
Nogood Learning in DisCSP Algorithms
Ghizlane EL KHATTABI

LIMIARF Laboratory
Rabat, Morocco

elkhattabi.ghizlane@gmail.com

Imade BENELALLAM
SI2M Laboratory
Rabat, Morocco

imade.benelallam@ieee.org

El Houssine BOUYAKHF
LIMIARF Laboratory

Rabat, Morocco
bouyakhf@mtds.com

ABSTRACT
The arti�cial intelligence (AI) is one of the powerful research area.
AI gathers several topics such as Constraint Programming CP, Ma-
chine LearningML, andMulti-Agent SystemMAS. Our contribution
is inspired by these last AI topics: CP, ML and MAS. We therefore
consider Distributed Constraint Satisfaction Problem formalism
DisCSP, which is a Constraint Programming problem, distributed
among several autonomous agents in a MAS system. To solve such
problems, many algorithms are proposed in the literature. Most of
them, rely on message exchanging to �nd a global solution that
satis�es the set of constraints of each agent. Generally, two types of
messages are used, the �rst type is used by each agent to inform oth-
ers of its chosen value, and the second type (nogood) is used by the
same agent to inform others that their choices had blocked it. The
Machine Learning principle is used by launching asynchronously
two DisCSP algorithms in the same DisCSP problem and sharing
the nogoods of the two algorithms. Experimental results exhibit
that each algorithm learns from the nogoods of the other algorithm.

KEYWORDS
Multi Agent System, Arti�cial Intelligence, algorithms, nogoods,
Distributed Constraint Problem

ACM Reference Format:
Ghizlane ELKHATTABI, Imade BENELALLAM, and El Houssine BOUYAKHF.
1997. Nogood Learning in DisCSP Algorithms. In Proceedings of Interna-
tional Conference on Applied Research in Computer Science and Engineering
(ICAR’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
In recent years, ones of the most used areas in the arti�cial intel-
ligence are i) the constraint programming[12], which allows to
present and solve combinatorial real problems, such as scheduling
and plani�cation problems, ii) Multi-agent system[6], that repre-
sent a set of agents (or a set of computer systems) that colaborate
in order to do a set of tasks, independently of humans. The two
latter domains have been used to create another subdomain DisCSP
(for Distributed Constraint Problems)[16], that is a mathematical
problem, distributed among several autonomous agents, aiming to
solve the problem together. And iii) the Machine Learning[1] that
appeared a long time ago, but takes the hard meaning recently by
the big data arrival. It bases on examples to learn new techniques.

DisCSP can represent several real distributed problems, As dis-
tributedMeeting Scheduling[9, 14], Distributed Resource Allocation
Problem[11] and Sensor Networks[2, 8]. These problems, includ-
ing big problems, require more treatment. So, we have to think to
reduce the treatments, when using DisCSPs algorithms.

While there are several DisCSP algorithms, as ABT[5], AFC[10],
AFC-ng[13] and AWC[15].We do not have to create new algorithms,
to solve the very big DisCSP problems.

The idea is to use the machine learning principle, which is
adapted to big data, in the existing algorithms. In our contribu-
tion we use the two algorithms ABT and AFC-ng.

We will not designate, statically, which is the training algorithm
and which is the testing one . The choice will be done dynamically
and intelligently during the resolution process. At a given point,
the fast algorithm which �nds a failure the �rst will be the training
one and the other the testing one. This a�ectaion of rules is not
de�nitive, it can be changed during the resolution process. The
contribution details will be described more accuratly in the paper.

The paper proceeds as follows: the section 2 contains some use-
ful de�nitions. The detailed description of the two used algorithms
(ABT and AFC-ng) will be done in section 3. Then, the main con-
tribution is presented in section 4. And section 5 will show the
experimental results. Finally we resume by a conclusion in section
6.

2 SOME DEFINITIONS
We recall brie�y some fundamental de�nitions in the context of
constraint programming domain.

De�nition 2.1 (MAS). AMulti-Agent System is a set of autonomous
agents, interconnected via certain relations. These agents share a
problem and try to solve it collectively.

De�nition 2.2 (CSP). a CSP (Constraint Satisfaction Problem) is
a mathematical problem, comprised of a set of Variables V, de�ned
in a set of Domains D and should satisfy a set of Constraints C.

De�nition 2.3 (DisCSP). A DisCSP (Distributed CSP) is a CSP
whose components (variables, domains, and constraints) are dis-
tributed among several agents (a MAS). So it is formalized as a
set of Agents A, the same three CSP parameters V, D and C and a
function � that associates each variable to an agent.

De�nition 2.4 (Solution). A solution is an assignment of all vari-
ables with values from its domains, so as the existing constraints
are satis�ed.

De�nition 2.5 (Nogood). A nogood is a partial a�ectation that can
not be extended to a solution. In DisCSP algorithms, the nogood
takes the form xi = �i ^x j = �j ^ ...! xk = �k which means that
as long as xi has the value�i and x j has the value�j , xk can not take
the value �k . The part which exist before the! symbol is called

ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon Ghizlane EL KHATTABI, Imade BENELALLAM, and El Houssine BOUYAKHF

the left-hand-side (lhs) and the other is called the right-hand-side
(rhs).

De�nition 2.6 (Conccurent Constraint Checks CCCs). The Con-
current Constraint Checks is a metric used to evaluate the DisCSP
algorithms. It computes the number of the constraints checked con-
currently. Each agent handles a constraint counter. Each message
sent carries this value. The receiver tests if the received value is
greater than the value of its counter. If so, it updates its own counter
by the received one.When the resolution is over. The largest counter
value is selected as the Concurrent Constraint Checks value.

3 THE PRINCIPLE DISCSP ALGORITHMS
3.1 Asynchronous BackTracking ABT
The Asynchronous Backtracking is a DisCSP algorithm which al-
lows agents to solve the problem asynchronously. The order priority
of agents is made statically and lexicographically (Ai is a higher
priority than Aj when i<j). The algorithm 1 exhibits the di�erent
procedures and functions used by an ABT agent to �nd a solution.

Each agent self has an AgentView structure, to save the as-
signments of higher priority agents than self, and a NogoodStore
structure to store the nogoods sent by the lower priority agents to
self.

When the ABT protocol starts running, each agent chooses an
assignment to its local variables, creates an OK message that carries
its choice and sends it to the lower priority agents.

Algorithm 1 ABT algorithm
1: procedure ABT myvalue empty;end false;
2: CheckAgentView();
3: while ¬end do
4: msg getMsg();
5: Switch (msg.type)
6: Ok? : ProcessInfo(ms�);
7: ngd : ResolveCon�ict(ms�);
8: stp : end true ;
9: adl : SetLink(ms�);
10: end while
11: end procedure

12: procedure C����A����V���(ms�)
13: if ¬consistent (m�Value ;m�A�entV iew) then
14: m�Value ChooseV alue();
15: if myValue then
16: for each child 2 �+(sel f) do
17: sendMsg : Ok? (child, myValue);
18: end for
19: else Backtrack();
20: end if
21: end if
22: end procedure

23: procedure P������I���(ms�)
24: Update(myAgentView, msg.Assig);
25: CheckAgentView();
26: end procedure

27: procedure R������C�������(ms�)
28: if Coherent(ms� .No�ood, ��(sel f) [{sel f }) then
29: CheckAddLink(msg);
30: add(msg.Nogood,myNogoodStore);
31: m�Value empt� ;
32: CheckAgentView();
33: elseif msg.sender 2 �+(sel f) ^ Coherent(msg.Nogood, self) then
34: SendMsg : Ok? (msg.Sender, myValue);
35: end if
36: end procedure

37: procedure S��L���(ms�)
38: add(msg.sender, �+(sel f));
39: sendMsg:ok?(msg.sender, myValue);
40: end procedure
41: procedure C����A��L���(msg)
42: for each �ar 2 lhs(msg.Nogood) do
43: if �ar < ��(sel f) then
44: sendMsg:adl(�ar ,self);
45: add(�ar ,��(sel f)
46: Update (myAgentView, �ar varValue);
47: end if
48: end for
49: end procedure

50: procedure B��������
51: newNo�ood sol�e(m�No�oodStore);
52: if newNo�ood = empt� then
53: end true ;
54: sendMsg:stp(system);
55: else
56: sendMsg:ngd(newNogood);
57: Update (myAgentView, rhs(newNogood) unknown);
58: CheckAgentView();
59: end if
60: end procedure

61: function ������V����()
62: for each � 2 D(sel f) not eliminated bym�No�oodStore do
63: if consistent(� ,m�A�entV iew) then return (v);
64: else
65: add(x j = �alj ! sel f , � , myNogoodStore);
66: . � is inconsistent with x j ’s value
67: end if
68: end forreturn (empt�)
69: end function

70: procedure U�����(m�A�entV iew , newAssi�)
71: add(newAssig, myAgentView);
72: for each n� 2 m�No�oodStore do
73: if ¬Coherent (lhs(n�),m�A�entV iew) then
74: remove(ng, myNogoodStore);
75: end if
76: end for
77: end procedure
78: procedure C�������(no�ood , a�ents)
79: for each �ar 2 no�ood [a�ents do
80: if no�ood [�ar] ,m�A�entV iew [�ar] then

return false;
81: end if
82: end for

return true;
83: end procedure

Nogood Learning in DisCSP Algorithms ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon

After receiving theOKmessage, the receiver updates its AgentView
with the new received values and checks if its assignment is still
consistent with the content of its updated AgentView.

De�nition 3.1 (Consistent). An assignment is consistent with
other assignments if all the constraints that link this assignment
with the others are satis�ed.

If this is not the case, it browses its domain, in order to �nd an
a�ectation which satis�es the consistency condition.

For each tested value, if it does not satisfy a certain number
of constraints with some values from the Agentview, a nogood is
created and stored in the NogoodStore. This nogood contains in its
lhs the values which block the current tested value and the checked
value in its rhs. The nogood is used as a justi�cation of why the
tested value is not chosen.

If the whole domain is scanned without �nding any consistent
value, the agent generates a nogood from the stored nogoods (justi-
�cations). The rhs of the resultant nogood is the value of the lowest
priority agent, and the others values are put into the lhs. The agent
self sends this nogood to the lowest priority agent (whose value
exists in the rhs). This nogood is used to say to the receiver that as
long as the other agents have the values that exist in the lhs, you
should change this value which is in the rhs.

The receiver stores the nogood in its nogoodStore, and tries to
�nd a new consistent value which is not removed by one of the
stored nogoods in the NogoodStore, taking into account (as after
receiving an OK message) the AgentView values. In the same way
as the OKmessage, if the agent �nds the good assignment it sends it
via an OK message, otherwise, it sends a nogood message. Without
having forgotten that: after receiving a new OK message, even the
nogoodStore is updated, by removing the obsolete nogoods (whose
lhs contains, at least, a di�erent value that becomes di�erent).

A solution is found when a silence is detected. If a null nogood
message is generated by the highest priority agent the problem is
unsolvable.

3.2 Nogood Based Asynchronous Forward
Checking AFC-ng

As ABT, AFC-ng (nogood based Asynchronous Foward Checking)
[13] is a DisCSP algorithm. It is based on another algorithm called
AFC which has been proposed in [10] by Meisels and Zivan. Actu-
ally, this algorithm is hybrid (it is asynchronous and synchronous
in the same time).

The synchronous part of AFC-ng is seen when agents try to
assign its variables. At one point, just a single agent can a�ect its
variables, it is the one that receives the CPA message (for Current
Partial Assignment). It is a data structure which represents the
research process state and contains a partial assignment of the
DisCSP problem variables, so that each agent tries to extend, until
it contains the assignments of all existing variables (all agents),
so as the constraints are satis�ed. And the asynchronous part is
highlighted when an agent spreads its value choices to the lower
priority agents. The receivers revise its domains asynchronously.

The algorithm 2 shows the AFC-ng resolution stages. When the
protocol starts, it is the highest priority agent which generates the
CPA structure, puts in its instantiation and sends it to lower priority
agents via CPA message.

Algorithm 2 AFC-ng algorithm
1: procedure AFC���
2: end false; AgentView.Consistent true ;
3: if Ai = IA then
4: Assign();
5: end if
6: while ¬end do
7: msg getMsg();
8: Switch (msg.type) do
9: cpa : ProcessCPA(ms�);
10: ngd : ProcessNogood(ms�);
11: stp : end true ;
12: end while
13: end procedure

14: procedure I���A����V���
15: for each x j < xi do
16: A�entV iew [j] {(x j , empt�, 0)};
17: end for
18: end procedure
19: procedure A�����
20: if D(xi) , ; then
21: �i ChooseValue();
22: ti ti + 1;
23: CPA {AgentView [(xi , �i , ti)};
24: else
25: Backtrack();
26: end if
27: end procedure

28: procedure S���CPA(CPA)
29: if size(CPA) = n then
30: Report SOLUT ION ;
31: end true ;
32: else
33: for each (xk 2 �+(xi)) do
34: sendMsg:cpa(CPA) to Ak ;
35: end for
36: end if
37: end procedure

38: procedure P������CPA(CPA)
39: if msg.CPA is stronger than AgentView then
40: UpdateAgentView(msg.CPA);
41: AgentView.Consistent true;
42: Revise();
43: if D(xi) = ; then
44: Backtrack();
45: else
46: CheckAssign(msg.Sender);
47: end if
48: end if
49: end procedure

50: procedure C����A�����(sender)
51: if predecessor(Ai = sender) then
52: Assign();
53: end if
54: end procedure

ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon Ghizlane EL KHATTABI, Imade BENELALLAM, and El Houssine BOUYAKHF

55: procedure B��������
56: n�d sol�e(m�No�oodStore);
57: if n�d = empt� then
58: Report FAILU RE ;
59: end true ;
60: else . Let x j denote the variable in rhs(ng)
61: for k =j+1 to i-1 do
62: AgentView[k].value empty;
63: end for
64: for each (nogood 2 NogoodStore) do
65: if (¬Compatible(nogood,AgentView) _ x j 2 no�ood)

then
66: remove (nogood, NogoodStore);
67: end if
68: end for
69: AgentView.Consistent false;
70: �i empt� ;
71: sendMsg:ngd(ng) to Aj ;
72: end if
73: end procedure

74: procedure P������N�����(ms�)
75: if Compatible(msg.nogood, AgentView) then
76: add(msg.nogood,NogoodStore);
77: . according to the HPLV []
78: if (rhs(msg.nogood).value = �i) then
79: �i empt� ;
80: Assign();
81: end if
82: end if
83: end procedure

84: procedure U�����A����V���(CPA)
85: AgentView CPA; . update values and tags
86: for each (ng 2 NogoodStore) do
87: if ¬ Compatible(ng, AgentView) then
88: remove(ng, myNogoodStore);
89: end if
90: end for
91: end procedure

92: procedure R�����
93: for each (� 2 D0(xi)) do
94: if � is ruled out by A�entV iew) then
95: Store the best nogood for � ;
96: . according to the HPLV
97: end if
98: end for
99: end procedure

Each receiver checks if the received message is up to date (us-
ing a counter for each agent). If so, it updates its AgentView and
NogoodStore. It replaces the AgentView by the received CPA and
removes the obsolete nogoods that exists in the NogoodStore. Then
it revises its domain, by adding a justifying nogood, for each incon-
sistent value. After which, it checks if the domain becomes empty,
if yes, it generates a nogood (as ABT) and sends it to the lowest
priority agent. Otherwise, if it is the predecessor of the sender, it
chooses a value for its variable (the value that is not eliminated by

a nogood) , adds it to the CPA and propagates the message to the
lower priority agents.

The nogood message is treated in the same way as in the ABT
nogood.

The end of protocol can be detected without using another exter-
nal algorithm. A solution is found when the lowest priority agent
adds its assignment to the CPA (the size of the CPA structure is
equal to the number of agents). The insolvency is detected by one
of the existing agents. When its domain becomes empty and there
is no nogood justifying this failure, it stops the resolution, declaring
that the problem is insolvable.

4 NOGOOD LEARNING IN THE
ALGORITHMS ABT AND AFC-NG

The subsections 3.1 and 3.2 show that there are several common
features between ABT and AFC-ng including:

(1) The NogoodStore content: the two algorithms have the
same NogoodStore structure with the same contents;

(2) The AgentView content: : the two algorithms have the
same AgentView structure. Even if the AFC-ng AgentView
contains the counters (the ABT does not use the counters),
but it also contains the higher priority agent assignments as
it is done by the ABT AgentView;

(3) The nogood stucture: the two nogoods are generated in
the same way.

These common points are the basis to launch the two algorithms
in the same DisCSP problem, in order to collaborate with each other
and �nd the solution, either with less message exchanged and fewer
tested constraints or else In a minimum of time.

In order to ensure this, we did it in two di�erent ways:

4.1 The �rst method of ABT & AFC-ng
Learning (Learning-1)

In the �rst method, the two algorithms are launched at the same
time. All agents launch the ABT algorithm and just the initial agent
which starts the AFC-ng algorithm.

In addition to stp message, each agent can receive and send four
other types of messages: CPA, ngd_AFCng (nogood message sent
using AFCng algorithm), Ok?, ngd_ABT (nogood message sent
using ABT algorithm) and stp message.

For each received message the associated procedure is applied
as the original algorithm.

The algorithm 3 shows only the procedures and functions that
have been changed.

In addition to their structures AgentView_ABT, AgentView_AFCng,
NogoodStore_ABT and NogoodStore_AFCng, each agent creates
two new structures SentNogoodsByABT to store the nogoods sent
by ABT algorithm and SentNogoodsByAFCng which will contain
the nogoods sent by AFCng.

Then, when an agent creates and sends a newnogood byABT(backtrack_ABT
procedure), it stores it in the new structure SentNogoodsByABT.

The same thing when it generates a new nogood using AFC_ng
(backtrack_AFCng procedure), it stores it in the SentNogoods-
ByAFCng structure.

Nogood Learning in DisCSP Algorithms ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon

Algorithm 3 Learning-1
1: procedure ABT�AFC�� ������� 1
2: end false; AgentView_AFCng.Consistent true ;
3: if Ai = IA then
4: Assign();
5: end if
6: CheckAgentView();
7: while ¬end do
8: msg getMsg();
9: Switch (msg.type) do
10: cpa : ProcessCPA(ms�);
11: ngd_AFCng : ProcessNogood(ms�);
12: Ok? : ProcessInfo(ms�);
13: ngd_ABT : ResolveCon�ict(ms�);
14: stp : end true ;
15: end while
16: end procedure

17: procedure B��������_AFC��
18: n�d sol�e(m�No�oodStore);
19: if n�d = empt� then
20: The same AFC-ng Treatment;
21: else
22:
23: The same AFC-ng Treatment;
24: add(ngd, SentNogoodsByAFCng);
25: end if
26: end procedure

27: procedure B��������_ABT
28: newNo�ood sol�e(m�No�oodStore);
29: if newNo�ood = empt� then
30: the same ABT treatment;
31: else
32: the same ABT treatment;
33: add(newNogood, SentNogoodsByABT)
34: end if
35: end procedure

36: function ������V����_ABT()
37: for each ngd 2 SentNogoodsByAFCng do
38: if (istheAgentViewAlreadyInconsistent(ngd) then
39: Clear NogoodStore_ABT;
40: for each (� 2 D(sel f)) do
41: nogood ngd.lhs^ngd.rhs! xi = � ;
42: add (nogood, nogoodStore_ABT);
43: end for
44: return null;
45: end if
46: end for
47: for each � 2 D not eliminated by No�oodStore_ABT do
48: if � is eliminated by a coherent nogood from

No�oodStore_AFCn� then
49: add(ngd, NogoodStore_ABT);
50: else
51: if consistent(� ,m�A�entV iew) then return (v);
52: else
53: add(x j = �alj ! sel f , � , NogoodStore_ABT);
54: . � is inconsistent with x j ’s value
55: end if
56: end if
57: end for return (empt�)
58: end function

59: procedure R�����
60: for each ngd 2 SentNogoodsByABT do
61: if (istheAgentViewAlreadyInconsistent(ngd) then
62: for each (� 2 D(sel f)) do
63: ngd ngd.lhs^ngd.rhs! xi = � ;
64: if � is eliminated by nogoodStore_AFCng then
65: keep the best nogood between the eliminating no-

good and ngd;
66: . According to the HPLV
67: else
68: add (ngd, nogoodStore_AFCng;
69: end if
70: end forreturn null;
71: end if
72: end for
73: for each (� 2 D0(xi)) do
74: if (� is ruled out by A�entV iew or eliminated by

no�oodStore_ABT) then
75: Store the best nogood for � ;
76: . according to the HPLV[7]
77: end if
78: end for
79: end procedure

So, When an agent tries to choose a value using the ABT or re-
vise the domain using the AFC-ng algorithm (ChooseValue_ABT(),
Revise()). Firstly, it checks if there is a sent nogood in the other algo-
rithm and the whole elements of the latter exist in the AgentView
of the current algorithm.

If so, ChooseValue_ABT procedure clears the NogoodStore_ABT,
generates a new nogood whose lhs is the nogood components (lhs
and rhs), browses the whole domain, completes the nogood rhs
by the current tested value and adds it to the current algorithm
NogoodStore (NogoodStore_ABT). Then it return null, saying that
there is no consistent value, without testing the constraints, because
it is already tested by the other algorithm (AFCng).

After this, if there is no nogood sent by the other algorithm, the
procedure continue its treatments. It browses the domain, value
by value, tests if the value tested is not eliminated by the ABT
NogoodStore (NogoodStore_ABT) (the same as ABT ChooseValue
procedue without sharing nogoods), if so, it checks if there is a
nogood in the other nogoodStore (NogoodStore_AFCng) which
is compatible with the AgentView_ABT and eliminates the tested
value. If so, it adds the found nogood in the NogoodStore_ABT.
Otherwise, it tests if the value is consistent with AgentView_ABT,
if so, it returns the value, otherwise, it adds the justifying nogood.

For the Revise() method, it tests if there is a nogood which exists
in the SentNogoodByABT structure and which is coherent with the
AgentView_AFCng.

If so, it browses the domain, in order the construct a new nogood
whose the lhs is the lhs and rhs conjunction of the found nogood
and the rhs is the tested value. If the tested value is already removed
by a nogood (in NogoodStore_AFCng), it keeps the better nogood
(the constructed nogood or the found nogood), according to the
HPLV method. Otherwise, it adds the generated nogood to the
NogoodStore_AFCng.

ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon Ghizlane EL KHATTABI, Imade BENELALLAM, and El Houssine BOUYAKHF

If there is no sent nogood by the ABT algorithm, the Revise()
procedure browses the domain. It checks not only if the value is
inconsistent with the AgentView_AFCng but also if the value is
eliminated by nogoodStore_ABT, if so, it keeps the best nogood
using the HPLV method.

4.2 The second method of ABT & AFC-ng
Learning (Learning-2)

The second method follows the same methodology as the �rst. The
only di�erence is highlighted when the ABT or AFC-ng algorithm
generates a no empty nogood. Before sending it and adding it into
SentNogoods structures (SentNogoodsByABT and SentNogoods-
ByAFCng), it should check if the generated nogood is not already
sent by the other algorithm.

So, if an algorithm �nds that its new generated nogood is already
sent by the other algorithm, it stops the resolution and the other
continues its resolution process.

5 EXPERIMENTAL RESULTS
In this section, we compare the algorithms ABT and AFC-ng with
the two learning methods (Learning-1 and Learning-2) and also
with ABT/AFC-ng_Learning-1 (i.e. taking into account just the fast
algorithm which �nds the solution the �rst, using the Learning-1
method).

The assessment is made against the number of exchanged mes-
sages (# MSGs) and the Concurrent Constraint Checks (# CCCs),
using disChoco platform [3].

We experiment the �ve algorithms in random problems. The
problems are characterized by the parameters (n, d, p1, p2) where,
n is the number of agents, d is the domain size, p1 is the problem
density and p2 is the tightness of constraints.

Algorithm 4 Learning-2
1: procedure B��������_AFC��
2: n�d sol�e(m�No�oodStore);
3: if n�d = empt� then
4: The same AFC-ng Treatment;
5: else
6: if ¬ SentNogoodsByABT contains ngd then
7: The same AFC-ng Treatment;
8: add(ngd, SentNogoodsByAFCng);
9: end if
10: end if
11: end procedure

12: procedure B��������_ABT
13: newNo�ood sol�e(m�No�oodStore);
14: if newNo�ood = empt� then
15: the same ABT treatment;
16: else
17: if ¬ SentNogoodsByAFCng contains ngd then
18: the same ABT treatment;
19: add(newNogood, SentNogoodsByABT)
20: end if
21: end if
22: end procedure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5
·105

p2

M
SG

s

ABT
AFC-ng

Learning-1
Learning-2

ABTAFC-ng_Learning-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5

·105

p2

CC
Cs

ABT
AFC-ng

Learning-1
Learning-2

ABTAFC-ng_Learning-1

Figure 1: Benchmarking with n = 20, � = 10, P1 = 0.2, p2)

The ABT/AFC-ng_Learning-1 algorithm is obtained by using the
Learning-1 method with the ABT and AFC-ng algorithms and com-
puting just the number ofMSGs andCCCs inABT for ABT_Learning-
1 and in AFC-ng for the AFC-ng_Learning-1 algorithm, and keep
the results of the fast one.

All generated problems have n = 20 and d =. We evaluate the
algorithms into two types of problems. With low density value
p1 = 0.2 and with high density value p1 = 0.7.For the two kinds of
problems, we variate the tightness p2 from 0.1 to 0.9 by 0.05 as a
step.

Figure 1 shows the number of exchanged messages and Conc-
curent Constraint Checks by the �ve methods, for sparse graphs
(20, 10, 0.2,p2). The experimentation results show that Learning-1
and Learning-2 methods are between ABT and AFC-ng, knowing
that we compute the number of exchanged message by the two
algorithms ABT and AFC-ng, even if, is just one of its which �nds
the solution (or detect the insolvability). These results show that we
could learn the informations between the algorithms, because oth-
erwise, if we do not any nogood learning, the number of exchanged
messages will be the sum of the two algorithms, which will be very
large, so as the ABT and AFC exchanged message numbers will be
Negligible in front of the sum.

For CCCs, we are at least like the better of them.
So when we compute the number of exchanged messages by

only the algorithm which �nds the solution the �rst (because it can
be �nd by the ABT or the AFC-ng, according to the most fast algo-
rithm), we obtain very important results. TheABT/AFCng_Learning-
1 exchanges less messages and tests less constraints concurrently.

Nogood Learning in DisCSP Algorithms ICAR’17, June 22 - 23, Hadat-Baabda, Lebanon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

·106

p2

M
SG

s

ABT
AFC-ng

Learning-1
Learning-2

ABTAFC-ng_Learning-1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

·107

p2

CC
Cs

ABT
AFC-ng

Learning-1
Learning-2

ABTAFC-ng_Learning-1

Figure 2: Benchmarking with n = 20, � = 10, P1 = 0.7, p2)

The choice of computing the MSGs and CCCs of only the algo-
rithmwhich �nds the solution is not obsolete. Because, the machine
learning principle is serving to store the exchanged nogood mes-
sages following each resolution (by an algorithm). And then use the
stored messages, to learn and resolve the DisCSP fast. In this case
we will not compute the number of MSGS or CCCs of the training
step, because it is already done.

The second �gure shows the evaluation results (number of MSGs,
and CCCs) for dense graphs (20, 10, 0.7, p2). As the previous �gure,
it represents the performance of the �ve algorithms, for p2, ranging
from 0.1 to 0.9, except the Learning-2 method which we evaluate
just for 0.1 to 0.25. The latter is better than the ABT, AFC-ng and
the Learning-1 methods, because, when an algorithm �nds that
the other has already send the same nogood message, it stops the
resolutions.

This is feasible, when problems are simple, but for complex
problems, it is less likely, to �nd the same nogood with the two
algorithms. The Learning-1 is so the more useful.

The results make clear that the Learning (Learning-1 or Learning-
2) saves us the exchanged messages and the tested constraints,
even if we compute the used resources by the two algorithms. The
importance of learning becomes more legible, when we plot the
ABT/AFC-ng_Learning-2.

6 CONCLUSIONS
In this paper, we have proposed two methods Learning-1 and
Learning-2, that allow to at least two DisCSP algorithms at the
same DisCSP problem, and share the nogoods content between

the participant algorithms. Assessments prove that, by learning
nogoods, we save exchanged messages and tested constraints.

The results give us the idea, for the futurework, to launch the �rst
algorithm (ABT, AFC-ng or another DisCSP algorithm), save the
nogoods and recuperate the results. Then run the second algorithm,
learning from the saved nogoods.

REFERENCES
[1] David W Aha, Dennis Kibler, and Marc K Albert. 1991. Instance-based learning

algorithms. Machine learning 6, 1 (1991), 37–66.
[2] Ramón Béjar, Carmel Domshlak, Cèsar Fernández, Carla Gomes, Bhaskar Krish-

namachari, Bart Selman, and Magda Valls. 2005. Sensor networks and distributed
CSP: communication, computation and complexity. Arti�cial Intelligence 161, 1-2
(2005), 117–147.

[3] Imade Benelallam, Zakarya Erraji, Ghizlaneg Elkhattabi, Jaouad Ait Haddou,
and El-Houssine Bouyakhf. 2015. JChoc DisSolver-Bridging the Gap Between
Simulation and Realistic Use.. In ICAART (1). 66–74.

[4] Imade Benelallam, Zakarya Erraji, Ghizlane EL Khattabi, and El Houssine
Bouyakhf. 2015. Dynamic JChoc: A Distributed Constraints Reasoning Plat-
form for Dynamically Changing Environments. In International Conference on
Agents and Arti�cial Intelligence. Springer, 20–36.

[5] Christian Bessière, Arnold Maestre, Ismel Brito, and Pedro Meseguer. 2005. Asyn-
chronous backtracking without adding links: a new member in the ABT family.
Arti�cial Intelligence 161, 1-2 (2005), 7–24.

[6] Jacques Ferber. 1999. Multi-agent systems: an introduction to distributed arti�cial
intelligence. Vol. 1. Addison-Wesley Reading.

[7] Katsutoshi Hirayama and Makoto Yokoo. 2000. The e�ect of nogood learning
in distributed constraint satisfaction. In Distributed Computing Systems, 2000.
Proceedings. 20th International Conference on. IEEE, 169–177.

[8] Hyuckchul Jung, Milind Tambe, and Shriniwas Kulkarni. 2001. Argumentation
as distributed constraint satisfaction: Applications and results. In Proceedings of
the �fth international conference on Autonomous agents. ACM, 324–331.

[9] Rajiv T Maheswaran, Milind Tambe, Emma Bowring, Jonathan P Pearce, and
Pradeep Varakantham. 2004. Taking DCOP to the real world: E�cient complete
solutions for distributed multi-event scheduling. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 1. IEEE Computer Society, 310–317.

[10] Amnon Meisels and Roie Zivan. 2007. Asynchronous forward-checking for
DisCSPs. Constraints 12, 1 (2007), 131–150.

[11] Adrian Petcu and Boi Faltings. 2004. A value ordering heuristic for local search in
distributed resource allocation. In International Workshop on Constraint Solving
and Constraint Logic Programming. Springer, 86–97.

[12] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of constraint
programming. Elsevier.

[13] Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and El Houssine
Bouyakhf. 2013. Nogood-based asynchronous forward checking algorithms.
Constraints 18, 3 (2013), 404–433.

[14] Richard J Wallace and Eugene C Freuder. 2002. Constraint-based multi-agent
meeting scheduling: E�ects of agent heterogeneity on performance and privacy
loss. (2002).

[15] Makoto Yokoo. 1995. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In International Conference on Principles
and Practice of Constraint Programming. Springer, 88–102.

[16] Makoto Yokoo, Toru Ishida, Edmund H Durfee, and Kazuhiro Kuwabara. 1992.
Distributed constraint satisfaction for formalizing distributed problem solving.
In Distributed Computing Systems, 1992., Proceedings of the 12th International
Conference on. IEEE, 614–621.

