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Faculty of Informatics

Vytautas Magnus University;
Baltic Institute of Advanced Technology

Kaunas, Lithuania
rita.beigaite@bpti.lt

Tomas Krilavičius
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Abstract—Forecasts of electricity spot price can be very useful
for participants of electricity market in order to maximize profits,
minimize risks and make future strategies. In literature various
methods are applied for solving this problem. However, the same
approaches let achieve different results with distinct markets.
In this paper we describe our experiments with electricity spot
price data of Lithuania’s price zone in Nord Pool power market.
Short-term forecasts are made using recurrent neural networks
and results are reported.

Index Terms—electricity spot price, forecasting, recurrent
neural networks

I. INTRODUCTION

Nowadays due to worldwide liberalization of power markets,
electricity can be traded under the rules of free electrical
market. It can be bought and sold as any other commodity. For
participants of electricity market it is important to optimize
profits and risks. This can be done by using forecasts of future
electricity prices. For instance, accurate short-term forecasts
can help to make better biding strategies.

One of the distinct features of electricity is that it cannot
be stored in bulk quantities [1], [2]. It is one of the factors
why electricity price has features such as high volatility and
spikes. Extreme price spikes or volatility can also be caused by
uncertainty in factors such as transmission bottlenecks, weather
conditions, fuel price or equipment outages [3], [4]. These
factors as well as double seasonality makes it a challenging
task to forecast electricity prices accurately.

In literature many different methods are applied for electricity
price forecasting. Based on [5], [6], they can be classified
into five groups. These groups consist of multi-agent models
(e.g. Nash-Cournot framework, agent-based simulation models),
fundamental models (e.g. parameter-rich fundamental models,
parsimonious structural models), reduced-form models (e.g.
Markov regime-switching models, jump-diffusion models),
computational intelligence models (e.g. feed-forward neural
networks, recurrent neural networks) and statistical models
(e.g. exponential smoothing methods, regression models, AR-
type time series models). Each group of methods has its own
advantages and disadvantages. For example, for the analysis of
strategic behaviour in electricity markets, multi-agent models
can be considered as very flexible tools. However, as these

models generally focus on qualitative issues, high accuracy of
the forecasts cannot be achieved.

In recent literature many of electricity price forecasting
approaches are hybrid solutions, which combine two or more
distinct methods. For instance, in [7] and [8] hybrid intelligent
algorithm utilizing a data filtering technique based on wavelet
transform, an optimization technique based on firefly algorithm,
and soft computing model based on fuzzy ARTMAP or neural
networks are introduced. Using this method authors make ahead
forecasts for the market.

Another example would be in [9] proposed hybrid approach
that combines the wavelet transform, kernel extreme learning
machine based on self-adapting particle swarm optimization
and an auto regressive moving average methods. Forecasts
were made for Pennsylvania-New Jersey-Maryland, Australian
and Spanish markets.

In this paper we describe application of recurrent neural
networks for short-term (day-ahead) electricity price forecasting
of Lithuania’s price zone in Nord Pool1 market.

II. METHODS

A. Feed-forward neural network

Neural networks are a class of non-linear models. One of the
most popular models is the feed-forward multilayer network
[11]. For forecasting problem, the inputs of neural network
usually are the past observations of data series and the output is
the future value. This network performs the following function
mapping

ŷT+1 = f(yT , yT−1, . . . yT−p),

where yT is the observation at time T .

B. Elman recurrent neural network

An Elman RNN is a network which in principle is set up
as a regular feed-forward neural network. This means that all
neurons in one layer are connected with all neurons in the
next layer. An exception is the so-called context layer which

1Nord Pool runs the largest market for electrical energy in Europe. It
operates in Norway, Denmark, Sweden, Finland, Estonia, Latvia, Lithuania,
Germany and offers both day-ahead and intraday markets to its customers.

Copyright held by the author(s).

75



Figure 1. An example of Elman recurrent neural network [10].

Figure 2. An example of Jordan recurrent neural network [10].

is a special case of a hidden layer. The neurons in the context
layer (context neurons) hold a copy of the output of the hidden
neurons. The output of each hidden neuron is copied into a
specific neuron in the context layer. The value of the context
neuron is used as an extra input signal for all the neurons
in the hidden layer one time step later. Therefore, the Elman
network has an explicit memory of one time lag. [12]

An example of Elman recurrent neural network is provided
in Figure 1.

C. Jordan recurrent neural network

Jordan network consists of a multilayer perceptron with one
hidden layer and a feedback loop from the output layer to an
additional input called the context layer. In the context layer,
there are self-recurrent loops. [10]

An example of Jordan recurrent neural network can be seen
in Figure 2.

D. Measures of accuracy

Point forecasts are used in majority of electricity price
forecasting papers. Therefore, accuracy measures, which are
based on absolute errors, are the mostly used. Error is defined
as the difference between the actual value and the forecast value
for the corresponding period. Due to easy interpretation, by
far the most popular measure in literature is the mean absolute
percentage error (MAPE). Though, MAPE error might be
misleading in the presence of close to zero prices [5], [13].
Therefore, we use mean absolute error (MAE) and root mean
squared error (RMSE) for evaluation of model accuracy as well.
In [14] RMSE measure is said to have advantage for showing
bigger deviations and providing a complete picture of the error
distribution as well as avoiding the use of absolute value, which
is highly undesirable in many mathematical calculations. In
[15] authors indicate that MAE is the most natural measure
of average error magnitude, and that (unlike RMSE) it is an
unambiguous measure of average error magnitude.

1) Mean Absolute Percentage Error
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100
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Here At is the real value and Ft – forecast value.

III. FORECASTING

A. Data set

In this paper data of Lithuania’s price zone in Nord Pool
power market is analysed. This data set (source of the data is
https://www.nordpoolgroup.com) consists of historical hourly
electricity prices (Eur/MWh) from January 1, 2016 to December
31, 2017.

B. Experiments

Forecasting experiments were performed for each day of
the year 2017. Data of the year 2016 was used for training
and data of the year 2017 was used for testing. We use the
whole year for training data to capture seasonality effects on
the price.

Elman and Jordan recurrent neural networks were used for
short-term day-ahead prognosis of total 24 points. The accuracy
of forecasts was measured for each day using RMSE, MAE and
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Table I
SUMMARY OF YEARLY ERRORS. ELMAN NETWORK.

Statistic MAPE MAE RMSE

Mean 18.12 6.85 8.54
Median 15.29 5.37 6.60
Standard deviation 10.45 4.69 6.19
Variance 109.20 22.05 38.32
Minimum 3.55 1.12 1.34
Maximum 80.98 30.65 46.84

Table II
SUMMARY OF YEARLY ERRORS. JORDAN NETWORK.

Statistic MAPE MAE RMSE

Mean 20.39 7.32 9.11
Median 16.42 5.82 7.12
Standard deviation 16.42 5.18 6.73
Variance 269.69 26.92 45.37
Minimum 2.94 1.17 1.55
Maximum 147.1 34.38 50.58

MAPE errors. All experiments were computed using statistical
package R (https://www.r-project.org).

The input features of the networks was lagged electricity
prices. Based on correlation analysis lags of Pt−1, Pt−2, Pt−3,
Pt−22, Pt−23, Pt−24, Pt−25, Pt−26, Pt−47, Pt−48, Pt−71,
Pt−72, Pt−73, Pt−95, Pt−96, Pt−97, Pt−120, Pt−143, Pt−144,
Pt−145, Pt−167, Pt−168, which had statistically significant
correlation with target price, were chosen as input features. All
features as well as target were scaled in to be in range from
-1 to 1 before training.

Structures of both Elman and Jordan networks had an input
layer composed of 22 neurons, a hidden layer composed of 10
neurons, and an output layer with 1 neuron. Forecasts for all
24 points were calculated recursively. Non-linear hyperbolic-
tangent-sigmoid and pure linear activation functions were used
in the hidden layer neurons and the output layer neuron,
respectively.

C. Results

Summary for accuracy values obtained by each method are
presented in Tables I and II. Results show that considering all
three measures of accuracy, the highest average accuracy with
lowest standard deviation was achieved using Elman neural
network. Although, the most precise prognosis was made using
Jordan neural network with MAPE error equal to 2.94%.

We compared the accuracy with results of benchmark Mean
and Seasonal Naïve methods described in [16]. Comparison of
MAPE errors is shown using box plot (a.k.a. box and whisker)
diagrams in Figure 3. It can be seen that the accuracy of both
Elman and Jordan networks is higher compared with Mean
method but lower compared with benchmark Seasonal Naïve.
Although, it is visible that using Elman network there are
fewer errors, which would be considered as outliers, than using
Seasonal Naïve method.

Figure 3. Boxplots of MAPE errors.

IV. CONCLUSIONS AND FUTURE WORK

Even though in literature there are many approaches which
can be used for electricity price forecasting, features such
as multiply seasonality, high volatility and spikes make it
difficult to achieve high accuracy of prediction. Highest average
accuracy during forecasting experiments was achieved using
Elman neural network. The most accurate prediction, with
MAPE error equal to 2.94 %, was made by using Jordan
network. Compared to benchmark Mean method both Elman
and Jordan networks enable to achieve more accurate forecasts.
Although, forecasts made by these recurrent networks are
less accurate than using benchmark Seasonal Naïve approach.
For future work we plan to continue searching for the best
forecasting approach for Lithuania’s electricity price zone by
testing various hybrid models, as well as including not only
historical electricity data but also external data such as wind
power which can influence electricity prices.
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