
54

Reverse Engineering of UML Use Case Model from

Website Usage Records

Vaidotas Drungilas

Department of Information Systems,

Kaunas University of Technology

Informatics faculty

Kaunas, Lithuania

vaidotas.drungilas@ktu.lt

Lina Čeponienė

Department of Information Systems,

Kaunas University of Technology

Informatics faculty

Kaunas, Lithuania

lina.ceponiene@ktu.lt

Mantas Jurgelaitis

Department of Information Systems,

Kaunas University of Technology

Informatics faculty

Kaunas, Lithuania

mantas.jurgelaitis@ktu.lt

Abstract—Though UML is rather commonly used for

modelling various software systems, if not properly maintained,

UML models could lose their practical value. Fixing the mismatch

between documentation and the current state of software, requires

significant effort from development team. This also applies to

systems that have no documentation at all or legacy systems, which

documentation is not available. Reverse engineering can be used

for generating UML diagrams for existing systems. In this paper

we present a method for reverse engineering UML Use Case model

from websites. This method enables generating UML Use Case and

Activity diagrams from the recorded user activity in the website.

Keywords—UML; reverse engineering; website; Use Case

diagram; Activity diagram.

I. INTRODUCTION

Unified Modelling Language (UML) is rather commonly

used for modelling various software systems [1]. UML is

applied not only during development of complex software

systems but also during maintenance of the systems in use. As

for deployed systems that require support and updates, models

help to analyze and understand inner structure and functionality

of a system [2]. Most of the models and documentation are

usually created during initial software development stages. If

not properly maintained these models lose their practical value.

An example of improper maintenance could be a situation when

the final product receives updates and new features, without

updating documentation and leaving it obsolete. While using

this kind of obsolete documentation, maintenance of software

and introducing new features becomes more difficult. Fixing

the mismatch between documentation and the current state of

software, requires significant effort from development team.

This also applies to systems that have no documentation at all

or legacy systems, which documentation is not available.

Websites more than any other type of software demand

constant updates and fixes to meet changing user demand and

to beat harsh competition [3]. This demand and competition

puts pressure on web developers to implement changes as fast

as possible, without wasting valuable resources and time. As

demand grows, website developers tend to concentrate on

maintaining created and implementing new software features

rather than spending time for updating the documentation. To

match the tendency of directing most of the effort into

implementation stage, Agile project management

methodologies have a tendency to be rather popular among web

developers. Software products that are built using Agile

methodology, usually do not concentrate on having detailed

documentation. Consequently, in this paper we tackle a

problem of increasing efficiency of modelling process for

websites and suggest reverse engineering as a possible solution.

Reverse engineering is the process of analyzing a system to

identify its structure and behavior in order to create its visual

representation [4]. Reverse engineering can be used to

understand how software works and to transform some kind of

static information, like program code, into models and

documentation [5].

Reverse engineering can also be used for generating UML

diagrams [6] [7] [8]. In this paper we present a method for

reverse engineering UML Use Case model from websites. This

method enables generating UML Use Case and Activity

diagrams from the recorded user activity in the website and

websites’ HTML files.

The rest of the paper is organized as follows. The second

section presents related work in the field of reverse engineering

UML diagrams. The third section is dedicated to describing our

proposed method for generating UML diagrams from registered

user actions. Section four describes the prototype developed for

our proposed method. The fifth section presents the results of

evaluation of the prototype by applying it for a particular

website. The last section summarizes the findings of our

research and discusses the future work.

II. RELATED WORK

Reverse engineering of UML models is rather common in

the field of software engineering. Reverse engineering can

greatly reduce the effort required to construct UML diagrams.

UML diagrams can be divided into two categories, one

describes structure of the software system, and the other defines

its behavior [9].

Structural UML diagrams can be reverse engineered from

code or other static structure. Class diagrams can be easily

transformed from static code [8], [10]. Many tools support this

Copyright held by the author(s).

55

option through plugins or default functionality, e.g. Eclipse [11]

or Visual Paradigm [12].

On the other hand, reverse engineering of behavioral

diagrams, like Use Case and Activity diagrams, is not so

commonly implemented and used. Nevertheless, there have

been significant effort to create a working method for reverse

engineering of UML behavioral diagrams [6] [7] [13] [14].

El-Attar and Miller proposed a method to reverse engineer

Use Case models from structured Use Case descriptions [7].

This method requires structured text as an input which is

analyzed and transformed into the Use Case diagram. This

method if used correctly could greatly improve consistency of

software documentation and would allow creating precise and

unambiguous Use Case models. The best result using this

method could be in early development stages. On the other

hand, while using Agile methodologies this method would not

be the best choice because it requires additional effort for

creating and formatting Use Case specifications.

Another method for reverse engineering UML diagrams has

been proposed by Muhairat [6]. It uses event table as an input

for generating Use Case diagram. Event table, as defined in [6],

has four main elements: event, source of event, action and

object. These main elements are later transformed, using the

proposed process, which consists of actor identification,

relation between actors’ identification, use case identification,

relation between use cases identification and integration of all

found elements. Just like [7] method, this method requires a lot

of effort for creating sufficiently detailed event table to generate

informative Use Case model. This method could be the most

useful during requirement analysis phase.

Much can be learned not only form reverse engineering Use

Case diagrams, but also from reverse engineering other

behavioral diagrams. An excellent example of reverse

engineering behavioral diagrams is presented in research by

Ziadi, da Silva, Hillah, and Ziane [13]. They proposed an

approach how to fully dynamically reverse engineer UML

Sequence diagrams. This dynamic method is intended for the

systems where static code analysis is not applicable directly.

Approach also defined how to extract the traces of a working

system. This idea is used as a basis in one of the steps of our

proposed method for extracting website usage information.

Di Lucca, Fasolino and Tramontana proposed a specialized

tool specifically intended for website reverse engineering,

called WARE [14]. This tool is capable to reverse engineer

UML Use Case and Sequence diagrams as well as Class

diagrams. But instead of working with dynamic content, this

tool uses static code as an input for reverse engineering. This

tool is only applicable in situations where the full access to

source code is granted. In contrast, our research focuses on

reverse engineering UML behavioral diagrams independently

of the availability of the websites’ source code.

Most of the research conducted in the area of reverse

engineering Use Case model is not intended particularly for

websites. Our approach focuses on reverse engineering UML

behavioral diagrams from websites, specifically from the

information recorded during website usage. Our proposal is

based on the idea that websites use a common architecture

which can be used to extract information about user activities.

III. PROPOSED METHOD FOR REVERSE ENGINEERING UML USE

CASE MODEL

As UML Use Case model provides detailed overview of

systems functionality, it is one of the main components of high

quality system documentation [15]. Our approach in reverse

engineering UML Use Case model should provide ability to

flexibly analyze web applications, and transform analysis

results into UML Use Case model. The created Use Case model

should include Use Case diagram along with each Use Case

specified by an Activity diagram defining the functionality of

that Use Case.

The proposed method consists of two main steps for reverse

engineering UML Use Case model from the selected website

(Fig. 1):

1) registering usage of the analyzed system;

2) transforming registration results into XMI file.

Fig. 1 Structure of the proposed method

During the first phase of reverse engineering UML Use

Case model, user opens the system that will be analyzed. He

inputs his role in the system and activity that he will be

performing. User then continues to use system while his activity

is being recorded by reverse engineering system in the

background. User can input as many roles and activities as it is

required to completely represent his usage of the system.

Registering of user actions should be performed by a number of

users that is required to cover all functionality of system. After

all users register their activities, they should be able to export

result files and send them to the system analyst. System analyst

then should be able to merge all the result recordings together,

into one full structure that represents actions performed in the

analyzed system.

56

A. System usage registration process

The component that will be used for registering system

usage should not interfere with system functionality by any

way. The recording component should be able to read HTML

files that user is interacting with. It should work as a

background process that captures user input events, such as

clicks and form submits. To describe these events correctly,

recording component should also store information about

HTML elements that user interacts with. These elements should

be uniquely described with an identifying element. Registration

component should allow user to define what kind of role he is

performing in the system and to define what kind of activity he

will be performing. The process of registration consists of

initialization and recording steps as can be seen in Fig. 2

Fig. 2 Activity diagram representing the process of system usage registration

B. Registration result

Registration results are then provided as an input for the

component that transforms user actions into UML Use Case

model. This input should be stored in a structure that has

elements described in Fig. 3. This structure should store all

Website URLs that user interacted with during time of

recording. In addition, user should provide the name of the

Role, which exists in given Website. Each Role will be

performing some kind of Activity. Each Activity should be

defined by Webpage that it was performed on and events that

were performed in that same Webpage. Each event is described

with detailed information about type of Action, and information

about HTML element that was in use during that event.

Fig. 3 The structure of the user activity registration result

C. Transformation process

Transformation process is defined in Fig. 4. In order to

create a detailed UML model, transformation step should be

performed. During this step, registration input is being analyzed

for detecting relations between actors and use cases, also

between use cases themselves.

Fig. 4 Activity diagram representing the process of transformation to XMI file

Activity diagram defining the transformation (presented in

Fig. 4) specifies what actions are required to transform

registered results to XMI. The first action removes duplicate

actors, to keep the model concise. The second action is required

to detect and create generalization relations between actors. The

third action performs grouping operations with the registered

data. These grouping operations consist of detecting extend and

include relations between use cases. The final step takes the

57

results from all relation detection steps and creates XMI file

basing on the structure of metamodels of UML Use Case and

Activity diagrams.

D. Generalization relation detection

Generalization relation detection starts by scanning all

registered use cases and searching for two or more actors which

have matching use cases. Algorithm also checks whether it

needs to create a new user, in order to display a generalization

correctly. If the user creation is required, the system analyst

should be prompted to input actor name for new actor. After

these steps, the system creates generalization relations between

the actors. As a last step, the system maps all required use cases

to required actors. Generalization relation detection step is the

only step that changes configuration with actors in the model,

so after this step we will have the final number of actors in the

model. The activity diagram describing generalization detection

process is defined in Fig 5.

Fig. 5 The process of detecting generalization relations

E. Detecting relations between Use Cases

Detection of use case relations like extend and include,

depends on a data set provided by the user of proposed method.

Our method does not detect generalization between Use Cases,

only include and extend relationship. To detect extend relations,

the user of a system should record the same activity on a website

twice or more. If these data sets of the same activity will provide

exactly the same information, detection would just discard it.

Otherwise, if some differences would be found in these data

sets, the proposed algorithm can create a more detailed use case

model. Success of relation detection depends on an amount of

data that user provides during the recording. The higher amount

of recorded data should transform into a model that is more

detailed and thus more informative.

1) Detection of extend type relations

To enhance the Use Case model, our proposed approach

detects extend relations. All the actions required to detect

extend relations are represented in Fig. 6. These extend

relations are important in describing alternative scenarios in the

model. Extend relation detection starts with checking all

recorded action sequences and finding partially repeating

actions. From these sequences, the matching parts are extracted,

by comparing them to each other. At the beginning and end of

the extracted sequence, decision and merge points are created

respectively. Afterwards the extracted, remaining and newly

created elements are merged together to create the complete

activity diagram. For each path that is now separated from the

main path of the activity flow by a decision point, a new use

case can be created. User provides the names for these use cases

and the algorithm creates them in a model. The next step in

extension relation detection is creating extension relation

between newly created use cases and the use case they

originated from. Finally the extension points are created for the

use case, which has incoming extend relations.

Fig. 6 The process of detecting extend relations

2) Detection of include type relations

In order to decrease redundancy in use case model, include

relations can be used between use cases. As in our method the

amount of recorded data should be quite big, include relations

58

help to reduce the number of repeated actions in the model.

Include relation detection starts with finding all repeating action

sequences where repeated sequence length is higher than user

defined number N. For each sequence found, the algorithm

starts use case creation by prompting the user to input a use case

name and creating use case element with that name. These

found sequences are then removed form use cases where they

originated. To finalize, include type relations are created by

joining newly created use cases and use cases that the sequences

originated from. The process of include relation detection is

presented in Fig. 7

Fig. 7 The process of detecting include relations

F. Transformation to XMI format

During the transformation to XMI step, all the information

gathered in previous steps is transformed into Use Case and

Activity diagrams. Transformation starts by creating a Use Case

diagram. For each role that the user defined, an actor is created.

For each activity, that the user defined, the use case is created.

Moreover, the use cases that were found during detection of

extension and include relationships are added to the model. All

use cases and actors are joined using the detected relationship.

For each use case, an Activity diagram is created. In this

diagram, the algorithm creates two swimlanes, the first one for

the actor that is interacting with the given use case, and the

second for the system under analysis. For each recorded action

our algorithm creates the action in activity diagram. Actions are

named referring to the action naming rules, selecting the verb

corresponding to the action performed on a HTML element as

well as a noun extracted from HTML element attributes. These

rules define how each action on HTML element should

transform into semantically correct action name. In a systems

swimlane, actions are created describing the opening of new

webpages. Initial and final activity nodes are also created and

all nodes and activities are joined together in a continuous flow.

G. Transformation results.

Results after generation are stored in XMI file. This file

consists of Use Case diagram with elements that are described

by UML Use Case metamodel [9]. For each use case, an activity

diagram is created, representing all actions that the user

performs in the system under analysis. Activity diagram is also

based on UML metamodel for Activities and Actions [9]. The

main elements that this method detects are roles, use cases, and

actions. Relations join each of these elements: association

relationship joins use cases and actors, generalization is used

between actors, include and extend relations can join two use

cases, and control flow relations connect the actions in activity

diagrams. User can download the generated XMI file and store

it as needed. As most of UML modeling tools support XMI as

their import format, users should just import this file and have

the working version of Use Case model.

IV. THE IMPLEMENTED PROTOTYPE OF THE PROPOSED METHOD

To test whether the proposed method could be utilized in
practice, a prototype has been implemented. Prototype was
realized as a Chrome plugin using JavaScript. It enables users to
submit information about their role in the website activity they
will be performing. As user continues to use the system that is
being analyzed, his actions are recorded. Recorded actions are
then stored in JSON file. After user indicates that he has ended
registration process, he can start transformation process. The
system transforms registered JSON structure to Use Case and
Activity diagrams. Example of this JSON structure is presented
in Fig. 8.

Fig. 8 An example of JSON structure displaying use case “Download

assignments data”

Afterwards this JSON file is transformed into XMI file,

which can be imported into MagicDraw CASE tool as a model.

This model can later be viewed, analyzed and modified by the

analyst.

59

V. EXAMPLE OF UML DIAGRAMS GENERATED USING THE

IMPLEMENTED PROTOTYPE

 An experiment was conducted to verify whether the created
prototype is capable of reverse engineering UML Use Case
model. Website selected for this experiment was a virtual
learning environment Moodle, customized for Kaunas
University of Technology. The roles of student and teacher were
analyzed.

In order to create Use Case model, student and teacher were

asked to perform actions in the analyzed website. Student

performed actions for uploading a file into the system. Teacher

recorded a process in which he downloaded the students’

submitted assignment. Fig. 9 displays the generated Use Case

diagram. For this diagram, users provided two roles but the

system identified one additional actor. In total three use cases

were detected. The first actor was discovered by generalization

relation detection step during registration result transformation.

As both of the actors had to log into the system a new user

named “Guest” was created. This user, as mentioned before,

provides the ability to subtract the amount of excess use cases.

For each of these use cases, the algorithm created an activity

diagram as expected.

Fig. 9 The generated Use Case diagram

 Activity diagram describing Use Case “Login” is presented
in Fig. 10. In this diagram we can see that each non-
authenticated user had to click login button styled by CSS class
named “btn-login”. After the button is clicked, the system
transfers all non-authenticated users to unified authentication
system where user fills out login fields and submits the form. To
finish login use case, the user clicks Login button and is
transferred to the virtual learning environment. The generated
Activity diagram demonstrates the prototypes ability to specify
common actions, like login and registration.

Fig. 10 Generated activity diagram describing Login use case

An example of generated activity diagram for use case

“Submit assignments” is displayed in Fig. 11. This diagram

displays interactions the user performed and webpages he

opened. The diagram describes algorithms’ ability to record

actions, and to transform them correctly. The action naming

conventions do not convey the performed action information

clearly, it heavily depends on the systems configuration. Most

of the students’ actions in this use case were navigation through

the website. One downside of using just URL changes to

describe the opening of new windows in the system, is that it

cannot record the opening of a modal window. The algorithms’

ability to detect modal windows should be improved in the

future.

Fig. 11 Generated activity diagram describing Submit assignment use case

The example use case “Download assignment” is described
in activity diagram presented in Fig. 12. This activity provides
visual feedback, demonstrating that some of the URL naming
rules should be improved. On the other hand, this activity still

60

provides enough detail to cover all the most important actions of
the use case.

Fig. 12 The generated activity describing Download assignment use case.

The results of experiment indicate that created prototype is
capable of creating UML Use Case model. Both Use Case and
Activity diagrams were created describing system usage in great
detail. As current prototype is only capable of detecting
generalization relations, further iterations of this prototype will
only increase the expressivity of generated models. Generation
of activity diagrams describing each use case provide even more
depth to generated UML Use Case model. As semantic value of
these Activity diagrams can still be improved in future releases,
generated Activity diagrams still provide enough information
about system usage.

VI. CONCLUSIONS AND FUTURE WORK

Reverse engineering of UML diagrams is utilized in various
areas of software engineering. There are many applications of
reverse engineering, but most of them are for structural UML
diagrams. Behavioral UML diagrams can also be reversed and
in our work we have proposed the methodology for reversing
UML Use Case model from the data recorded during website
usage. Our algorithm analyses recorded user activity and
transforms it into UML Use Case and Activity diagrams. The
prototype of the proposed algorithm was implemented as a
Chrome extension. As this prototype is just the first of its kind,
it generates use case and activity diagrams, but is not yet capable
of detecting extend and include relations.

The results of experiment indicate that the implemented
prototype is capable of generating UML Use Case model. Both
Use Case and Activity diagrams were successfully generated
using the prototype. The experiment results indicated that our
method could be successfully utilized in practice. The
experiment also provided valuable feedback about required
improvements on action naming rules.

In the future, we are planning to implement the extended
capability to support other UML modeling tools. The set of
supported tools should include at least one open source tool that
is free to use, so that the proposed method could be more
accessible to wider audience.

REFERENCES

[1] M. R. Chaudron, W. Heijstek and A. Nugroho, "How effective is UML

modeling?," in Software and Systems Modeling (SoSyM), 2012.

[2] E. Arisholm, L. C. Briand, S. E. Hove and Y. Labiche, "The impact of

UML documentation on software maintenance: an experimental

evaluation," IEEE Transactions on Software Engineering, vol. 32, no. 6,

pp. 365-381, 2006.

[3] G. Rossi, Ó. Pastor, D. Schwabe and L. Olsina, Web Engineering:

Modelling and Implementing Web Applications, Springer-Verlag

London, 2008.

[4] E. J. Cross and J. H. Chikofsky, "Reverse engineering and design

recovery: a taxonomy," in IEEE Software, vol. 7, no. 1,, 1990, pp. 13-17.

[5] J. Hibschman and H. Zhang, "Unravel: Rapid Web Application Reverse

Engineering via Interaction Recording, Source Tracing, and Library

Detection," in UIST '15 Proceedings of the 28th Annual ACM Symposium

on User Interface Software & Technology, Daegu, Kyungpook, Republic

of Korea, 2015.

[6] M. Mohammad I and E. A.-Q. Rafa, "An approach to derive the use case

diagrams from an event table," in 8th WSEAS International Conference,

Cambridge, 2009.

[7] M. El-Attar and J. Miller, "Producing robust use case diagrams via

reverse engineering," Softw Syst Model, pp. 7-67, 2008.

[8] M. I. Muhairat and A. Abdel, "A New Reverse Engineering Approach to

Convert," International Journal of Software Engineering & Applications

(IJSEA), 2014.

[9] "UML 2.5 Specification," 1 03 2015. [Online]. Available:

http://www.omg.org/spec/UML/2.5/PDF.

[10] E. Korshunova, M. P. M. v. d. Brand and M. Mousavi, "CPP2XMI:

Reverse Engineering of UML Class, Sequence,," in Proceedings of the

13th Working Conference on Reverse Engineering (WCRE'06), 2006.

[11] "eclipse," The Eclipse Foundation, 2108. [Online]. Available:

http://www.eclipse.org.

[12] "visual-paradigm," Visual Paradigm, 2018. [Online]. Available:

https://www.visual-paradigm.com/.

[13] T. Ziadi, M. A. A. d. Silva, L. M. Hillah and M. Ziane, "A Fully Dynamic

Approach to the Reverse Engineering of UML Sequence Diagrams," in

16th IEEE International Conference on Engineering of Complex

Computer Systems, ICECCS, Las Vegas, United States, 2011.

[14] G. A. D. Lucca, A. R. Fasolino and P. Tramontana, "WARE: a tool for

the Reverse Engineering of Web Applications," Journal of Software

Maintenance and Evolution: Research and Practice - Special issue: Web

site evolution, pp. 71-101, 2004.

[15] Richard Soley and the OMG Staff Strategy Group, Model Driven

Architecture, 2000.

[16] B.A. Nowak, R.K. Nowicki, M. Woźniak, and C. Napoli,. "Multi-class

nearest neighbour classifier for incomplete data handling," in

International Conference on Artificial Intelligence and Soft Computing,

pp. 469-480, 2015.

