et x<=Ɣ) //Ɣ Is the 
maximum number of rows in a bigroup 
11:               nbrline++ ; 
12:              Tab[nbrLine]:=arc[j] ; 
13:              Eval:=0 
14:              For k := 0 to nbrLine do // the 
maximum number of rows in a bigroup = n 
15:                       For z := k+1 to nbrLine do 
16:                              A[]:=extractionEntier(Tab[k]) ; 
17:                              B[]:=extractionEntier(Tab[z]) ; 
18:                              C[]:=extractionEntier(Tab[0]) ; 
19:                             
Eval:=eval+csi(A[1],A[2],B[2])/c[0] ; //        
Calculate the CSI function and CSI complexity = 
O(m) 
20:                      End 
21:               End 
22:         If (eval/((nbrLine+1)*nbrline)/2<seuil)  
nbrLine-- ; // If our evaluation variable below 
the threshold so the last added arc will be 
deleted 
23:         End 
24:         Row:=returnRow(tab) ;      //O(n²) 
25:         colomn :=returnColomn(row,Mat) ; 
//O(nm) 
26:         B:=B+{row,colomn} ; 
27: End // Extraction is of the order of 
complexity of O(n⁴m) 
28: Return B; 
29: End. 
 

The complexity time is calculated from the for loop nested 
of the extraction part so we have O (n⁴m + nᶟ + n²m) 
therefore: 

O (n⁴m + nᶟ + n²m) = O (n² (n²m + n + m)) = O (n² (n (1 + 
nm) + m)) 1 is negligible with respect to nm, (N² (n²m + 
nm)) = O (n² (nm (1 + n)))  we also have 1 is negligible 
with respect to n, so that O (n⁴m) is obtained as a time of 
final complexity. 

3.2 Improvement 

Among the improvements made to our application, we 
mention: the addition of gamma parameter which allows us 
to limit the number of rows of a bigroup. In addition, the 
creation of a graphical interface that serves to display the 
results obtained and also to plot the gene expression curves 
of each group. 

3.2.1 Size of biclusters 

The columns of our bigroupe is calculated from the lines 
obtained from the ACSI function, so in the case of decreasing 



values of the threshold α, the number of rows increases and 
in return the number of columns can decrease until no 
column is obtained. 

Hence the risk of losing this bigroup altogether. We used 
another parameter Ɣ that allows us to limit the number of 
rows of a bigroup. 

 

Figure 4. Results obtained with gamma 

For a first test, the value of Ɣ is equal to n (where n is the 
number of rows of the data file), we obtained six biclusters 
with an execution time equal to 1145660 ms. We changed 
the value of parameter Ɣ (number of genes generated) to 20 
where we obtained ten biclusters with a run time of 6354 
ms. So, the addition of this parameter allows the user to win 
in the execution time and in the number of biclusters 
obtained. 

3.2.2 Display of biclusters 

Unlike Command-row interface (CLI) systems that require 
commands to be stored, GUI systems offer a relatively 
intuitive approach. Even users without significant training 
can easily learn the system and use it to achieve their goals. 

Figure 5. Display of biclusters 

                                                                    
1 Available on http://arep.med.harvard.edu/biclustering/ 

The design of the interface of our system offers the user 

several advantages, of which we quote that it allows to 
follow and to visualize all the steps of extraction of 
bigroupes and also allows him to determine the position of 
bigroupe in the matrix of initial data. 

 

Figure 6. Gene expression curve 

To measure the coherence of dictated biclusters, BicOPT 
makes it possible to visualize the curves created as a 
function of the level of expression of genes (see FIG. 6). 

If the curves are similar, we can deduce that our bigroup has 
a strong coherence. 

4  Results 

The data file used by our program must be structured in the 
following format: 

Table III. Sample data file 

𝐺𝑒𝑛𝑒0 15 … 100 

………. … … … 

𝐺𝑒𝑛𝑒𝑖  12.4 … -15 

……… … … … 

𝐺𝑒𝑛𝑒𝑛 10.5 … 125 

 

The first column of the file must contain the name of the 
genes. The columns are separated with spaces. Each row 
contains the gene name followed by a set of gene 
expressions. 

However, to test BicOPT's ability to extract different types 
of biclusters, we used a set of real files : Human B-cell 
Lymphoma dataset 1  with the size of (4026 rows, 96 

http://arep.med.harvard.edu/biclustering/


columns) and Saccharomyces Cerevisiae dataset2 with the 
size of (2993 rows, 173 columns). 

In order to compare the results obtained by BicOPT with the 
other algorithms we used the BicAT toolbox [3], this tool 
contains a set of bicluster algorithms (BiMax [11], CC [6], 
ISA [5], OPSM [4], xMotives [10]). The BicOPT algorithm and 
all other algorithms are run on an Intel Core I3 2.2 GHz 
machine and 4 Gb of RAM. 

4.1 Human B-cell Lymphoma dataset 

The BicOPT settings are set to 0.8 for Alpha and 0.4 for Beta. 
The test execution time of our algorithm lasted 137.15 
minutes. 

 

Figure 7. Expression profiles of two biclusters 

The first bigroup of size (8.57), which is presented by the 
curve (a) (see Figure 7) and the second bigroup of size (12, 
49), is presented by the curve (b) Figure 7). We have 
associated a curve for each gene, the latter is created as a 
function of the level of gene expression. 

The curves are grouped together in the same frame in order 
to form an expression profile of a bicluster. According to 
curve (a) we have a strong gene expression profile with the 
presence of some noises. In the second curve (b) we also 
observe a strong gene expression profile but without the 
presence of noises. The presence of noise in the data file is 
invaluable in the groups detected by BicOPT. 

4.2 Saccharomyces Cerevisiae dataset 

After testing a set of simulations, the BicOPT parameters 
were set to 0.85 for Alpha and 0.7 for Beta. The test 
execution time of our algorithm is 54.5 minutes. To evaluate 
the biological relevance of bigroupes detected by our 
algorithm, we used two web tools, GOTermFinder 3  and 
FuncAssociate4, to calculate the p-value [13]. More than the 
p-value is lower more than the bigroup genes are consistent. 

4.2.1 GOTermFinder : 

GOTermFinder is a well-known web-tool which allows to 
check the quality of each detected group and to search for 

                                                                    
2 Available on http://people.ee.ethz.ch/~sop/bimax/ 
SupplementaryMaterial/Datasets/BiologicalValidation/data/s
accharomyces/yeast_GOEnrichment,Gasch2000,2944x173.txt 

 

the significant terms of gene ontology shared by the 
selected gene groups. To identify the characteristics that the 
genes can have in common, we selected three random 
groups in a random way (see Table 7). 

Table IV.The most significant GO terms for three 

bigroupes. 

Biclusters Biological 
Process 

Molecular 
Function 

Cell 
Component 

20 Genes x 
101 
Conditions 

 

Cytoplasmic 
Translation 
(95.0%, 
3.1E-28) 

Structural 
component 
of the 
ribosome 
(95.0%, 
3.82E-27) 

Cytosolic 
Ribosome 
(95.0%, 
8.66E-29) 

Biosynthesi
s process of 
peptides 
(95.0%, 
2.22E16) 

Structural 
molecular 
activity 
(95.0%, 
1.31E-23) 

Ribosomal 
subunit 
(95.0%, 
5.85E-26) 

 

18 Genes x 
91 
Conditions 

 

Metabolic 
process of 
ncRNA 
(88.9%, 
1.33E-14) 

SnoRNA 
binding 
(27.8%, 
2.65E-08) 

Nucleolus 
(83.3%, 

1.70E-16) 

Treatment 
of ncRNA 
(83.3%, 
2.41E-14) 

RNA 
binding 
(55.6%, 

0.00017) 

Preribosome 
(72.2%, 
3.74E-16) 

18 Genes x 
88 
Conditions 

 

Cytoplasmic 
translation 
(83.3%, 
3.66E-20) 

Structural 
Component 
Of the 
ribosome 
(83.3%, 
1.61E-19) 

Cytosolic 
Ribosome 
(83.3%, 
1.19e-20) 

Translation 
(83.3%, 
5.70E-11) 

Structural 
molecular 
activity 
(83.3%, 

9.18E-17) 

Ribosomal 
subunit 
(83.3%, 
1.90e-18) 

We used the GOTermFinder tool to describe the most 
significant shared terms, respectively, for the biological 
process, molecular function, and cellular component (see 
Table 4). For the first bigroup of size (20,101) we have for 
example Cytoplasmic Translation (95.0%, 3.1E-28), so this 
bigroup is involved in Cyptoplasmic translation with a 
frequency of 95.0% (among 20 genes in the first bigroup 19 

3 Available on http://www.yeastgenome.org/cgi-
bin/GO/goTermFinder.pl 
4 Available on http://llama.mshri.on.ca/funcassociate/ 



belong To this process) and with a p-value equal to 3.1E-28 
(very significant value). 

4.2.2 FuncAssociate 

FuncAssociate is a web application that helps to discover 
properties enriched in lists of genes or proteins that emerge 
from the experiment on a large scale [13]. The basic idea is 
to select 20 biclusters and then to determine whether the 
set of genes discovered by biclustering algorithms shows a 
significant enrichment compared to an annotation of 
genetic ontology (GO) or not (see Figure 8). 

 

Figure 8. Percentages of Biclusters enriched by GO 

annotations 

For values associated with parameter p, BicOPT surpassed 
the other algorithms with a percentage of 100% followed by 
Opsm with a percentage 90% for p = 0.0001. The other 
algorithms also perform reasonably well. The experiments 
applied to the real data set used prove that our proposed 
algorithm can identify bigroups with high biological 
relevance. 

5  Conclusion 

In this paper, we propose the BicOPT algorithm which 
presents a new optimized version of the BicFinder 
algorithm. The complexity time of our algorithm is equal to 
O (n⁴m), which is less than that of BicFinder. BicOPT allows 
the extraction and the production of a set of biclusters based 
on the construction of an acyclic oriented graph (DAG). We 
added a new GAMMA parameter to limit the gene numbers 
of each generated bigroup. BicOPT has a graphical interface 
allowing to manage well the obtained bigroupes We 
realized different tests on real databases to evaluate the 
performance of BicOPT. In the realization of this study, we 
used two web tools GOTermFinder, FuncAssociate and a 
BicAT application. The experimental study of our approach 
to biclustering have good results. 
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