
Multimodal Shortest Path Algorithm for Carsharing

Systems with Operation Area Constraint

Wesam Herbawi and Stefan Landsbek
moovel Lab

moovel Group GmbH
Stuttgart, Germany

Email: firstname.lastname@moovel.com

Abstract

This paper studies the problem of computing
the shortest path in free floating carsharing
systems with operation area constraint. In
this type of systems, The shortest path, be-
tween a given source and destination points,
consists of a walking part from the source to
some carsharing vehicle, then a driving part,
probably, followed by a final walking part to
the destination. The return of carsharing ve-
hicles is limited by an operation area con-
straint represented as geographical multipoly-
gon.

In this work we propose a multimodal short-
est path algorithm that takes the operation
area constraint into consideration to solve the
shortest path problem in free floating carshar-
ing. The proposed algorithm has been tested
using real world carsharing data. Experimen-
tation results showed that the algorithm was
able to successfully solve the problem and
cope with the different problems settings in
reasonable time suitable for online applica-
tions.

1 Introduction

A carsharing system consists of a fleet of vehicles dis-
tributed throughout the city and available to the sys-
tem users for rental on a short notice and usually for

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

a short period for the duration of their trips. This
kind of systems is gaining more and more interest and
widespread recently.

The types of car sharing systems vary according to
the constraints imposed by the system operator. Free
floating one-way carsharing (simply called free float-
ing carsharing) is the most flexible type of carsharing
where the user can rent a vehicle and return it at any
place within the operation area of the carsharing sys-
tem operator. The operation area is usually defined as
a multipolygon with included and excluded geographi-
cal areas. Example free floating carsharing systems are
car2go (www.car2go.com) and DriveNow (www.drive-
now.com).

Finding the shortest path in such systems is a mul-
timodal shortest path problem with the modes walk
and drive. It includes finding a walking path from the
source to a nearby vehicle, then a driving path to the
destination point. Often the destination point is not
directly accessible by driving mode. It could be out-
side the operation area of the carsharing operator or
it could be within a pedestrian zone. In both cases, a
final walking path has to be computed.

The multimodal shortest path problem has been
widely studied. In [Paj09,HJ13,YL12], different solu-
tion approaches for the multimodal shortest path prob-
lem have been proposed considering different modes
including walk, drive and public transport. The driv-
ing mode was supposed to be possible everywhere on
the street network as long as the street types allow for
driving. This is because the driving mode was thought
for private car or for a taxi. However, to the best of
our knowledge, no work has considered the multimodal
shortest path problem for carsharing where the driving
mode cannot be started and ended everywhere on the
street network, nonetheless, limited by the availability
of vehicles and by the operation area constraint.

In this work, we integrate the operation area con-

1

Figure 1: Sample free floating carsharing system set-
tings. A set of vehicles distributed through the city
along with a multipolygon operation area constraint.
Data is taken from car2go. Blue icons are car2go vehi-
cles (clustered for visualization purposes) and the blue
multipolygon represents the main part of the operation
area.

straint in the graph representation of the street net-
work and propose a multimodal shortest path algo-
rithm to answer shortest path queries of the form walk-
carsharing-walk. The algorithm takes the operation
area constraint into consideration while computing the
multimodal shortest path.

The rest of the paper is organized as follows. We
describe the problem in more details in Section 2. The
proposed algorithm is explained in Section 3 followed
by the experimentation and results in Section 4. Fi-
nally, we outline the conclusions of the paper.

2 Problem description and modeling

Typically, a free floating carsharing system has a set
of vehicles on specific geolocations and a geographical
multipolygon defining the operation area of the car-
sharing system as shown in Figure 1. Carsharing rental
can be started everywhere where a vehicle is available
and can be ended only within the operation area de-
fined by the multipolygon. The task is to find the
shortest path on the street network between a given
source s and target t points (later will be denoted
nodes) using the modes walk and drive. The mode
walk can be used everywhere on the street network as
long as the street types allow for walk mode. A switch
from walk mode to drive mode can be triggered only
if a carsharing vehicle is reached. Obviously the walk
mode cannot be simply stopped after reaching a car-
sharing vehicle. It might be necessary to walk a bit
farther to reach another carsharing vehicle that might
result in the shortest path. Such a vehicle might be

located on a street where no detour is required to head
toward the destination. This problem is a multimodal
shortest path problem where a switch between differ-
ent modes of transport is required. The shortest path
might include a walk to some carsharing vehicle fol-
lowed by a drive segment and ends with another walk
segment. The operation area constraint is a new com-
ponent to this type of problems and to our knowledge,
this is the first work to consider such constraint. In
the following, we provide the modeling of the different
components of the problem.

The street network is represented as a diagraph
G = (V,E), E ⊆ V × V . We assume that the set of
nodes V consists of integer values in the range [0, |V |).
We use the functions w and d : E → {true, false} to
denote if an edge e ∈ E is accessible by walk and
drive modes respectively. Edges E are annotated with
travel time for both modes walk and drive. We use
the functions timew and timed : E → R≥0 to denote
the travel times of an edge e ∈ E for the modes
walk and drive respectively with the following hold
w(e)⊕ (timew(e) =∞) and d(e)⊕ (timed(e) =∞) i.e.
if an edge e is not accessible for some mode, then the
travel time of that mode on e is infinity.

For each carsharing vehicle, we find the geographi-
cally closest node v ∈ V to get the set C ⊆ V of nodes
that will represent the carsharing vehicles in our graph
G. New nodes are added to V if necessary, to represent
vehicles that are located close to long edges and far
from the end nodes of the edges. Using the operation
area multipolygon, we generate the set of nodes that
are geographically withing the operation area. This
set is denoted by O = {v ∈ V | v is geographically
within operation area}, C ⊆ O ⊆ V .

3 The proposed algorithm

To solve the multimodal shortest path problem in free
floating carsharing, we propose an extension of Di-
jkstra algorithm [Dij59], that alternates between the
modes walk and drive, and takes the operation area
constraint into consideration. Algorithm 1 is a pseu-
docode representation of the proposed algorithm.

Algorithm 1 follows the basic structure of Dijkstra
algorithm. However, the different modes of travel and
the operation area constraint have to be taken into
consideration. The mode switch (from walk to drive
and vice versa) and its trigger has to be handled in
the algorithm. In comparison to single mode short-
est path problem, in multimodal shortest path, the
same node could have different predecessors at the
same time (namely, one per travel mode) as shown in
Figure 2. This happens, for example, when the system
user has to walk in some direction to reach a vehicle
and then drive back the same way. This behavior will

2

Algorithm 1: Multimodal Operation Area Aware
Dijkstra

begin
Input: G = (V,E) source s ∈ V target t ∈ V

vehicle nodes C ⊆ V Operation area
nodes O ⊆ V

Output: Multimodal shortest path tree
rooted at s

1 Q ← Priority Queue
2 Q.insert(s,0)
3 d[i]←∞, i ∈ 0, 1, .., 2 |V |
4 d[s]← 0
5 while !Q.isEmpty() do
6 v ← Q.dequeue()
7 if v = t or ((v mod |V | = t) and t ∈ O)

then
8 Stop

9 for each e = (v mod |V | , u) ∈ E do
10 if v < |V | or v mod |V | ∈ O then
11 tmpD ← d[v] + timew(e)
12 if tmpD < d[u] then
13 if d[u] =∞ then
14 Q.insert(u, tmpD)

else
15 Q.decreaseKey(u, tmpD)

16 d[u]← tmpD
17 pred[u]← v

18 if v ∈ C or v ≥ |V | then
19 tmpD ← d[v] + timed(e)
20 if tmpD < d[u + |V |] then
21 if d[u + |V |] =∞ then
22 Q.insert(u + |V |, tmpD)

else
23 Q.decreaseKey(u +

|V |, tmpD)

24 d[u + |V |]← tmpD
25 pred[u + |V |]← v

result in some nodes, where the same node is reached
at different durations from different predecessor nodes
and despite that the different predecessors have to be
accepted as valid predecessors. In single mode shortest
path, this behavior is not allowed. If node x is reached
through predecessor y with duration d1, then no pre-
decessor for x will be accepted with duration d2 ≥ d1.
An edge base traversal Dijkstra will manage to solve
the problem depicted in Figure 2. However, it will fail
in handling the case where the same edge has to be
reached both by walk and drive even if the drive mode
results in less duration. Walking a bit farther might
result in the shortest path as explained earlier in this
section.

At the early stages of the algorithm, it behaves as
a typical Dijkstra exploring G in the walk mode (lines
10 − 17). A mode switch from walk to drive is trig-
gered once a node v ∈ C is settled (removed from
the priority queue). This means a carsharing vehi-
cle is reached, and from there one can start driving
mode (line 18). Once we start exploring G in drive
mode, we might face the problem depicted in Figure
2. Node b has already been reached through a with
duration timew((a, b)). Once the node c is settled, we
can start exploring in mode drive. Now the algorithm
tries to reach node b through node c with a total dura-
tion of timew((a, b)) + timew((b, c)) + timed((c, b)) ≥
timew((a, b)). In a single mode shortest path, this step
is not allowed as b has already been reached with less
duration through a. However, in our case, this step
should be allowed as the vehicle has to be reached first
and the shortest path might be the one with the ve-
hicle driving back the walk path. The algorithm han-
dles that by making local graph copies. For each node
v ∈ V that is to be explored in drive mode, the algo-
rithm makes a copy of v and assign it the value v+|V |.
Now the new node v+|V | can be reached with a higher
duration compared to its walk mode node v (lines 20
− 25). Note that the node v+ |V | preserves all the at-
tributes and outgoing edges as (v+ |V |) mod |V | = v.
Now, any node v ≥ |V | indicates that the algorithm is
exploring the driving mode. Hence, the condition at
line 18 indicates that we can explore nodes in driving
mode either if the settled node is a vehicle node v ∈ C
or it is already a driving mode node v ≥ |V |.

The operation area constraint is enforced by the set
O. It is used to define a valid transition from the drive
mode to the walk mode in line 10. A transition from
drive to walk is allowed only if the settled drive node is
within the operation area (v+ |V |) mod |V | = v ∈ O.
This means that a carsharing vehicle can be returned
only within the operation area. The set O is also used
to define a valid algorithm stop condition at line 8
where the solution is found. For a valid stop condition,
the settled node v has to be in a walk mode or the

3

a

b

cd

Figure 2: Multiple predecessors problem. Node b is
reached by walk mode (green) through a and by drive
mode (black) through c

destination has to be within the operation area, t ∈ O,
if v is in drive mode. It could happen that v ≥ |V | and
v mod |V | = t but t /∈ O. This means the destination
is reached in drive mode but it is outside the operation,
yet solution is not found.

What the algorithm conceptually does is shown in
Figure 3. It splits the graph into two graphs, one for
walk and another for drive. The two graphs are bidi-
rectional connected at vehicle nodes and one direction-
ally connected, from drive to walk, at nodes within the
operation area. The algorithm does that on the fly and
locally. Instead of splitting the whole graph into two
graphs, the algorithm only splits the part of the graph
that is visited during the search. The visited part is
usually small compared to the size of the graph as car-
sharing trips are usually short distance. Also, this ap-
proach is more suitable to the highly dynamic nature
of the problem as vehicles updates typically happen
at least once a minute. The algorithm has the same
computational complexity, O(E log V), as Dijkstra. It
operates in the same way as Dijkstra but on a larger
graph with a maximum graph size factor of 2 if the
whole graph is visited during the search.

4 Experientation and Results

We have tested the proposed algorithm using real
world carsharing data provided by car2go. The car2go
dataset contains 945 vehicles operating in Berlin in
an operation area as shown in Figure 4. The Open-
street map (OSM) data of Berlin is used to build the
street network graph. Our algorithm is implemented
as an extra module plugged to Graphhoper (graphhop-
per.com). Experiments are performed on a computer
with 4G RAM and 2.5GHz, 64bit dual core processor.

Figure 5 shows the results of the algorithm for dif-
ferent carsharing use cases. In 5(a), the source and

Figure 3: Pictorial representation of the algorithm be-
havior. Green and Gray nodes are nodes inside and
outside the operation area respectively. Dashed nodes
are the node copies. The node with black stroke rep-
resents a vehicle node.

destination points are within the operation area and
the destination is reachable by drive mode. The short-
est path consists of a walking part to reach a vehicle
followed by a drive part. No final walk is required
as the destination is reachable by drive mode. The
destination point is outside the operation in 5(b) and
therefore the destination has to be reached walking as
the vehicle has to be returned within the operation
area. 5(c) shows the result of the algorithm when the
source is within one of the polygons defining the op-
eration area and the destination is close to another
polygon. The vehicle is returned in the polygon close
to the destination and a walking part to the desti-
nation is computed. A single mode walking result is
computed in 5(d) as the end points are close to each
other. Often, carsharing providers exclude parts of the
operation and, hence, it is not allowed to return the
vehicle in such excluded parts. 5(e) shows the result
when the destination is within an excluded area.

Table 1 summarizes the average runtime and num-
ber of settled nodes for different scenarios of carshar-
ing trips. For each scenario, 10 different trips, between
randomly selected source and destination points, have
been computed. The trips are categorized as short and
long distance. We consider trips of an average dis-
tance 7-8km as short and trips of an average distance
23-27km as long. While both, short and long distance
trips in our study, are considered very short trips for
typical single mode routing, still a 23km trip in car-
sharing systems is considered a long one. The first sce-

4

Figure 4: Operation area of car2go in Berlin

Table 1: Experimentation Results. runtime in milliseconds, number of settled nodes, total trip distance of all
modes and the walk distance

drive walk-drive drive-walk

runtime settled
total

distance

walk

distance
runtime settled

total

distance

walk

distance
runtime settled

total

distance

walk

distance

Short 20 16551 7732 0 19 15761 7962 1039 60 51767 6975 1062

Long 61 49561 23514 0 60 50698 27230 1015 110 95402 23987 1060

nario of carsharing trips is the drive only trip where
a carsharing vehicle is available directly at the source
and can be returned at the destination. No walk is
required. The second scenario is the walk-drive where
some walk is needed to reach the vehicle and the des-
tination can be directly reached by the vehicle. In the
last scenario, drive-walk, the vehicle is directly avail-
able at the source but some walk is needed at the end
to reach the destination.

We notice that there is no considerable difference in
the runtime and the number of settled nodes between
the scenarios drive and walk-drive. However, a consid-
erable higher runtime and number of settled nodes for
drive-walk on both short and long trips. This is be-
cause, when the destination is not directly reachable
by the vehicle, either because of being in a pedestrian
zone or outside the operation area, the algorithm set-
tles high number of drive mode nodes. It could hap-
pen that the algorithm reaches the destination in drive
mode but cannot stop the search as it is outside the op-
eration area. The algorithm then has to explore more
walk nodes to reach the destination. As the walk mode
is slower than the drive mode, walk mode nodes get
less priority in the priority queue, as they have higher
duration, and the algorithm tends to settle more and
more drive mode nodes. In other words, having a walk
at the end results in longer trip duration till the des-

tination is reached. The algorithm settles all nodes
with duration less than the duration needed to reach
the destination and therefore it settles larger number
of drive nodes as driving is usually faster and takes
less duration. This behavior does not happen when
the walking part is at the beginning of the trip even
that it results in longer trip duration. This is because,
a walk at the beginning of the trip means that a vehi-
cle is not reached yet and drive mode is not active. So
the algorithm mainly expands walking nodes.

5 Final remark

In this work we have proposed an algorithm for the
multimodal shortest path problem in free-floating car-
sharing systems with operation area constraint. The
algorithm has been tested, under different trip sce-
narios, using real world carsharing data. Test results
showed that the algorithm was able to efficiently solve
the problem.

An interesting extension of this work is to combine
the carsharing routing with public transport. This is
very interesting especially if the destination is far from
the operation area, then a last mile public transport
could be taken instead of walking. This will affect the
return point near the borders of the operation area
depending on the availability of public transport stops
and trips.

5

(a) source and destination are within the operation
area

(b) destination is outside the operation area

(c) destination is outside the operation area and close
to a polygon other than the polygon of the source

(d) close source and destination

(e) destination is in excluded polygon

Figure 5: Algorithm results for different carsharing use cases based on different positions of the source (green)
and destination (red). Green is walk and black is drive.

6

References

[Dij59] Edsger W Dijkstra. A note on two problems
in connexion with graphs. Numerische math-
ematik, 1(1):269–271, 1959.

[HJ13] Jan Hrncir and Michal Jakob. Generalised
time-dependent graphs for fully multimodal
journey planning. In Intelligent Transporta-
tion Systems-(ITSC), 2013 16th International
IEEE Conference on, pages 2138–2145. IEEE,
2013.

[Paj09] Thomas Pajor. Multi-modal route planning.
Universität Karlsruhe, 2009.

[YL12] Haicong Yu and Feng Lu. A multi-modal route
planning approach with an improved genetic
algorithm. Advances in Geo-Spatial Informa-
tion Science, 1:0, 2012.

7

