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Abstract— Active work is being done to create and develop 

quantum computers.  Google Corporation, NASA and the 

Universities Space Research Association (USRA) have teamed up 

with DWAFE, the manufacturer of quantum processors. D-Wave 

2X is a quantum processor that contains 2,048 physical qubits. 

1152 qubits from the whole number of qubits are used to perform 

the calculations. As we see, quantum computers can easily solve 

the problem of calculating the discrete logarithm used in Diffie-

Hellman algorithm. So it can break Diffie-Hellman algorithm.  

When quantum computers are released all existing crypto 

systems will be useless, because there will be no way to transfer the 

key securely.  

In the article is proposed the new key exchange method using 

high dimensional matrix, this method is safe against attacks 

implemented using quantum computers. The case concerns the 

matrix function and algorithm for cryptographic keys exchange 

with open channel. For the algorithm is offered the method of 

building a high dimensional matrix multiplicative group.  

The arising of this goal is that traditional key exchange 

methods are vulnerable to quantum computer attacks.   

Keywords— post-quantum cryptography, attacks, a matrix one-

way function, Abelian multiplicative group, asymmetric 

cryptography, high dimensional matrix finite field 

I. INTRODUCTION 

One of the fundamental problems of cryptography is the safe 

communication over the listening channel. Messages need to be 

encrypted and decrypted, but for this, both parties need to have 

a common key. If this key is transmitted via the same channel, 

then the listening side will also receive it, and the meaning of 

the encryption will disappear. 

Diffie-Hellman algorithm allows the two parties to obtain a 

common secret key using an unprotected, but spoofed, 

communication channel. The received key can be used to 

exchange messages using symmetric encryption. 

The security of forming a common key in the Diffie-Hellman 

algorithm follows from the fact that, although it is relatively 

easy to calculate exponents modulo a prime number, it is very 

difficult to calculate discrete logarithms. For large prime 

numbers of hundreds and thousands of bits, the task is 

considered unsolvable, since it requires a tremendous amount 

of computational resources. 

But this problem can easily be solved by quantum computers 

using Shor algorithm [1,2]. 

The security of RSA algorithm relies on factorization problem, 

but this problem can be easily solved using quantum computers 

[3].  

Active work is being done to create and develop quantum 

computers.  Google Corporation, NASA and the Universities 

Space Research Association (USRA) have teamed up with 

DWAFE, the manufacturer of quantum processors. D-Wave 2X 

is a quantum processor that contains 2,048 physical qubits. 1152 

qubits from the whole number of qubits are used to perform the 

calculations. As we see, quantum computers can easily solve the 

problem of calculating the discrete logarithm used in Diffie-

Hellman algorithm. So it can break Diffie-Hellman algorithm.  

When quantum computers are released all existing crypto 

systems will be useless, because there will be no way to transfer 

the key securely [4,5]. 

In the article is proposed the new key exchange algorithm using 

high dimensional matrix. This algorithm is safe against 

quantum computer attacks. 

The case concerns the matrix function and algorithm for 

cryptographic keys exchange with open channel. 

For this is offered the method building a high dimensional 

matrix multiplicative group. 

The arising of this goal is that traditional key exchange 

methods are vulnerable to quantum computer attacks.  

One-way function (OWF) is a function whose value is easy 

to calculate for any argument, but it is “difficult” to find an 

argument for the given value of the function. The word 

"difficult" is to understand the complexity of the computation. 

In other words, finding the relevant argument of the given 

function in real time is difficult even with the modern 

computing techniques. The irreversibility of function does not 

mean that the function is one-way [6,7]. 

The existence of one-way functions is the basis for the idea 

of asymmetric cryptography. It (one-way function) is the 

foundation of asymmetric cryptography, personal 

identification, authentication, and other fields of information 

protection. Although there is no theoretical proof of the 

existence of one-way functions in general, there are several 
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“possible pretendents”  (eg, multiplication and factorization, 

squaring and module rooting, discreet exponent and 

logarithmization), whose one-wayity  (ie the difficulty of 

finding the argument for the value of function) at this time  real  

and is actively used in information exchange protocols. 

As we have mentioned, one-way functions are actively used 

in the algorithms for developing a cryptographic open key. The 

initial idea (1976) belongs to Whitfield Duffie and Martin 

Helman. Based of their idea was established the first practical 

wel-known Diffie-Helman-Merkel method, which enabled the 

development of a common cryptographic key using the open 

(unprotected) channel. A year later, the first RSA algorithm of 

asymmetric encryption was formed. The RSA in fact, resolved 

the problem of  exchange information with open channel. Both 

algorithms are not safe against quantum computers attacks. Are 

proposed quantum key exchange protocols, but quantum 

computers are needed to implement them [8,9].  
 

II. ONE-WAY MATRIX FUNCTION 
 

The new one-way function for the development of common 

cryptographic keys is based on high order cyclic matrix groups, 

with the power 𝑒 = 2𝑛 − 1 , where the n is row dimension of 

the square matrix. Let's assume that "A" is the above matrix 

group, while A is the initial  𝑛 × 𝑛 matrix, then "A" = A={𝐴, 𝐴2,

𝐴3, … , 𝐴2
𝑛−1 = 𝐼}                                       (1)  

where I represents an identity matrix. 

One-way function and algorithm for common key development 

are as follows: 

 The sender chooses 𝐴1 ∈ A   secret matrix to send to the 

receiving party via open channel the  

                        u𝑢1 = 𝑣𝐴1                                          (2)  

vector where 𝑣 ∈ 𝑉𝑛 vector is known (𝑉𝑛 – is a vector 

space on GF field); 

 The receiving party shall, on the other hand, choose 

𝐴2 ∈ A secret matrix and send to the sender     

                       𝑢2 = 𝑣𝐴2                                           (3)  

vector; 

 Sender calculates 𝑘1 = 𝑢2𝐴1                                   (4)  

vector; 

 Receivier calculates 𝑘2 = 𝑢1𝐴2                               (5) 

where 𝑘1and 𝑘2 – are secret keys; 

 Obviously, 𝑘1 = 𝑘2 = 𝑘, because 

           𝑘 = 𝑣𝐴1𝐴2 =  𝑣𝐴2𝐴1                                    (6)  

because of the commutativeness of the "A" group. The     

𝑣𝐴𝑖 = 𝑢                                                         (7)   

is one-way fast function. 

Let     𝑣 = (𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛) ∈ 𝑉𝑛                                   (8)  

and  

𝑢 = (𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛) ∈ 𝑉𝑛    are non-secret vectors from 

the above algorithm and  

𝐴1 = (

𝑎11 ⋯ 𝑎1𝑛 
⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

) ∈ A                                                   (9) 

is a secret matrix. Then, according to algorithm the following 

system is formed:  

𝑣𝐴1 = (

𝑣1𝑎11 + 𝑣2𝑎21 +⋯+ 𝑣𝑛𝑎𝑛1
𝑣1𝑎12 + 𝑣2𝑎22 +⋯+ 𝑣𝑛𝑎𝑛2

⋮
𝑣1𝑎𝑛1 + 𝑣2𝑎𝑛2 +⋯+ 𝑣3𝑎𝑛3

) = (

𝑢1
𝑢2
⋮
𝑢𝑛

)              (10)  

The number of unknowns in the system of linear equations is 

the  square of number of equations. Obviously, the system can 

not be solved in limited time, if the size of the matrix is large 

enough. Size of the matrix must be chosen considering Grover’s 

algorithm. Classically, searching requires a linear search, which 

is O(N) in time. Grover's algorithm needs O(N1/2) time, it is 

considered as fastest quantum algorithm for searching an 

unsorted information. This algorithm provides a quadratic 

speedup [10,11].  

 One fact must be taken into consideration if the 𝐴1  matrix 

contains the internal recurrence, or if each of its rows are in a 

certain recurrence with the previous row, then the task of 

solving the system will be replaced by a simpler task that is easy 

to solve. It is so important that it puts itself in doubt the one-

way character of our function and requires the existence of 

Abelian multiplicative matrix group with a high order, that is 

free from the recurrence of the inside. 

III. FINITE MATRIX GROUPS CONSTRUCTION 

Let's consider (1 + 𝛼)𝑗, where j = 0,1,2, ⋯, and α represents 

the root of primitive polynomial in the 𝐺𝐹(2𝑛)  field odule with 

the module p (x). 

(1 + 𝛼)0 = 1   1 

(1 + 𝛼)1 = 1 + 𝛼  11 

(1 + 𝛼)2 = 1 + 𝛼2  101 

(1 + 𝛼)3 = 1 + 𝛼 + 𝛼2 + 𝛼3 1111 

(1 + 𝛼)4 = 1 + 𝛼4  10001 

(1 + 𝛼)5 = 1 + 𝛼 + 𝛼4 + 𝛼5 110011  

The polynomial coefficients generated the structure known as 

Serpinsky Triangle. The derived structure contains a number of 

sub-structures that can be used as a generator (generating 

matrix) for multiplicative groups, ie primitive elements. Such 

is, for example, 

𝑃3 = (
1 1 1
1 0 0
1 1 0

) (9),      𝑃5 =

(

 
 

1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0)

 
 

 (11) 

And many more. Their natural powers create Abelian 

multiplicative cyclic  group. 

For example: 

𝑃3
1 = (

1 1 1
1 0 0
1 1 0

) , 𝑃3
2 = (

1 0 1
1 1 1
0 1 1

),   

 𝑃3
3 = (

0 0 1
1 0 1
0 1 0

) , 𝑃3
4 = (

1 1 0
0 0 1
1 0 0

),  

𝑃3
5 = (

0 1 1
1 1 0
1 1 1

) , 𝑃3
6 = (

0 1 0
0 1 1
1 0 1

),   

𝑃3
7 = 𝑃3

0 = (
1 0 0
0 1 0
0 0 1

)                                    (12) 

It’s easy to confirm that  

𝑃3
0, 𝑃3

1, 𝑃3
2, 𝑃3

3, 𝑃3
4, 𝑃3

5, 𝑃3
6     
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is an Abelian multiplicative group. 

Lets keep the structure of 𝑃3  matrix and extend it by elements 

of set (2) as follows: 

𝑃32(𝑖, 𝑗) = (

𝑃3
𝑖 𝑃3

𝑗
𝑃3
𝑗

𝑃3
𝑗

0 0

𝑃3
𝑗
𝑃3
𝑗

0

),  where  i,j=0..6. (13) 

Fore example, when 𝑖 = 5 and 𝑗 = 6, we have 

𝑃32(5,6) = (

𝑃3
5 𝑃3

6 𝑃3
6

𝑃3
6 0 0

𝑃3
6 𝑃3

6 0

) =

(

 
 
 
 
 
 
(
0 1 1
1 1 0
1 1 1

) (
0 1 0
0 1 1
1 0 1

) (
0 1 0
0 1 1
1 0 1

)

(
0 1 0
0 1 1
1 0 1

) 0 0

(
0 1 0
0 1 1
1 0 1

) (
0 1 0
0 1 1
1 0 1

) 0
)

 
 
 
 
 
 

  ( (14) 

When 𝑖 = 0 and 𝑗 = 1, we have (pic. 1):    

  
Pic.1: 𝑃32(5,6) 𝑎𝑛𝑑 𝑃32(0,1) 

 

𝑃32(0,1) = (

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

) =

(

 
 
 
 
 
 
(
1 0 0
0 1 0
0 0 1

) (
1 1 1
1 0 0
1 1 0

) (
1 1 1
1 0 0
1 1 0

)

(
1 1 1
1 0 0
1 1 0

) 0 0

(
1 1 1
1 0 0
1 1 0

) (
1 1 1
1 0 0
1 1 0

) 0
)

 
 
 
 
 
 

 (15) 

Consider  𝑃 = [𝑃32(5,6)]
2 = 

= (

𝑃3
5 𝑃3

6 𝑃3
6

𝑃3
6 0 0

𝑃3
6 𝑃3

6 0

) × (

𝑃3
5 𝑃3

6 𝑃3
6

𝑃3
6 0 0

𝑃3
6 𝑃3

6 0

) (16) 

 

If we take into consideration that the set 

0,𝑃3
0, 𝑃3

1, 𝑃3
2, 𝑃3

3, 𝑃3
4, 𝑃3

5, 𝑃3
6  is a field, it is easy to assure that 

each sub-matrix of the 𝑃 matrix is in the the same set: 
 𝑃1,1 = 𝑃3

5 × 𝑃3
5 + 𝑃3

6 × 𝑃3
6 + 𝑃3

6 × 𝑃3
6 = 𝑃3

3,  

𝑃1,2 = 𝑃3
5 × 𝑃3

6 + 𝑃3
6 × 0 + 𝑃3

6 × 𝑃3
6 = 𝑃3

2,  

 𝑃1,3 = 𝑃3
5 × 𝑃3

6 + 𝑃3
6 × 0 + 𝑃3

6 × 0 = 𝑃3
4,   

  𝑃2,1 = 𝑃3
6 × 𝑃3

5 + 0 × 𝑃3
6 + 0 × 𝑃3

6 = 𝑃3
4, 

𝑃2,2 = 𝑃3
6 × 𝑃3

6 + 0 × 0 + 0 × 𝑃3
6 = 𝑃3

5,   
𝑃2,3 = 𝑃3

6 × 𝑃3
6 + 0 × 0 + 0 × 0 = 𝑃3

5, 

𝑃3,1 = 𝑃3
6 × 𝑃3

5 + 𝑃3
6 × 𝑃3

6 + 0 × 𝑃3
6 = 𝑃3

2,  

  𝑃3,2 = 𝑃3
6 × 𝑃3

6 + 𝑃3
6 × 0 + 0 × 𝑃3

6 = 𝑃3
5, 

𝑃3,3 = 𝑃3
6 × 𝑃3

6 + 𝑃3
6 × 0 + 0 × 0 = 𝑃3

5. 

or  𝑃 = (

𝑃3
3 𝑃3

2 𝑃3
4

𝑃3
4 𝑃3

5 𝑃3
5

𝑃3
2 𝑃3

5 𝑃3
5

) (15) ( see pic. 2).  

 
pic.2: 𝑃 = [𝑃32(5,6)]

2 

 

Using the software package we have developed it has been 

confirmed that the 𝑷𝟑𝟐(𝟓, 𝟔) matrix is a primitive element. Its 

natural powers generate Abelian multiliplicative group, whose 

power is 𝟐𝟑
𝟐−𝟏. 

The elements  of [𝑃32(5,6)]
𝑘 when k = 73, 146, 219, 292, 

365, 438, 511 are diagonal matrices (see pic. 3):  

(

𝑃3
4 0 0

0 𝑃3
4 0

0 0 𝑃3
4

) ,(

𝑃3
1 0 0

0 𝑃3
1 0

0 0 𝑃3
1

) ,(

𝑃3
5 0 0

0 𝑃3
5 0

0 0 𝑃3
5

), 

 (

𝑃3
2 0 0

0 𝑃3
2 0

0 0 𝑃3
2

) ,(

𝑃3
6 0 0

0 𝑃3
6 0

0 0 𝑃3
6

), 

(

𝑃3
3 0 0

0 𝑃3
3 0

0 0 𝑃3
3

) ,(

𝑃3
0 0 0

0 𝑃3
0 0

0 0 𝑃3
0

) 

 

 
Pic.3 : [𝑃32(5,6)]

𝑘, 𝑘 = 73, 146, 219, 292, 365, 438, 511  
 

Also 𝑃32(0,1) matrix is a primitive element, and elements 

of the set [𝑃32(0,1)]
𝑘 , when k=73, 146, 219, 292, 365, 438, 

511, are diagonal matrices(pic 4): 

 

(

𝑃3
3 0 0

0 𝑃3
3 0

0 0 𝑃3
3

) ,(

𝑃3
6 0 0

0 𝑃3
6 0

0 0 𝑃3
6

) ,(

𝑃3
2 0 0

0 𝑃3
2 0

0 0 𝑃3
2

),  

(

𝑃3
5 0 0

0 𝑃3
5 0

0 0 𝑃3
5

) ,(

𝑃3
1 0 0

0 𝑃3
1 0

0 0 𝑃3
1

) 

(

𝑃3
4 0 0

0 𝑃3
4 0

0 0 𝑃3
4

) ,(

𝑃3
0 0 0

0 𝑃3
0 0

0 0 𝑃3
0

) 

 

       
 

 

pic.4: [𝑃32(5,6)]
𝑘, 𝑘 = 73, 146, 219, 292, 365, 438, 511  

 



86 

 

Set of non-zero elements of the diagonal matrices represents the 

perturbation of the group 𝑃3
0, 𝑃3

1, 𝑃3
2, 𝑃3

3, 𝑃3
4, 𝑃3

5, 𝑃3
6  (called as 

primary group) and one of the elements is 𝑃3
0. 

Finally, we can conclude that empirically we proved the 

following fact: 

The second order (𝑖, 𝑖 + 1) expansion 𝑃32(𝑖, 𝑖 + 1) , 𝑖 = 0. .5,  

of the matrix 𝑃3  is a primitive element and creates the Abelian 

multiplicative finite group 𝐹(𝑃32(𝑖, 𝑖 + 1)) , with the power 

23
2
– 1. 

Below we can see other primitive elements that are results of 

expansion of 𝑃3 matrix: 

𝑃32(0,1) = (

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

), 

𝑃32(1,2) = (

𝑃3
1 𝑃3

2 𝑃3
2

𝑃3
2 0 0

𝑃3
2 𝑃3

2 0

), 

𝑃32(2,3) = (

𝑃3
2 𝑃3

3 𝑃3
3

𝑃3
3 0 0

𝑃3
3 𝑃3

3 0

) 

 

 𝑃32(3,4) = (

𝑃3
3 𝑃3

4 𝑃3
4

𝑃3
4 0 0

𝑃3
4 𝑃3

4 0

) 

𝑃32(4,5) = (

𝑃3
4 𝑃3

5 𝑃3
5

𝑃3
5 0 0

𝑃3
5 𝑃3

5 0

) 

𝑃32(5,6) = (

𝑃3
5 𝑃3

6 𝑃3
6

𝑃3
6 0 0

𝑃3
6 𝑃3

6 0

) 

𝑃32(6,0) = (

𝑃3
6 𝑃3

0 𝑃3
0

𝑃3
0 0 0

𝑃3
0 𝑃3

0 0

) (17) 

 

In order to get higher order primitive elements, we still 

retain the structure of 𝑃3 matrix and put into the elements of the 

group 𝐹(𝑃32(𝑖, 𝑖 + 1)) . We get 33 order matrix (call it a third 

order expansion). 

For example, if we use the elements of group 𝐹(𝑃32(0,1)) 
for the first and second expansions of the matrix of 𝑃3 , 

respectively [𝑃32(0,1)]
0  [𝑃32(0,1)]

1  matrices, we get the 

following matrix (pic. 5): 

 
pic.5. 𝑃33(0,1) 

 

𝑃33(0,1) = (

𝑃32
0 𝑃32

1 𝑃32
1

𝑃32
1 0 0

𝑃32
1 𝑃32

1 0

) =

=

(

 
 
 
 
 
 
 
 (

𝑃3
0 0 0

0 𝑃3
0 0

0 0 𝑃3
0

) (

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

) (

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

)

(

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

) 0 0

(

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

) (

𝑃3
0 𝑃3

1 𝑃3
1

𝑃3
1 0 0

𝑃3
1 𝑃3

1 0

) 0

)

 
 
 
 
 
 
 
 

(18) 

 

Let's consider [𝑃33(0,1)]
𝑘  set. It has the same basic 

structure 𝑃3 as the primary group, as well as the first and second 

expansion matrices taken from the primary group. It is expected 

that this set is characterized by the same properties as the 

primary group has. Indeed, experimentally, it also has diagonal 

matrices, whose diagonal elements represent one of the 

perturbations of the primary group. 

 

For the set [𝑃33(0,1)]
𝑘  diagonal matrices are 

[𝑃33(0,1)]
𝑗∙(22∙3

2
+23

2
+1)

, 𝑗 = 1,2,3,⋯ , 23
2
− 1.  

When 𝑗 = 23
2
− 1 , we get the final element of the set  

[𝑃33(0,1)]
𝑘 : 

 

[𝑃33(0,1)]
(23

2
−1)∙(22∙3

2
+23

2
+1) = [𝑃33(0,1)]

(23
3
−1) =

     = (

[𝑃30(0,1)]
0 0 0

0 [𝑃30(0,1)]
0 0

0 0 [𝑃30(0,1)]
0

) (19) 

 
 

We see that this is an Identity matrix. Therefore 𝑃33(0,1) 
is a primitive element and creates the Abelian multiplicative 

finite group with power 23
3
− 1. 

Definition: We call the following matrix  

 

𝑃3𝑘(𝑖, 𝑖 + 1) = (

𝑃
3𝑘−1
𝑖 𝑃

3𝑘−1
𝑖+1 𝑃

3𝑘−1
𝑖+1

𝑃
3𝑘−1
𝑖+1 0 0

𝑃
3𝑘−1
𝑖+1 𝑃

3𝑘−1
𝑖+1 0

)         (20) 

 

where 𝑃
3𝑘−1
𝑖 ∈ 𝐹(𝑃3𝑘−1(𝑖, 𝑖 + 1)), as the kth  order (𝑖, 𝑖 + 1) 

expansion of the 𝑃3 matrix. 

 Theorem: 𝑃3𝑘(𝑖, 𝑖 + 1) is a primitive element and creates the 

abelian multiplicative finite group 𝐹(𝑃3𝑘(𝑖, 𝑖 + 1))  with 

power  23
𝑘
– 1. 

In general matrices [𝑃3𝑘(𝑖, 𝑖 + 1)]
𝑗(22∙3

𝑘−1
+23

𝑘−1
+1)

, where 

𝑗 = 1,2,3,⋯ , 23
𝑘−1
− 1  are diagonal matrices and diagonal 

elements are one of the permutations of the elements of the 

primary group.  
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When 𝑗 = 23
𝑘−1
− 1, we get 

[𝑃3𝑘(𝑖, 𝑖 + 1)]
𝑗(22∙3

𝑘−1
+23

𝑘−1
+1)=

= [𝑃3𝑘(𝑖, 𝑖 + 1)]
(23

𝑘−1
−1)∙(22∙3

𝑘−1
+23

𝑘−1
+1)=

= [𝑃3𝑘(𝑖, 𝑖 + 1)]
(23

𝑘−1
−1)

=

(

 

[𝑃3𝑘–1(𝑖, 𝑖 + 1)]
0

0 0

0 [𝑃3𝑘–1(𝑖, 𝑖 + 1)]
0

0

0 0 [𝑃3𝑘–1(𝑖, 𝑖 + 1)]
0
)

  

(21) 

 
This means that (3) the structure is a primitive matrix. The 

primitive matrices obtained have an interesting fractal structure 

(see pic. 6). Abelian  multiplicative groups adopted by the above 

mentioned method represent sufficient sets for realizing our 

one-way matrix functions 

 

 
                                     pic.6. 𝑃34(0,1) 
 

 

IV. CONCLUSION 
Basic 𝑃3 matrix 𝑃3𝑘(𝑖, 𝑖 + 1)    expansions are primitive 

matrices they generate abelian multiplicative matrix groups. 

An interesting trend of research results in the idea: use the 

elements of the primary field as the first and second expanding 

matrices with the same characteristic polynom. It is also 

important the use of other baseline matrices, which enlarges a 

new type of primitive structures. Elements of abelian 

multiplicative matrix groups can be used in implementation of 

one way function, that we offer. So the key exchange method is 

got and it is secure against quantum computers attacks. 
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