
BicOPT:Biochips Data Clustering algorithm

Faouzi Mhamdi1,2

faouzi.mhamdi@ensi.rnu.tn

Ahmed Zammali1

zammaliahmad@gmail.com,

1Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE)

National Superior School of Engineers of Tunis (ENSIT), University of Tunis, Tunisia
2Hihger Institute of Applied Language and Computer Science of Beja, University of Jendouba, Tunisia

Abstract

Biochips present a new technology that allows to
analyze the level of expression of genes, among the
techniques that are applicable on this technology is
the biclustering. The main objective of the latter is
to extract groups of genes taking into account the
coherence between all the conditions that
characterize them. There are a variety of
biclustering algorithms that have already been
proposed in the field of biochips. Each of these
algorithms differs from the others by a set of
characteristics. In this paper, we focus on the
BicFinder algorithm, where we propose to make
improvements in order to make it faster. In the first
place, we will present a fast variant of this
algorithm. Then we will present our version of
algorithm named BicOPT followed by a set of
experiments applied to real data.

Keywords biochips, biclustering, BicFinder,
BicOPT, Evaluation functions, experimental study.

1 Introduction

In a data matrix, we can find links between the set of rows
or between the set of columns, or between the set of rows
and columns simultaneously. A technique called clustering
only allows us to detect the first and second cases. So, this
technique remains too simplistic to determine the third
case. Another more interesting technique, called
simultaneous classification, cross-classification or block
classification. It is also referred to as a biclustering [8,9]
hence the objective of this approach is to extract the groups
of rows while taking into account the consistency with all
the columns. This technique can be used in several fields,
among which we mention that of Bio-chips.

The input file for a biclustering algorithm of biochip data is
a data matrix, where the rows are filled by the names of the
genes and the columns are the conditions. So, let a data

matrix M where n is the number of rows and m is the
number of columns. A bigroupe B is a set of pairs (I, J), with
I is a subset of rows of M and J is a subset of M columns, all
of these subassemblies have a sub matrix called bigroupe.

The aim of the clustering algorithms is to produce a
coherent, stable and homogeneous bigroup. The
homogeneity criteria vary from one algorithm to another.
Generally, the biclustering problem is NP-difficult. We then
used heuristic algorithms to construct biclusters close to the
optimal. The problem of biclustering can be formulated as
following [2]:

𝑓(𝐵𝑜𝑝𝑡) = max 𝑓(𝐵) (1)

with • BBC(M)

• f is an objective function measuring the

quality i.e., the degree of coherence, of a

group of bigroupes.

• BC(M) : is the set of all groups of possible

bigroupes associated with M

Madeira et Oliveira [9] propose to classify the algorithms of
biclustering according to the approaches used for their
construction. These approaches are classified according to
five categories [7]: IRCCC (Iterative Row and Column
Clustering Combination), DC (Divide and Conquer), GIS
(Greedy Iterative Search), EBE (Exhaustive Bicluster
Enumeration) et DPI (Distribution Parameter
Identification). BicOPT is based on the BicFinder algorithm
following the Greedy Iterative Search approach of a
polynomial complexity O(n⁴m). So, in this paper we will
present in the first place the BicFinder algorithm. In the
second place, we will detail our BicOPT contributions and
we will pass to the illustrations of the experimental study of
our approach, we will end with a conclusion.

2 BicFinder

BicFinder is a systematic greedy algorithm, its polynomial
complexity is equal to O(n⁵m), based on the construction of
an acyclic directed graph (DAG). BicFinder allows to extract
and produce a set of bigroupes close to what a biologist can
do by looking for the maximum homogeneous zones. The
stage of generation of bigroupes passes through 4 essential
steps first of all the discretization of matrix M in M' (see
equation 1), then the construction of DAG from M', then the
extraction by applying the function ACSI (see equation 2)
and validation using the ASR function (see equation 3).

Algorithm 1. BicFinder [1]

1: Input: M, α, β ; Output: B
2: Discretize M using Equation 7 to obtain M'//
Step of discretization
3: Build the DAG associated with M'//
Construction Step
4: B = Ø // Extraction step
5: For any nᵢ in the DAG do
6: I′ᵢ=Ø; J′ᵢ=Ø; // Bi = (I′ᵢ , J′ᵢ)
7: Sort arcs of nᵢ in decreasing order according to
the number of true
8: For any edge (nᵢ,nᵏ) do
9: Ic=I′ᵢ U {gᵢ,gk}; Jc=J′ᵢ ᴜ {cl,cl+1 with T(M′[i, l] =
M′[k, l]) = true};
10: If ACSIᵢ(Ic, Jc) >= α then Bᵢ = (Ic, Jc)
11: End
12: B = B U Bi
13: End
14: For any bigroupe Bi = (I′i , J′i) in B do //
Selection step
15: If ASR(I′i , J′i) < β then B = B\Bi
16: End
17: Return B

Group extraction processes are subdivided into four main

steps (see Figure 1).

Figure 1.BicFinder algorithm process

2.1 Discretization

To compute ACSI, we must first discretize the initial matrix
M (I, J), I = {1, 2, ..., n} and J = {1, 2, ..., m} Matrix M '(see
equation 7).

𝑀′[𝑖, 𝑙] {

1 𝑖𝑓 𝑀[𝑖, 𝑙] < 𝑀[𝑖, 𝑙 + 1]

−1 𝑖𝑓 𝑀[𝑖, 𝑙] > 𝑀[𝑖, 𝑙 + 1]

0 𝑖𝑓 𝑀[𝑖, 𝑙] = 𝑀[𝑖, 𝑙 + 1]

(2)

With i[1, 𝑛] and l[1. . 𝑚 − 1]

The discretization allows us to know the shape of the gene
expression profile (which can be either monotonically
increasing or monotonically decreasing ...).

2.2 Construction of DAG

Our graph is associated with the matrix M ', where each
node nᵢ has a gene gᵢ. Two nodes nᵢ and nⱼ are connected by
an arc if and only if (i> j). CSl ᵢ, ⱼ is assigned for each arc (nᵢ,
nⱼ).

Figure 2. Example of DAG

2.3 Extraction: ACSI

Is a extraction function based on Concordance Index (CI)
[12]. To calculate ACSI, the CSI function must be calculated
for each arc of the graph (Dag) (see equation 3).

𝐶𝑆𝐼(𝑖, 𝑗, 𝑘)

=
∑ 𝑇(𝑀′[𝑖, 𝑙] = 𝑀′[𝑗, 𝑙] = 𝑀′[𝑘, 𝑙])𝑚−1

𝑖=1

MaxCSLᵢ

(3)

with i [1. . n − 2], j[2. . n − 1], k[3. . n], 1[1. . m

− 1]and i < j < k

𝐴𝐶𝑆𝐼ᵢ(𝐼′, 𝐽′)

= 2 ∗
∑ ∑ 𝐶𝑆𝐼(𝑖, 𝑗, 𝑘)𝑘∈𝐼;𝑘≥𝑖+1𝑗∈𝐼;𝑗≥𝑖+1

|I′′|(|I′′| − 1)

(4)

Our bigroup starts with an initial arc (MaxCSL ᵢ, ⱼ) and at
each iteration we add an arc if and only if ACSIᵢ (I ', J')> = α
otherwise we pass to the next arc.

2.4 Evaluation: ASR

The last step used is the evaluation of bigroupes generated
by applying ASR function.

𝐴𝑆𝑅(𝐼′ , 𝐽′)

= 2 max {
∑ ∑ 𝑝𝑖𝑗𝑗∈𝐼′;𝑗≥𝑖+1𝑖∈𝐼′

|𝐼′|(|𝐼′| − 1)
,
∑ ∑ 𝑝𝑖𝑗𝑙∈𝐽′;𝑙≥𝑘+1𝑘∈𝐽′

|𝐽′|(|𝐽′| − 1)
}

(5)

with
pᵢⱼ = 1 −

6 ∑ (𝑟𝑘
𝑖 (𝑥𝑘

𝑖) − 𝑟𝑘
𝑗
 (𝑥𝑘

𝑗
))2𝑚

𝑘=1

𝑚(𝑚2 − 1)

(6)

A bigroup is valid if its ASR> = β.

2.5 Clustering: K-medoids

After the presentation of the algorithm and the explanation
of its operating principle, we describe, in this section, the
BicFinder process using an illustrative example.

So, we fix the parameter α which controls the extraction and
addition of the arc and the parameter β which controls the
validation of bigroupes. Let the parameters α = 0.75, β = 0.5.

Table I. Data Matrix M

 C0 C1 C2 C3 C4 C5

g0 13 7 5 20 10 -5

g1 15 10 20 30 -2 15

g2 15 9 8 20 10 10

g3 3 8 10 9 15 4

g4 13 15 17 8 3 1

g5 20 8 12 25 27 1

g6 13 15 17 8 3 1

Table II. Matrix M' after discretization

 C0 C1 C2 C3 C4

g0 -1 -1 1 -1 -1

g1 -1 1 1 -1 1

g2 -1 -1 1 -1 0

g3 1 1 -1 1 -1

g4 1 1 -1 -1 -1

g5 -1 1 1 1 -1

g6 1 1 -1 -1 -1

The DAG is constructed from the matrix M '. The arcs are
sorted in decreasing order relative to the weight associated
with each edge (with the weight equal to the sum of true).

Figure 3. DAG associated with the matrix M '

For the first node g0 we have CSL (g0) = {(b), (a), (e), (d), (f),
(c)}. So we take the first two arcs "b" and "a"

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎) =
CSI(0,1,2)

2(2−1)/2
=

3/4

1
= 0.75 We have ACSIg0 (b,

a) = α so we add the arc "e"

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑒) =
CSI(0,1,2) + CSI(0,1,5) + CSI(0,2,5)

3(3 − 1)/2

=

3
4

+
2
4

+
2
4

3
= 0.58 < α

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑑) =
CSI(0,1,2) + CSI(0,1,4) + CSI(0,2,4)

3(3 − 1)/2

=

3
4

+
1
4

+
1
4

3
= 0.41 < α

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑓) =
CSI(0,1,2) + CSI(0,1,6) + CSI(0,2,6)

3(3 − 1)/2

=

3
4

+
1
4

+
1
4

3
= 0.41 < α

𝐴𝐶𝑆𝐼𝑔0 (𝑏, 𝑎, 𝑐) =
CSI(0,1,2) + CSI(0,1,3) + CSI(0,2,3)

3(3 − 1)/2

=

3
4
3

= 0.25 < α

We apply the same processes on the rest of the nodes and
we obtain as a result: B=
{({g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4}) ;
({g3, g4, g6}; {c′0, c′1, c′2, c′3, c′4, c′5})}. Only the bigroups
who have a score ASR >= β Will be selected.
𝐴𝑆𝑅({g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4}) > β and
𝐴𝑆𝑅({g3, g4, g6}; {c′0, c′1, c′2, c′3, c′4, c′5})< β. Finally, we
obtain: B= {({g0, g1, g2}; {c′0, c′1, c′2, c′3, c′4})}.

3 BicOPT

The BicFinder algorithm has shown better performance
compared to other bicluster algorithms [1]. The results
obtained prompted us to study and improve this algorithm.

3.1 Optimization

The BicFinder algorithm resulted in better performance
compared to other bicluster algorithms [1]. These results
present a motivation for us to study and improve this
algorithm.

3.1.1 Main Program

The temporal complexity of the extraction step is O (n⁵,m)
[1], which is rather complex. The second and third
equations show that for a single node the minimum
complexity time for the extraction step is O (n²m) but we
need to browse the whole data file so we have as a time of
minimal complexity O (n3m). Our main algorithm is divided
into five steps (see algorithm 2):

• Discretization

• Construction of DAG

• Extraction of bigroupes

• Evaluation of bigroupes

• Results Visualization

Algorithm 2. Main program

1: F : File // Initial file
2: M : Integer // Number of columns
3: N : Integer // Number of rows
4: α, β,Ɣ : Integer // parameter
5: Mat : matrix // Matrix after discretization
6: T : Table // table of DAG
7: Begin
8: Mat =Discretization(F) ;
9:T=DagTree(Mat) ;
10:B=Extraction(T,Mat) ;
11:B=Evaluation(B);
12: Visualization(B);
13: End

3.1.2 Function “Extraction”

The extraction function uses equation 3. We have already
mentioned that this equation has a minimum complexity
time which is equal to O (nᶟm), so we tried to implement this
equation with a time of complexity less than O (n⁵m) (See
algorithm 3.).

Algorithm 3. Extraction(T ,Mat)

1: A,B,C,Arc : table
2: tab : table //Contains the detected arcs for a
bicluster
3: nbrLine: integer //Number of rows for a
bicluster
4: Begin
5: For i :=0 to n-2 do // browse all the lines of
the input file
6: Arc[]:= extractionEntier(T[i],’,’) ; // Arc[] :
Table contains all the arcs of a selected node

7: nbrLine:=0 ;
8: Tab[0]:=arc[0] ;
9: int j:=1 ;
10: While (j< arc.length et x<=Ɣ) //Ɣ Is the
maximum number of rows in a bigroup
11: nbrline++ ;
12: Tab[nbrLine]:=arc[j] ;
13: Eval:=0
14: For k := 0 to nbrLine do // the
maximum number of rows in a bigroup = n
15: For z := k+1 to nbrLine do
16: A[]:=extractionEntier(Tab[k]) ;
17: B[]:=extractionEntier(Tab[z]) ;
18: C[]:=extractionEntier(Tab[0]) ;
19:
Eval:=eval+csi(A[1],A[2],B[2])/c[0] ; //
Calculate the CSI function and CSI complexity =
O(m)
20: End
21: End
22: If (eval/((nbrLine+1)*nbrline)/2<seuil)
nbrLine-- ; // If our evaluation variable below
the threshold so the last added arc will be
deleted
23: End
24: Row:=returnRow(tab) ; //O(n²)
25: colomn :=returnColomn(row,Mat) ;
//O(nm)
26: B:=B+{row,colomn} ;
27: End // Extraction is of the order of
complexity of O(n⁴m)
28: Return B;
29: End.

The complexity time is calculated from the for loop nested
of the extraction part so we have O (n⁴m + nᶟ + n²m)
therefore:

O (n⁴m + nᶟ + n²m) = O (n² (n²m + n + m)) = O (n² (n (1 +
nm) + m)) 1 is negligible with respect to nm, (N² (n²m +
nm)) = O (n² (nm (1 + n)))  we also have 1 is negligible
with respect to n, so that O (n⁴m) is obtained as a time of
final complexity.

3.2 Improvement

Among the improvements made to our application, we
mention: the addition of gamma parameter which allows us
to limit the number of rows of a bigroup. In addition, the
creation of a graphical interface that serves to display the
results obtained and also to plot the gene expression curves
of each group.

3.2.1 Size of biclusters

The columns of our bigroupe is calculated from the lines
obtained from the ACSI function, so in the case of decreasing

values of the threshold α, the number of rows increases and
in return the number of columns can decrease until no
column is obtained.

Hence the risk of losing this bigroup altogether. We used
another parameter Ɣ that allows us to limit the number of
rows of a bigroup.

Figure 4. Results obtained with gamma

For a first test, the value of Ɣ is equal to n (where n is the
number of rows of the data file), we obtained six biclusters
with an execution time equal to 1145660 ms. We changed
the value of parameter Ɣ (number of genes generated) to 20
where we obtained ten biclusters with a run time of 6354
ms. So, the addition of this parameter allows the user to win
in the execution time and in the number of biclusters
obtained.

3.2.2 Display of biclusters

Unlike Command-row interface (CLI) systems that require
commands to be stored, GUI systems offer a relatively
intuitive approach. Even users without significant training
can easily learn the system and use it to achieve their goals.

Figure 5. Display of biclusters

1 Available on http://arep.med.harvard.edu/biclustering/

The design of the interface of our system offers the user

several advantages, of which we quote that it allows to
follow and to visualize all the steps of extraction of
bigroupes and also allows him to determine the position of
bigroupe in the matrix of initial data.

Figure 6. Gene expression curve

To measure the coherence of dictated biclusters, BicOPT
makes it possible to visualize the curves created as a
function of the level of expression of genes (see FIG. 6).

If the curves are similar, we can deduce that our bigroup has
a strong coherence.

4 Results

The data file used by our program must be structured in the
following format:

Table III. Sample data file

𝐺𝑒𝑛𝑒0 15 … 100

………. … … …

𝐺𝑒𝑛𝑒𝑖 12.4 … -15

……… … … …

𝐺𝑒𝑛𝑒𝑛 10.5 … 125

The first column of the file must contain the name of the
genes. The columns are separated with spaces. Each row
contains the gene name followed by a set of gene
expressions.

However, to test BicOPT's ability to extract different types
of biclusters, we used a set of real files : Human B-cell
Lymphoma dataset 1 with the size of (4026 rows, 96

http://arep.med.harvard.edu/biclustering/

columns) and Saccharomyces Cerevisiae dataset2 with the
size of (2993 rows, 173 columns).

In order to compare the results obtained by BicOPT with the
other algorithms we used the BicAT toolbox [3], this tool
contains a set of bicluster algorithms (BiMax [11], CC [6],
ISA [5], OPSM [4], xMotives [10]). The BicOPT algorithm and
all other algorithms are run on an Intel Core I3 2.2 GHz
machine and 4 Gb of RAM.

4.1 Human B-cell Lymphoma dataset

The BicOPT settings are set to 0.8 for Alpha and 0.4 for Beta.
The test execution time of our algorithm lasted 137.15
minutes.

Figure 7. Expression profiles of two biclusters

The first bigroup of size (8.57), which is presented by the
curve (a) (see Figure 7) and the second bigroup of size (12,
49), is presented by the curve (b) Figure 7). We have
associated a curve for each gene, the latter is created as a
function of the level of gene expression.

The curves are grouped together in the same frame in order
to form an expression profile of a bicluster. According to
curve (a) we have a strong gene expression profile with the
presence of some noises. In the second curve (b) we also
observe a strong gene expression profile but without the
presence of noises. The presence of noise in the data file is
invaluable in the groups detected by BicOPT.

4.2 Saccharomyces Cerevisiae dataset

After testing a set of simulations, the BicOPT parameters
were set to 0.85 for Alpha and 0.7 for Beta. The test
execution time of our algorithm is 54.5 minutes. To evaluate
the biological relevance of bigroupes detected by our
algorithm, we used two web tools, GOTermFinder 3 and
FuncAssociate4, to calculate the p-value [13]. More than the
p-value is lower more than the bigroup genes are consistent.

4.2.1 GOTermFinder :

GOTermFinder is a well-known web-tool which allows to
check the quality of each detected group and to search for

2 Available on http://people.ee.ethz.ch/~sop/bimax/
SupplementaryMaterial/Datasets/BiologicalValidation/data/s
accharomyces/yeast_GOEnrichment,Gasch2000,2944x173.txt

the significant terms of gene ontology shared by the
selected gene groups. To identify the characteristics that the
genes can have in common, we selected three random
groups in a random way (see Table 7).

Table IV.The most significant GO terms for three

bigroupes.

Biclusters Biological
Process

Molecular
Function

Cell
Component

20 Genes x
101
Conditions

Cytoplasmic
Translation
(95.0%,
3.1E-28)

Structural
component
of the
ribosome
(95.0%,
3.82E-27)

Cytosolic
Ribosome
(95.0%,
8.66E-29)

Biosynthesi
s process of
peptides
(95.0%,
2.22E16)

Structural
molecular
activity
(95.0%,
1.31E-23)

Ribosomal
subunit
(95.0%,
5.85E-26)

18 Genes x
91
Conditions

Metabolic
process of
ncRNA
(88.9%,
1.33E-14)

SnoRNA
binding
(27.8%,
2.65E-08)

Nucleolus
(83.3%,

1.70E-16)

Treatment
of ncRNA
(83.3%,
2.41E-14)

RNA
binding
(55.6%,

0.00017)

Preribosome
(72.2%,
3.74E-16)

18 Genes x
88
Conditions

Cytoplasmic
translation
(83.3%,
3.66E-20)

Structural
Component
Of the
ribosome
(83.3%,
1.61E-19)

Cytosolic
Ribosome
(83.3%,
1.19e-20)

Translation
(83.3%,
5.70E-11)

Structural
molecular
activity
(83.3%,

9.18E-17)

Ribosomal
subunit
(83.3%,
1.90e-18)

We used the GOTermFinder tool to describe the most
significant shared terms, respectively, for the biological
process, molecular function, and cellular component (see
Table 4). For the first bigroup of size (20,101) we have for
example Cytoplasmic Translation (95.0%, 3.1E-28), so this
bigroup is involved in Cyptoplasmic translation with a
frequency of 95.0% (among 20 genes in the first bigroup 19

3 Available on http://www.yeastgenome.org/cgi-
bin/GO/goTermFinder.pl
4 Available on http://llama.mshri.on.ca/funcassociate/

belong To this process) and with a p-value equal to 3.1E-28
(very significant value).

4.2.2 FuncAssociate

FuncAssociate is a web application that helps to discover
properties enriched in lists of genes or proteins that emerge
from the experiment on a large scale [13]. The basic idea is
to select 20 biclusters and then to determine whether the
set of genes discovered by biclustering algorithms shows a
significant enrichment compared to an annotation of
genetic ontology (GO) or not (see Figure 8).

Figure 8. Percentages of Biclusters enriched by GO

annotations

For values associated with parameter p, BicOPT surpassed
the other algorithms with a percentage of 100% followed by
Opsm with a percentage 90% for p = 0.0001. The other
algorithms also perform reasonably well. The experiments
applied to the real data set used prove that our proposed
algorithm can identify bigroups with high biological
relevance.

5 Conclusion

In this paper, we propose the BicOPT algorithm which
presents a new optimized version of the BicFinder
algorithm. The complexity time of our algorithm is equal to
O (n⁴m), which is less than that of BicFinder. BicOPT allows
the extraction and the production of a set of biclusters based
on the construction of an acyclic oriented graph (DAG). We
added a new GAMMA parameter to limit the gene numbers
of each generated bigroup. BicOPT has a graphical interface
allowing to manage well the obtained bigroupes We
realized different tests on real databases to evaluate the
performance of BicOPT. In the realization of this study, we
used two web tools GOTermFinder, FuncAssociate and a
BicAT application. The experimental study of our approach
to biclustering have good results.

References

[1] W. Ayadi, M. Elloumi, and J. K. Hao, “BicFinder :
A biclustering algorithm for microarray data
analysis,” Knowl. Inf. Syst., Vol. 30, N°2 : (2012),
p341–358.

[2] W. Ayadi and M. Elloumi. Algorithms in
Computational Molecular Biology: Techniques,
Approaches and Applications, chapter
Biclustering of Microarray Data.Wiley Book
Series on Bioinformatics : Computational
Techniques and Engineering. Wiley-Blackwell,
John Wiley & Sons Ltd., New Jersey, USA
(Publish), (2011), p651-664.

[3] S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann,
and E. Zitzler. Bicat: a biclustering analysis
toolbox. Bioinformatics, Vol. 22, N°10 : (2006),
p1282–1283.

[4] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini.
Discovering local structure in gene expression
data: the order-preserving submatrix problem.
In RECOMB ’02: Proceedings of the sixth annual
international conference on Computational
biology, p49–57, New York, NY, USA, 2002. ACM.

[5] S. Bergmann, J. Ihmels, and N. Barkai. Defining
transcription modules using large-scale gene
expression data. Bioinformatics, Vol. 20, N°13 :
(2004), p1993–2003.

[6] G. F. Berriz, J. E. Beaver, C. Cenik, M. Tasan, and F.
P. Roth, “Next generation software for functional
trend analysis,” vol. 25, N°22 : (2009), p3043–
3044.

[7] M. (Riadi) Charrad, G. (Riadi) Saporta, Y.
Lechevallier, and M. Ben Ahmed, “Le bi-
partitionnement : Etat de l’art sur les approches
et les algorithmes,”Ecol’IA'08 : (2008).

[8] Y. Cheng, G.M. Church, Biclustering of
Expression Data, in Proc. International
Conference on Intelligent Systems for Molecular
Biology : (2000), p93-103.

[9] S. C. Madeira, A. L. Oliveira, Biclustering
Algorithms for Biological Data Analysis: A
Survey, IEEE Transactions on Computational

Biology and Bioinformatics , Vol.1, N°1 : (2004),
p24-45.

 [10] S. K. T. M. Murali, Extracting conserved gene
expression motifs from gene expression data,
Pac. Symp. Biocomput, Vol.8 : (2003), p77-88.

[11] A. Prelic, S. Bleuler, P. Zimmermann, P.
Buhlmann, W. Gruissem, L. Hennig, L. Thiele,
and E. Zitzler. A systematic comparison and
evaluation of biclustering methods for gene
expression data. Bioinformatics, Vol. 22, N°9 :
(2006), p1122–1129

[12] Y.S. Son and J. Baek. A modified correlation
coefficient based similarity measure for
clustering time-course gene expression data.
Pattern Recognition Letters, Vol. 29, N°3 :
(2008), p232–242.

 [13] Wasserstein, Ronald L.; Lazar, Nicole A. "The
ASA's Statement on p-Values: Context, Process,
and Purpose". The American Statistician. Vol.
70, N°2 : (2016), p129–133.

